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Abstract
Production of bioethanol from macroalgal feedstock involves pretreatment and hydrolysis of biomolecules for release of 
sugar followed by the fermentation of the sugar. The most commonly used pretreatment method for macroalgal biomass 
is dilute acid hydrolysis using mineral acids  H2SO4 and HCl. The optimization of dilute acid hydrolysis of Ulva lactuca 
yielded 214.67 mg  g−1 using 0.5 N  H2SO4, 5% w/w substrate concentration at 121 °C for 45 min, and hydrolysis of Entero-
morpha intestinalis yielded 239.94 mg  g−1 of reducing sugar using 0.7 N  H2SO4, 5% w/w substrate concentration at 120 °C 
for 45 min. Crude enzyme extracted from marine bacteria Vibrio parahaemolyticus and purified by the two-step purifica-
tion produced 61.82% yield with 2.97-fold purification. Enzymatic hydrolysis of pretreated macroalgal biomass produced 
onefold higher reducing sugar than acid hydrolysis for Ulva lactuca (261.76 ± 0.9 mg  g−1) and Enteromorpha intestinalis 
(289.89 ± 2.4 mg  g−1).
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1 Introduction

The exploitation of finite fossil fuel resources has given rise 
to increased price fluctuations and elevated greenhouse gas 
emissions, contributing mainly to global warming. These 
drawbacks have escalated the need for alternative, renew-
able, sustainable, and economically viable energy resources 
such as carbohydrate-rich biomass to produce bioethanol. 
Bioethanol production is obtained from the carbohydrate 
fraction of the biomass, which is extracted and fermented 
[1–4]. Biomass conversion involves the separation of carbo-
hydrate fraction to simple sugar through pretreatment meth-
ods, a vital step in biofuel production [5]. Several attempts 
have been made towards pretreatment of macroalgae or 

seaweeds [6–11], including chemical, physical, or biologi-
cal or combination of these techniques. Pretreatment is car-
ried out to enhance the surface area of the feedstock for 
the release of the constituent fermentable (reducing) sugars, 
which depends on the characteristics of chosen feedstock, 
catalysts, operation parameters, and strength [8, 12, 13]. 
Macroalgal biomasses are composed of a wide range of 
polysaccharides such as cellulose, ulvan, laminarin, Florid-
ean starch, etc. These polysaccharides are broken down into 
monosaccharides which serve as raw materials for bioetha-
nol production. Constituents of these monosaccharides vary 
in the macroalgal biomass, as summarized in Table 1.

Macroalgae with higher moisture (80–85%) content and 
devoid of lignin polymer is well suited for microbial con-
version than combustion or thermochemical conversion 
[14, 33, 34]. Also, the absence of lignin avoids the neces-
sity of employing harsh pretreatment processes required in 
lignocellulosic biomass [14, 33]. Pretreatment of biomass 
is carried out for (i) size reduction and (ii) alter or remove 
structural and compositional impediments before enzymatic 
hydrolysis. Pretreatments are required to be cost-effective 
with minimal inhibitor formation while releasing a higher 
quantum of sugar.

Physicochemical pretreatment involves liquid cata-
lysts with higher process conditions to treat the feedstock. 

 * T. V. Ramachandra 
 tvr@iisc.ac.in; energy.ces@iisc.ac.in
 http://ces.iisc.ernet.in/energy

 Deepthi Hebbale 
 deepthih@iisc.ac.in

1 Energy & Wetlands Research Group, Centre for Ecological 
Sciences, Indian Institute of Science, Bangalore 560012, 
India

2 Centre for Sustainable Technologies, Indian Institute 
of Science, Bangalore 560012, India

http://orcid.org/0000-0001-5528-1565
http://crossmark.crossref.org/dialog/?doi=10.1007/s13399-021-01845-8&domain=pdf


8288 Biomass Conversion and Biorefinery (2023) 13:8287–8300

1 3

Pretreatment using chemicals such as acid, alkaline, and 
ammonia fiber expansion as well as soaking in aqueous 
ammonia and inorganic salts has been tried and is economi-
cal [8, 9, 35]. Ulva lactuca feedstock was subjected to four 
different pretreatments: ethanol organ solvent, alkaline, liq-
uid hot water, and ionic liquid treatments. Organosolvent 
and liquid hot water treatment produced the highest sugar 
recovery of 808 mg  g−1 dry weight (DW) and 629 mg  g−1 
DW, respectively [35]. In the hot water pretreatment, holes 
on algal feedstock surface (observed under scanning elec-
tron microscopy) indicated crystallinity (index of 97.5%) 
and cracks, which has enhanced enzyme digestibility of the 
feedstock. Gelidium amansii pretreated with 0.05–0.2 N 
Ca (OH)2 at 121 °C for 15 min resulted in gel formation. 
Hence, alkaline pretreatment is not opted for pre-processing 
of macroalgal feedstock, especially red and brown macroal-
gae containing hydrocolloids such as agar, carrageenan, and 
algin [36]. The most commonly used chemical pretreatment 
method employs mineral acids such as  H2SO4 and HCl at 
milder concentrations of 0.3–0.9 N [9, 10]. Various reac-
tion parameters such as reaction time, acid concentration, 

and substrate concentration are involved for efficient sugar 
release from the macroalgal feedstock. Pretreatment with 
dilute  H2SO4 at different concentrations (~ 0.5–1%) and 
moderate temperature (~ 140–190 °C) [37] has been used 
widely for macroalgal cell wall depolymerization. Energy 
consumption in acid pretreatment is comparatively low com-
pared to other pretreatments as it requires lower temperature 
as well as lesser incubation time (Table 2). Sulfuric acid 
reduces the production of inhibitors and improves the solu-
bilization of seaweed polysaccharides [38]. The US National 
Renewable Energy Laboratory study reveals that the use of 
dilute acid (0.5–1%; 160–180 °C for 10 min) pretreatment 
aided in the release of different simple sugars (xylose, arab-
inose, galactose, glucose) [39, 40].

Reducing sugar (RS) released using  H2SO4 from vari-
ous macroalgal species such as Gracilaria verrucosa 
(430 mg  g−1 RS, 1.5%  H2SO4) [46]; Kappaphycus alvarezii 
(300 mg  g−1 RS, 0.9 N  H2SO4) [47]; Gracilaria verrucosa 
(7 g  L−1 RS, 373 mM  H2SO4) [48]; Laminaria japonica 
(29.09% RS, 0.06%  H2SO4) [49]; Kappaphycus alvarezii 
(81.62 g  L−1 RS, 1% v/v  H2SO4) [15]; Gelidium amansii 
(33.7% RS, 3%  H2SO4) [10]; Gracilaria verrucosa (7.47 g 
 L−1 RS, 0.1 N  H2SO4) [50]; and Kappaphycus alvarezii 
(30.5 g  L−1 RS, 0.2 M  H2SO4) has been reported [16]. How-
ever, drawback of dilute acid (higher concentration > 0.9 N) 
pretreatment is the generation of a higher concentration of 
5-hydroxymethyl furfural (HMF) and levulinic acid (LA) 
(with the degradation of hexose sugars and furfurals from 
pentose sugar degradation), which acts as inhibitors for 
microorganisms during the fermentation process by reducing 
enzymatic and biological activities, breaking down the DNA 
and inhibiting protein and RNA synthesis [51]. In order to 
overcome this, enzyme saccharification or biological pre-
treatment using either cellulase enzyme (of commercial-
grade) or enzymes isolated from fungi or bacteria has been 
tried.

The most common enzymes employed for seaweed 
hydrolysis in earlier studies are commercial enzymes such 
as Cellulase, Celluclast 1.5 L, Viscozyme L, Novozyme 

Table 1  Reducing sugar composition of macroalgae

Glu, glucose; Xyl, xylose; Gal, galactose; Man, mannose; Ara, arab-
inose
Source [14–32]:

Sources Glu Xyl Man Gal Ara

Ulva sp. 8.2 4.5 0.29 1 0.08
Enteromorpha sp. 26.3 3.5 6
Gracilaria sp. 24 0.3 0.07 42.8 0
Eucheuma sp. 0.78 22.39
Porphyridium sp. 16.9 4.7 0.1 5.3 0
Padina sp. 1.4 1.3 0 0.75 0.04
Sargassum sp. 22.5 0.5 4 4
Palmaria sp. 3.8 31.1 0 5.5 0
Laminaria sp. 18.5 0.24 0.33 0.49 0.05
Undaria sp. 0.11 0.13 0.1 0.58 0.05

Table 2  Various parameters 
involved in pretreatment process

[41–45]

Pretreatment process Temperature, °C Pressure, atm 
absolute

Reactions 
times, 
min

Alkaline hydrolysis 208 2 h
Acid hydrolysis 121 3–15 45
Ionic liquids (ILs) 80–115 60
Organosolvent process 50–200 1–2 h
Steam explosion 160–260 6.8–47.6 24 h
Ammonia fiber explosion (AFEX) 60–100 15–20  < 5
Liquid hot water 170–230 49.34 1 h
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188, Termamyl 120 L, β-glucosidase, Multifect, Meicelase, 
and Amyloglucosidase operated at pH 4.5–5.5 and tempera-
ture 35–55 °C; incubation time varies based on the algal 
feedstock [8, 15, 51–59]. The current study focuses on the 
evaluation of sugar release from Enteromorpha intestinalis 
and Ulva lactuca using dilute acid hydrolysis and enzyme 
(extracted from Vibrio parahaemolyticus) saccharification 
of the dilute acid pretreated biomass.

2  Materials and methods

2.1  Sample collection

E. intestinalis and U. lactuca seaweed samples were col-
lected from Aghanashini estuary, Kumta taluk, Uttara Kan-
nada district, Karnataka. Samples were thoroughly cleaned 
of epiphytes, then shade dried and powdered to obtain 
uniform size, and stored in polythene sachets for further 
analysis.

2.2  Dilute acid hydrolysis

Pretreatment of macroalgal feedstock was carried out at dif-
ferent acid concentrations, substrate concentrations, reaction 
time, and temperatures. Initially, acid hydrolysis was carried 
out using  H2SO4 and HCl with concentrations ranging from 
0.05, 0.1, 0.3, 0.5, 0.7, 0.9 to 1 N and keeping other param-
eters constant. The concentration of acid required for opti-
mal sugar production was assessed, and further optimization 
was carried out. The reaction temperature for pretreatment 
was carried out with 2% w/v substrate at 30, 60, 90, and 
120 °C for 45 min. Reaction time pretreatment with 2% w/v 
substrate concentration was carried out for 30, 60, 90,105, 
and 120 min. Pretreatment for algal biomass at different 
substrate concentrations of 1%, 2%, 3%, 5%, 7%, and 9% 
w/v was carried out at 120 °C for 45 min. After hydrolysis, 
residues were separated by filtration, and total sugar and 
reducing sugar were determined by phenol sulfuric acid [60] 
and dinitrosalicylic acid (DNS) [61] methods, respectively. 
DNS method is widely used to determine reducing sugar 
content in fields of food, bioprocess, medicine, etc. [62, 63]. 
Neutralization was carried out for acid hydrolysate using 
 Na2CO3, NaOH, activated charcoal, and Ca (OH)2 [64, 65]. 
The significance of the above factors in influencing sugar 
release was determined using ANOVA. Thin-layer chroma-
tography analysis of algal hydrolysate is obtained following 
optimized acid hydrolysis on silica gel plates using mobile 
phase butanol/ethanol/water (3:2:1 v/v/v). Later, these plates 
were dried at room temperature and dipped in  AgNO3 solu-
tion for 1 min, and when dried, the plates were sprayed with 
ethanolic sodium hydroxide solution until dark brown spots 
appeared [66].

The efficiency of acid hydrolysis pretreatment (%) is cal-
culated using Equation 1:

where:

Ep  is the efficiency of acid hydrolysis pretreatment (%).
ΔS  is the disaccharide increase (mg) during acid hydroly-

sis pretreatment.
TS  is the total sugar (mg).

2.3  Response surface method

Response surface method (RSM) was used to evaluate the 
relationship between independent variables, reaction tem-
perature (°C, X1), reaction time (min, X2), and substrate con-
centration (% w/v, X3), and dependent variable, reducing 
sugar (mg  g−1, Y). The experimental data was analyzed and 
the probable relationship follows the second-order polyno-
mial Eq. 2:

where Y is a response variable and X1, X2, and X3 are inde-
pendent variables, β0 is the offset term; β1, β2, and β3 are the 
linear coefficients as per least squares method; and β11, β22, 
and β33 are the first, second, and third linear coefficients, 
respectively [48]. The Student’s t test was performed for the 
determination of the statistical significance of the regression 
coefficient [55, 67].

2.4  Crude enzyme production from Vibrio 
parahaemolyticus

Crude enzyme is extracted from Vibrio parahaemolyticus 
[68] using CMC as a sole source of carbon for screening 
cellulose-degrading bacteria. Endoglucanase was deter-
mined using the carboxymethyl cellulase method (CMCase) 
[69]; the endoglucanase enzyme cleaves the intermolecu-
lar β-1–4-glycosidic bonds present in cellulose. Cellulase 
was purified by centrifuging bacterial culture at 12,000 rpm 
for 15 min at 4 °C and supernatant was collected. Proteins 
were precipitated to 80% saturation with  (NH4)2SO4 at 4 °C 
and pelletized through centrifugation. Pellet was dissolved 
in Tris–HCl (pH 7) and purified using ion exchange chro-
matography, wherein the sample was applied to Superdex 
200 column equilibrated with Tris–HCl. Fractions were col-
lected, and fractions with the highest enzyme activity were 
pooled and considered for other characterization. Enzymatic 
activity refers to the amount of enzyme that releases 1 µmol 
of reducing sugar per minute.

(1)Ep(%) =
(ΔS)

TS
× 100

(2)
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2.5  Enzyme characterization

The effect of pH on the enzyme activities was estimated 
using a buffer of different concentrations: 50 mM citrate 
buffer (pH 3–4), citrate phosphate buffer (pH 5–6), Tris–HCl 
(pH 7), and potassium phosphate buffer (pH 8). The effect of 
temperature on enzyme activity was determined by incubat-
ing the enzyme assay mixture of optimum pH at different 
temperatures ranging from 25 to 60 °C. The effect of salinity 
on enzyme assay mixture and salinity (NaCl) ranging from 
4 to 20% was determined. Samples were incubated for 1 h 
with CMC as a sole source of carbon.

2.6  Efficient sugar release from macroalgal biomass 
through pretreatment: dilute acid hydrolysis 
and enzyme saccharification

Macroalgal feedstock Enteromorpha intestinalis (EI) and 
Ulva lactuca (UL) samples were subjected to dilute acid 
hydrolysis using an optimized acid concentration of 0.7 N 
and 0.5 N H2SO4 at optimal temperature and time of 121 °C 
and 45 min. Dilute acid pretreated macroalgal biomass EI 
and UL was subjected to enzymatic hydrolysis at 55 °C pH 
6 for 36 h. The reducing sugar released from the above pro-
cesses was recovered through a centrifuge and was estimated 
using DNS method [61].

2.7  SEM analysis

Macroalgal biomass surface morphology (untreated, acid-
treated, and enzyme-treated biomass) was qualitatively ana-
lyzed using SEM (JEOL-IT 300). Macroalgal samples were 
placed on an aluminum specimen mount using conductive 
carbon tape. Sputter gold coating was performed to prevent 
charging. Samples were then examined in SEM under vac-
uum condition at accelerating voltage of 10 kV.

3  Results and discussion

Total sugar and reducing sugar (after dilute acid hydrolysis) 
were estimated for both E. intestinalis and U. lactuca. The 
optimization variables considered are acid concentration, 

reaction temperature, substrate concentration, and reaction 
time.

3.1  Effect of dilute acid concentration

The effect of dilute acid concentration on E. intestinalis and 
U. lactuca was determined using acid concentrations of 0.01, 
0.05, 0.3, 0.5, 0.7, and 1 N, for 1% substrate concentration 
at 121 °C for 1 h. Higher total sugar for E. intestinalis and 
U. lactuca biomass was obtained for pretreatment using 
 H2SO4 (Fig. 1.). The sugar content gradually decreased 
with increase in acid concentrations as sugar decomposi-
tion varies based on concentrations and different acid cata-
lytic activities [70]. Acid-catalyzed glucose decomposition 
is more dependent on the concentration of hydrogen ions at 
a particular temperature than on hydrogen ion sources [71].

Reducing sugar estimation was carried out for E. intesti-
nalis and U. lactuca using HCl and  H2SO4 (Fig. 2). Reduc-
ing sugar increased gradually with the increase in  H2SO4 
concentration for E. intestinalis, whereas for U. lactuca, 
reducing sugar increased up to 0.5  N  H2SO4 and then 
decreased drastically. Acid hydrolysis efficiency was calcu-
lated for both the acid, and it was found that 0.7 N  H2SO4 
with the conversion efficiency of 80.18% was suitable for 
E. intestinalis and 0.5 N  H2SO4 achieved a conversion effi-
ciency of 60.07% for U. lactuca. These concentrations were 
kept constant for further optimization study.  H2SO4 hydroly-
sis exhibited better reducing sugars compared to HCl and 
was considered for optimization. Hydrolysis using differ-
ent acid concentrations released different concentrations of 
reducing sugars from the macroalgal biomass depending on 
their structure and biochemical composition, demonstrating 
that a customized approach is needed for hydrolysis.

3.2  Effect of reaction temperature on acid 
hydrolysis

Reducing sugar at different temperatures of 30, 60, 90, and 
120 °C was recorded (Fig. 3). The highest reducing sugar 
of 549.45 mg  g−1 and 528.46 mg  g−1 was obtained for E. 
intestinalis and U. lactuca at 120 °C with 90.9% and 97.7% 
sugar conversion, respectively. Pretreatment of terrestrial 
biomass involves higher temperature (165–210 °C); this is 

Fig. 1  Total sugar released 
using different concentrations 
of acid for U. lactuca and E. 
intestinalis (p < 0.05)
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attributed to their rigid structures [59], whereas macroal-
gal biomass requires milder temperatures. Studies involv-
ing red algae Kappaphycus alvarezii pretreated using 1% 
 H2SO4 at 120 °C for 60 min obtained 81 g  L−1 of reducing 
sugar [15], whereas earlier study [16] of similar pretreat-
ment conditions at 130 °C obtained 22.4 g  L−1 of reducing 
sugar. Reducing sugar of 65 mg  g−1 was obtained after 
pretreatment of U. pinnatifida at 120 °C for 24 h [17]. 
Pretreatment of Saccharina japonica using 40 mM  H2SO4 
at 121 °C for 60 min yielded 20.6 g  L−1 of reducing sugar 
[57]. An earlier study [59] of similar pretreatment condi-
tions using 1 mM H2SO4 for 120 min achieved 34 g  L−1 
reducing sugar, indicating that the concentration of acid 
in hydrolysis plays a critical role in incubation tempera-
ture. Higher pretreatment conditions lead to degradation 
of sugars to hydroxymethyl furfural, which inhibits yeast 
growth by reducing the biological enzymatic activities, 
causing DNA and cell wall damage, inhibition of RNA, 
and protein synthesis [72].

3.3  Effect of reaction time on hydrolysis

To investigate the release of total sugar and reducing sugar, 
E. intestinalis and U. lactuca were hydrolyzed by 0.7 N and 
0.5 N  H2SO4, respectively, at 121 °C and different reaction 
times varying from 15, 30, 60, 90 to 120 min (Fig. 4). Maxi-
mum total sugar of 399 mg  g−1was obtained at 105 min for 
E. intestinalis; maximum reducing sugar (121 mg  g−1) was 
recorded at 45 min with a conversion efficiency of 42.1%. 
Maximum total and reducing sugars were produced for 
U. lactuca at 45 min and were seen decreasing with the 
increase in incubation time. G. verrucosa was subjected 
to pretreatment using 0.1 N  H2SO4, and maximum total 
sugar (12.06 g  L−1) and reducing sugar (6.99 g  L−1) were 
obtained at 15 min incubation time. A shorter incubation 
time is required for red algae as a major fraction of sugar 
(i.e., Floridean starch) is composed in the cytoplasm of the 
red algae [73], which gets released easily. Hence, the longer 
incubation time was not considered as it leads to increase 

Fig. 2  Reducing sugar release 
using different concentrations 
of acid for U. lactuca and E. 
intestinalis (p < 0.05)
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Fig. 3  Effect of reaction tem-
perature on acid hydrolysis of 
U. lactuca and E. intestinalis 
(p < 0.05)
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Fig. 4  Effect of incubation time 
on total and reducing sugar 
release during acid hydrolysis 
from U. lactuca and E. intesti-
nalis (p < 0.05)
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energy and cost, as well as accelerates the degradation of 
sugars to 5-HMF, levulinic acid, and formic acid [8, 10, 
52, 65]. Therefore, 45 min was considered as the optimum 
incubation time for further studies.

3.4  Effect of substrate concentration on acid 
hydrolysis

The effect of varying substrate concentrations (1–9% w/v) on 
acid hydrolysis of E. intestinalis and U. lactuca was investi-
gated at 121 °C for 45 min (Fig. 5). Total and reducing sugar 
concentration decreased with an increase in substrate con-
centrations. Similar results were observed for E. intestinalis, 
and the total reducing sugar decreased with an increase in 
solid to liquid ratio [8]. In a conventional simultaneous sac-
charification and fermentation process, substrate concentra-
tion of 10% (w/v) is considered optimal due to high viscosity 
and difficulty in handling the slurry [70]. Hydrolysis of Kap-
paphycus alvarezii required a 10% substrate concentration 
[16]. The highest sugar conversion rate was achieved at 2% 
(w/v) of G. verrucosa [50]. Higher efficiency of 85.43% and 
62.97% was obtained for 5% (w/v) of E. intestinalis and U. 
lactuca substrate. Therefore, 5% (w/v) was considered as 
optimum substrate concentration.

3.5  Optimized sugar from E. intestinalis and U. 
lactuca

Acid hydrolysis of E. intestinalis and U. lactuca feedstock 
was carried out at an optimum acid concentration of 0.7 N 
and 0.5 N  H2SO4, respectively at 121 °C for 45 min 5% 
(w/v) substrate concentration (Table 3). The highest reduc-
ing sugar of 206.82 ± 14.96 mg  g−1was recorded from U. 
fasciata using sodium acetate (pH 4.8) buffer pretreatment 
process at 120 °C for 60 min. Undaria pinnatifida was 

pretreated at a higher concentration of acid, 5%  H2SO4 at 
120 °C for 24 h to obtain 65 mg glucose/g biomass [17]. U. 
pertusa was subjected to a high thermal liquefaction process 
(HTLP), with a process condition of 400 °C at 40 mPa and 
obtained 352 mg  g−1of reducing sugar. HTLP pretreatment 
loosens the complex structure and increases the porosity of 
the cell membranes allowing the entry of the solvent for 
further degradation [74]. Reducing sugar concentration of 
145 ± 2.1 mg  g−1was obtained from pretreatment of Saccha-
rina japonica (10% w/v) at 121 °C for 60 min using 40 mM 
 H2SO4 [57]. Pretreatment of red seaweed Gracilaria sp. was 
carried out using 0.1 N  H2SO4 at 121 °C for 1 h at 20% w/v 
biomass loading and obtained 277 mg  g−1of reducing sugar 
[75]. Inhibitors from acid hydrolysate hydroxymethyl fur-
fural (HMF) and levulinic acid (LA) were detoxified using 
activated charcoal [65], which removed 70.37% HMF and 
38.8% LA; similarly,  Na2CO3 detoxified the 56.1% from U. 
lactuca and 23.3% from E. intestinalis [64] indicating that 
hydrolysis using dilute acid concentration resulted in a lower 
concentration of inhibitors.

TLC analysis showed glucose and xylose in the both acid 
hydrolysate of E. intestinalis and U. lactuca (Fig. 6).

3.6  Assessing the optimal pretreatment conditions 
through RSM (Response Surface Method)

RSM involved assessing the optimal pretreatment condi-
tions (Table 4) for maximum reducing sugar yield from E. 
intestinalis and U. lactuca. The possible combinations of 
independent variables were chosen through stepwise regres-
sion, and the probable relationship with the yield of sugar 
(Y) is expressed in Eqs. 3 for E. intestinalis and 4 for U. lac-
tuca, respectively (p < 0.05). Response surface curves were 
generated using 14 data points of each variable as depicted 
in Fig. 7 for E. intestinalis and U. lactuca reducing sugar 

Fig. 5  Effect of substrate con-
centration of acid hydrolysis of 
U. lactuca and E. intestinalis 
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Table 3  Optimized sugar 
release using dilute acid 
pretreatment of E. intestinalis 
and U. lactuca 

Biomass Dilute acid pretreatment Reducing sugar (mg  g−1)

Enteromorpha intesti-
nalis

5% w/w, 0.7 N  H2SO4 at 121 °C for 45 min 239.94 ± 1.36

Ulva lactuca 5% w/v, 0.5 N  H2SO4 at 121 °C for 45 min 214.67 ± 0.97
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yield at different reaction temperatures, time, and substrate 
concentrations, which aided in arriving at the optimum 
level of each variable for maximum response. An increase 
in substrate concentrations led to a decline in reducing sugar 
release, which could be due to sorption loss.

The effect of reaction temperature and incubation time 
on hydrolysis of E. intestinalis and U. lactuca when sub-
strate concentration was kept constant as shown in Fig. 7 

(3)
Ye = 584.9 + 4.8X

1
− 4.7X

2
− 5.7X

3
− 0.05X

1

2 − 0.017X
2

2 − 1.45X
3

2

(4)
Yu = 293.2 + 11.6X

1
− 3.2X

2
+ 17.9X

3
− 0.09X

1

2 − 0.01X
2

2 − 3.8X
3

2

and reducing sugar yield decreased with an increase in 
incubation temperature and incubation time. Higher 
reducing sugar yield was recorded at lower temperatures 
(30–60 °C) and incubation time (30–90 min). In order to 
obtain reducing sugar yield between 400 abd 600 mg/g, 
the optimum reaction temperature of 75  °C, reaction 
time 75 min, and substrate concentration of 5% w/v were 
recorded from the RSM 3D plot. However, in this study, 
dilute acid hydrolysis of algal biomass for efficient reduc-
ing sugar yield between 200 and 240 mg/g was achieved at 
temperature 121 °C and time 45 min at 5% w/v substrate 
concentration. Higher glucose yield for Sargassum spp. is 
achieved at optimized acid concentration of 3.75 and 4.5% 
(w/v) substrate concentration and optimum temperature 
115 °C for 86–90 min [55]. It is seen that the pretreatment 
temperature and incubation time obtained in this study 
to treat E. intestinalis and U. lactuca were milder than 
the terrestrial biomass. The presence of cellulose, hemi-
cellulose, and lignin imparts the rigidity to the terrestrial 
biomass. It hence requires a temperature between 165 and 
210 °C at a high concentration of acids for a longer incu-
bation time (4 weeks) [55, 57].

It is seen that the pretreatment temperature and incuba-
tion time obtained to treat E. intestinalis and U. lactuca 
were milder than the terrestrial biomass requiring tem-
perature between 165 and 210 °C at a high concentration 
of acids for longer incubation time (4 weeks). A harsh 
pretreatment condition was required due to the rigidity 
of the biomass with cellulose, hemicellulose, and lignin 
[55, 59]. Estimated effects, standard errors (SE), Student’s 
t test, and significance value for the model representing 

Fig. 6  TLC analysis of hydro-
lysate obtained after optimized 
acid hydrolysis of algal bio-
mass; E. intestinalis (EI) and U. 
lactuca (UL) with glucose (G) 
and xylose (X) as standards

Table 4  Experimental design 
displaying reducing sugar 
yield for individual runs of the 
response surface methodology 
design for E. intestinalis and U. 
lactuca 

Design points Reaction tem-
perature (°C)

Reaction time 
(min)

Substrate concen-
tration (%w/v)

Reducing sugar (mg  g−1)

E. intestinalis U. lactuca

X1 X2 X3 Ye Yu

1 30 45 2 477.5 473.3
2 90 45 2 447.1 513.3
3 120 45 2 549.4 628.1
4 120 30 2 124.1 78.8
5 120 105 2 58.5 50.7
6 120 120 2 109.1 133.5
7 60 45 2 439.6 480.0
8 120 60 2 79.1 77.3
9 120 45 5 103.1 166.1
10 120 45 7 157.7 116.2
11 120 45 1 210.8 121.6
12 120 45 3 238.1 104.2
13 120 45 9 49.28 29.02
14 120 75 2 70.53 70.9
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reducing sugar yield from U. lactuca and E. intestinalis 
are represented in Table 5.

3.7  Enzyme purification and characterization

The purification of cellulase enzyme is summarized in 
Table 6, which is a two-step purification and includes ammo-
nium sulfate precipitation and size exclusion chromatogra-
phy. The purified enzyme exhibited 7.24 U  mg−1 of spe-
cific activity, and 61.82% yield was obtained with 2.97-fold 
purification. Purification was further confirmed by observ-
ing a single protein band on SDS-PAGE (Fig. 8) with an 
estimated molecular mass of 29 kDa. Similarly, molecular 
mass was obtained for cellulase extracted from Salinivibrio 
sp. NTU-05 exhibiting 32.4 U  mg−1 specific activity and 
18.9% recovery with 29.5-fold purification [76]. Extraction 
of Endo-β-1, 4-glucanase Cel5A from Vibrio sp. exhibited 
a molecular mass of 50 kDa, indicating functional cellulase 
gene in Vibrio genus (Gao et al., 2010).

The enzyme exhibited the highest activity at pH 6, and 
the activity profile showed that the enzyme was active over a 
wide range of pH, retaining 90% of its activity (Fig. 9). Simi-
lar characteristic pH tolerance over a wide range has been 
studied earlier for Paenibacillus sp. pH 7 [77]; Marinobacter 
sp. MS1032 [78]; Vibrio sp. G21 pH 6.5–7.5 [79]; Bacillus 

sp. H1666 pH 3–9 [80]; Bacillus sp. [81]; Stachybotrys atra 
BP-A [82], Bacillus flexus pH 8–12 [83]; and Salinivibrio 
sp. pH 6.5–8.5 [76].

1(a) 1(b) 1(c)

2(a) 2(b) 2(c)

Fig. 7  Response surface plots of reducing sugar yield for E. intesti-
nalis (1a–b) and U. lactuca (2a–b) after dilute acid pretreatment at 
different reaction temperature, time, and substrate concentrations. 1a 

and 2a Reducing sugar yield at substrate concentration = 5% w/v; 1b 
and 2b reducing sugar yield at temperature = 75 °C; 1c and 2c reduc-
ing sugar yield at reaction time = 75 min (p < 0.05)

Table 5  Estimated effects, standard errors (SE), Student’s t test, and 
significance value for the model representing reducing sugar yield 
from U. lactuca and E. intestinalis 

* p < 0.05

U. lactuca Coefficient SE t stat p value

Intercept 293.26 200.95 4.01 0.002
X1 11.61 1.79  − 2.11 0.061*
X2  − 3.25 1.96  − 0.98 0.34
X3 17.92 1.25  − 1.05 0.31
X1

2  − 0.09 0.02  − 0.01 0.04
X2

2  − 0.01 0.001  − 0.001 0.25
X3

2  − 3.8 1.2  − 0.01 0.36
E. intestinalis Coefficient SE t stat p value
Intercept 584.94 155.11 5.01 0.0005
X1 4.8 1.38 2.29 0.04*
X2  − 4.74 1.51  − 1.6 0.13
X3  − 5.78 2.21  − 1.4 0.18
X1

2  − 0.05 0.01  − 0.001 0.03
X2

2  − 0.017 0.001  − 0.001 0.21
X3

2  − 1.45 1.05  − 0.13 0.30
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The highest activity of the enzyme was recorded at 
50 °C with higher stability between 40 and 55 °C (Fig. 10). 
Enzyme activity decreased due to the fluidity of protein con-
formation with an increase in temperature above 55 °C. It 
was seen that around 60% of the activity remained at 60 °C. 
The optimum temperature for cellulase-producing bacteria 
was 40–60 °C [76–78, 80–83].

Enzyme activity declined with an increase in 
salt  concentration; at NaCl concentration > 10%, 
the enzyme retained 5% of its activity after 24  h 
(Fig. 11). Enzyme activity was above 20% up to 10% 
NaCl concentration. It is seen that NaCl concentra-
tion induces the activity of endo-β-1, 4-glucanase 
Cel5A from Vibrio sp. G21 and EgI-AG from alka-
liphilic Bacillus agaradhaerens  [79, 84]. Enzyme 
displayed activity in a broad range of 0–10% NaCl 
concentration with optimum NaCl concentration of 

3%. Enzyme activity was stable only up to 10% NaCl 
concentration despite the enzyme being extracted 
from marine bacteria V. parahaemolyticus.

3.8  Dilute acid pretreatment and enzymatic 
hydrolysis

Acid hydrolysis of E. intestinalis and U. lactuca biomass 
was carried out at an optimum acid concentration of 0.7 N 
and 0.5 N  H2SO4, respectively, at a temperature of 121 °C 
for 45-min incubation time and 5% (w/v) substrate concen-
tration (Table7).

In similar studies, the highest reducing sugar of 
206.82 ± 14.96 mg  g−1 was recorded from U. fasciata using 
sodium acetate (pH 4.8) buffer pretreatment at 120 °C for 
60 min. Undaria pinnatifida was pretreated at a higher con-
centration of acid, 5%  H2SO4 at 120 °C for 24 h to obtain 

Table 6  Purification steps of 
cellulase enzyme isolated from 
Vibrio parahaemolyticus 

Purification steps Protein 
(mg  ml−1)

Total activ-
ity IU  ml−1

Specific activ-
ity U  mg−1

Purification fold Yield %

Crude 38.75 94.44 2.44 1.00 100.00
80% ammonium precipitation 13.37 88.00 6.58 2.70 93.18
Superdex 200 column fractions 8.07 58.38 7.24 2.97 61.82

Fig. 8  SDS-PAGE of purified cellulase from Vibrio parahaemolyti-
cus. Lane 1, protein ladder; lane 2, cellulase enzyme in 10% SDS-
PAGE

20

40

60

80

100

120

2 4 6 8 10

ytivitca evitale
R 

%

pH

Fig. 9  Effect of different pH on enzyme activity

20

40

60

80

100

120

30 40 50 60 70

%
 R

el
at

iv
e a

ct
iv

ity

Temperature (oC)

Fig. 10  Effect of different temperatures on enzyme activity



8296 Biomass Conversion and Biorefinery (2023) 13:8287–8300

1 3

65 mg glucose  g−1 biomass [17]. U. pertusa was subjected to 
a high thermal liquefaction process (HTLP), with a process 
condition of 400 °C at 40 mPa, and obtained 352 mg  g−1 
of reducing sugar. HTLP pretreatment loosens the complex 
structure and increases the porosity of the cell membranes 
allowing the entry of the solvent for further degradation 
[74]. Reducing sugar concentration of 145 ± 2.1 mg  g−1was 
obtained from pretreatment of Saccharina japonica (10% 
w/v) at 121 °C for 60 min using 40 mM  H2SO4 [57]. Pre-
treatment of red seaweed Gracilaria sp. using 0.1 N  H2SO4 
at 121  °C for 1  h at 20% w/v biomass loading yielded 
277 mg  g−1 of reducing sugar [75].

Enzyme hydrolysis is affected by various factors, such 
as temperature, pH, and concentration (enzyme/substrate). 
Increasing enzyme concentration will speed up the reaction, 
as long as there is substrate availability; however, if once 
all of the substrates are bound, the reaction will cease to 
speed up. On the other hand, increasing substrate concen-
tration also increases the rate of reaction to a certain extent. 
But once all enzymes are bound, any increase in substrate 
will have no effect on the reaction rate due to saturation of 
available enzymes. Trivedi et al. (2015) isolated cellulase 
enzyme from Cladosporium sphaerospermum and subjected 
Ulva lactuca, green seaweed to enzymatic hydrolysis and 
obtained 112 mg/g of reducing sugar. However, in this study, 

the highest reducing sugar of 107.6 mg/g was obtained from 
U. lactuca, whereas 135.9 mg/g reduced sugar from E. intes-
tinalis indicating enzyme ability to hydrolyze the macroalgal 
polysaccharide.

Acid pretreated macroalgal biomass (E. intestinalis and 
U. lactuca) was subjected to enzymatic hydrolysis using 
purified enzyme and incubated for 24 h and observed two-
fold increase in reducing sugar in both biomass and 1.2-fold 
increase from dilute acid pretreatment, compared to crude 
enzymatic hydrolysis. Enzymatic hydrolysis of U. lactuca 
using purified enzyme extracted from Bacillus sp. H1666 
yielded 450 mg  g−1 of reducing sugar, indicating the poten-
tial applicability of the enzyme for algal biomass sacchari-
fication [80]. Enzymes secreted from the cell are generally 
found along with other proteins, lipids, polysaccharides, 
and nucleic acids. The measurement of enzyme purity is 
defined as the relation of the activity of the enzyme to the 
total protein present (i.e., the specific activity). Enzyme puri-
fication is carried out in order to remove the contaminants 
and increase the specific activity [85]. In this study, purified 
enzyme yielded higher reducing sugar due to increased spe-
cific activity (Table 6).

3.9  Scanning electron microscopy

Scanning electron microscopic (SEM) analysis of mac-
roalgal biomass revealed ultrastructural changes in the 
biomass during dilute acid pretreatment. Figures 12a and 
12b depict the untreated surface of E. intestinalis and U. 
lactuca; raw or untreated biomass had continuous, even, 
and smooth surfaces, whereas biomass after dilute acid 
pretreatment had loosened the rugged surface, which 
increased the surface area, exposing more internal cellu-
lose for enzymatic hydrolysis. The roughness of the sea-
weed surface after dilute acid hydrolysis makes it more 
liable for enzymatic hydrolysis. The presence of strong 
hydrogen bonding of cellulose and Van der Waal forces of 
glucose molecules imparts the crystalline structure to bio-
mass [52, 86, 87]. Scanning electron microscope (SEM) 
images revealed cracks and holes on the pretreated algal 
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Table7  Optimized sugar release using dilute acid pretreatment of E. intestinalis and U. lactuca 

Biomass Dilute acid pretreat-
ment

Reducing sugar 
(mg)

Acid Pretreated 
biomass

Enzymatic hydroly-
sis

Reducing sugar (mg)

Crude enzyme Purified enzyme

E. intestinalis 
(500 mg)

5% w/w, 0.7 N 
 H2SO4 at 121 °C 
for 45 min

239.94 ± 1.3 E. intestinalis 
(320 mg)

pH 6 at 50 °C for 
24 h

135.93 ± 11.48 289.89 ± 2.4

U. lactuca (500 mg) 5% w/v, 0.5 N 
 H2SO4 at 121 °C 
for 45 min

214.67 ± 0.9 U. lactuca (320 mg) pH 6 at 50 °C for 
24 h

107.68 ± 9.55 261.76 ± 0.9
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surface. Gelidium amansii treated at 121 °C were observed 
under SEM; electron micrographs revealed fibers exposed 
in autoclaved samples allowing enzymes to easily degrade 
the cells [52].

4  Conclusions

The present study demonstrates the potential of E. intes-
tinalis and U. lactuca as marine source for production of 
sugar for biofuel production. Feedstock E. intestinalis and 
U. lactuca were subjected to dilute acid pretreatment and 

yielded 239.94 ± 1.3 mg   g−1 and 214.67 ± 0.9 mg   g−1of 
reducing sugar. An enzyme extracted from marine bacteria 
Vibrio parahaemolyticus hydrolyzed the algal biomass effi-
ciently, releasing onefold higher reducing sugar than dilute 
acid pretreatment. Enzymatic hydrolysis of pretreated mac-
roalgal biomass produced onefold higher reducing sugar 
than the dilute acid pretreatment. Dilute acid pretreatment 
prior to enzymatic hydrolysis improves algal biomass sac-
charification and releases higher reducing sugar, increasing 
bioethanol yield. However, tailor-made approaches need to 
be employed depending on algal species, as some sugars are 
easily hydrolyzed by acid and few by a direct enzyme.

Fig. 12  a Scanning electron 
micrograph of E. intestinalis 
depicting ultrastructural changes 
in the feedstock — untreated 
sample compared with the acid 
and enzyme treated. b Ultras-
tructural changes evident in the 
scanning electron micrograph of 
U. lactuca macroalgal biomass 
— untreated, acid, and enzyme 
treated
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