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Abstract
Fast exhaustion of fossil fuel stocks, as well as problems allied with air pollution, has created a worldwide attention in searching
for alternative, renewable lignocellulosic macromolecule–based sources of energy. Bioethanol is one of the valuable substitutes
produced by fermentation process. It significantly reduces the consumption of fossil-based fuels and thereby the net carbon
dioxide emission. The looming requirement for replacing the fuels based on fossils with a more eco-friendly renewable solution
has created much attention in finding out abundant and cheap resources for biofuel production. The utilization of easily available,
cheaper, and renewable lignocellulosics would make bioethanol more competitive than fossil fuels. Novel substrates, strain
improvements, limited byproducts, product tolerance, and fermentation conditions have been drawing researchers’ attention to
increase bioethanol productivity. The present paper discusses the bioethanol production from lignocellulosic-based renewable
resources. It also focuses on present challenges and prospects for efficient bioethanol production.
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1 Introduction

The most abundant and sustainable asset in the biosphere is
lignocellulosic biomass. Its photosynthetic formation reached
more than 200 billion tons consistently [1]. Biomass holds
stored energy, which can be utilized as a fuel energy source.
In the core, sun-powered energy is caught by the biomass
(plants) through the cycle called photosynthesis in which light
energy is converted into chemical energy that can be later
exploited as fuel. The chemical energywhich is fixed or stored
in the form of carbohydrate molecules gets synthesized from
carbon dioxide and water molecules in the plant leaves [2].
Agricultural remnants such as fruits and vegetables are the
organic content–enriched materials, not perfectly utilized
and sometimes end up as polluters of the environment.
These underutilized parts can be valorized into bioethanol
production. It can be produced by the fermentation of any

sugar-containing raw materials. A successful bioconversion
of these carbohydrate resources is considered the most valu-
able phase for bioethanol production [3].

Renewable resource–based ethanol may improve energy
accessibility, reduce air pollution, and lessen the atmospheric
CO2 accumulation [4, 5]. Many problems which arose due to
the consumption of fossil fuels, viz. global warming, environ-
mental pollution, and economic depletion, compel the re-
searchers to find renewable, sustainable, and eco-friendly al-
ternatives. However, confronts undergo in converting ligno-
cellulosic biomass into cost-effective and energy-efficient sus-
tainable biofuels [6]. Renewable energy has been categorized
into various fuels, viz. solar, wind power, biomass, geother-
mal, and tidal energy. Biomass-based energy shares a major
portion of renewable energy. Biomass feedstock used for
bioenergy is grouped into agricultural, forestry, industry, gar-
den residues, and food residues [7, 8]. First-generation
bioethanol (1G) was mainly produced from food crops such
as corn and sugarcane; therefore, increased production can
indirectly create a worldwide food scarcity. Therefore, it is
an urgent need to develop lignocellulosic bioresource–based
second-generation bioethanol (2G) production. The highly ex-
plored feedstocks for potential ethanol production are agricul-
tural (crop residues), forestry wastes (mill residues), corn,
sugarcane, sugar beet, pulp and paper, municipal solid wastes,
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and microalgae, etc. [4, 7, 9–11]. Bioconversion is rather chal-
lenging due to the complex structural veracity of plant cell
wall materials which is integrally designed to resist microbial
degradation [12]. Non-wood lignocellulosic biomass is abun-
dantly available, low cost, and easy to process and consists of
a short growth and harvest period, all these properties make it
much useful for biomass conversion technology [13]. The
major components in lignocellulosic biomass are cellulose,
hemicellulose, and lignin. Cellulose- and hemicellulose-
based sugars are the most useful feedstocks for future
bioethanol production [14]. Lignin is a complex polyphenolic
polymer made up of coniferyl, sinapyl, and p-coumaryl
alcohol–based phenyl propanoid units. Lignin creates struc-
tural stability and rigidity of plant cell walls and hinders the
enzymatic hydrolysis of biomass [15]. The production of eth-
anol from lignocellulosic comprises three major steps: pre-
treatment, hydrolysis, and fermentation [16, 17].

Pretreatment of the material is necessary to alter the size,
structure, and chemical constituents of the biomass, loosen the
cellulose fibers from the matrix of lignin, and thereby enhance
the accessibility of the enzymes to the substrate. Several pre-
treatment strategies have been studied, including chemical,
physical, and biological strategies. Recent approaches in pre-
treatment technology may improve saccharification efficiency
and thereby reduce the overall production cost [9, 14, 16].
Several phenol-based inhibitory compounds are formed due
to lignin degradation under the pretreatment process. Such
inhibitory compounds badly affect the enzymatic hydrolysis
as well as fermentation process in terms of cell growth and
sugar metabolism [15, 18]. Cellulosic bioethanol production
mostly depends upon the bioconversion of rigid fibers into
fermentable sugars. Therefore, necessary pretreatment pro-
cesses, viz. physicochemical and biochemical, are essential
to improve the accessibility or porosity of recalcitrant ligno-
cellulosic [19, 20].

Lignocelluloses have played a vital role in the production
of fermentable sugars for the manufacturing of bio-
commodities [21]. The yeast Saccharomyces cerevisiae has
long been used as an efficient agent for ethanol production
at the laboratory as well as industrial level with high efficien-
cy, thus considered as the world’s premier industrial microor-
ganisms in terms of exploitation and applications. Yeast better
tolerates under a wide range of pH, ethanol, and inhibitory
compounds as compared to other ethanol producers [3, 22].
Zymomonas mobilis is also acting as a promising alternative
for ethanol production because of its high glucose uptake and
high ethanol tolerance. The key enzymes for ethanol fermen-
tation are alcohol dehydrogenase and pyruvate decarboxylase
[23].

The pentoses basically D-xylose andD-arabinose produced
from hemicellulose hydrolysis are not directly uptake by
Saccharomyces strains; therefore, genetic modification is re-
quired. Candida shehatae is capable of co-fermenting

pentoses and hexoses for ethanol production [4]. Scientists
are working upon designing organisms through genetic engi-
neering tools to integrate desired enzymes into a single organ-
ism. Studies on designer cellulosomes and microbial consortia
development relating to consolidated bioprocessing are excit-
ing to overcome the issue of appropriate lignocellulose con-
versions [24, 25]. Regardless of the goal of nonstarch source–
based 21 billion gallons of biofuels by 2022, only 142 million
gallons of lignocellulosic-based biofuel was produced in 2015
in the USA [5]. The present review paper discusses the utili-
zation of various raw materials in bioethanol production. It
also focuses on the various recent approaches and different
aspects used for enhancing bioethanol production.

2 Microorganisms involved in bioethanol
production

A conventional and traditional player of industrial bioethanol
production is S. cerevisiae, due to its high productivity, high
inhibitor tolerance, and ease to genetically engineer. Its tough-
ness enables it to handle tough industrial conditions. Novel
pathway introduction and cellular process optimization by
metabolic engineering are making its wide range of applica-
tions [26, 27]. Several thermotolerant ethanologenic species,
i.e., Clostridium thermocellum, C. thermohydrosulfuricum,
C. thermosaccharolyticum, Caldicellulosiruptor sp.,
The rmo t oga s p . , The rmoanae rob i um bro c k i i ,
Thermoanaerobacter ethanolicus, T. thermo-hydrosulfuricus,
T. mathranii, Thermoanaerobacter BG1L1, T. pentosaceus,
Thermoanaerobacter sp. DBT-IOC-X2 etc., have been iden-
tified as potential ethanol producers.

Since Saccharomyces cerevisiae is unable to ferment
pentose-based sugars, the search for pentose-fermenting mi-
croorganisms could be an option for better utilization. A yeast
strain identified as Meyerozyma guilliermondii utilized pen-
toses [28–32]. Glycerol-resistant mutant strains of
Enterobacter aerogenes ATCC 13048 are also used for etha-
nol production [33]. Debaryomyces nepalensis, an
osmotolerant yeast, utilized both hexoses and pentoses [34].

Co-cultivation of S. stipitis and S. cerevisiae is used for the
utilization of mixed C6/C5 sugars [35]. Functional rumen
bacterial consortia (FRBC) is also used for production [36].
Consortia of cellulolytic Bacillus sp. THLA0409 and
ethanolic Klebsiella oxytoca THLC0409, Saccharomyces
cerevisiae OVB 11 and Pichia stipitis NCIM 3498, and
Saccharomyces cerevisiae and Candida tropicalis as well as
Saccharomyces cerevisiae MTCC 173 and Zymomonas
mobilis MTCC 2428 were found satisfactorly [23, 37–39].

Xylose utilizable Saccharomyces cerevisiae strain
NAPX37 was used [40]. N. crassa strain utilized both hexose
and pentose sugars [41]. Spathaspora passalidarum is a non-
Saccharomyces yeast also used in bioethanol production [42].
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A new yeast strain of Clavispora sp. NRRL Y-50464 is used
which utilizes cellobiose [43]. Other strains such as probiotic
yeast Saccharomyces boulardii and Clostridium ragsdalei
were also found effective [44, 45]. After exhaustive evalua-
tion, three main bioethanol producers, i.e., Saccharomyces
cerevisiae, Zymomonas mobilis, and Escherichia coli, have
emerged. Engineered bacterial and yeast strains have been
constructed with better features through metabolic and genetic
engineering that are advantageous for ethanol production [46].

3 Enzymes involved in biomass hydrolysis

There are several enzymes that have been utilized in the bio-
conversion process. Thermophilic bacteria–based thermosta-
ble enzymes play an important role in efficient biomass hy-
drolysis [47]. Laccases (E.C. 1.10.3.2) (benzenediol, oxygen
oxidoreductase, or p-diphenol oxidase) belonging to the oxi-
doreductase class are used in breaking the plant’s lignocellu-
losic wall and responsible for degrading the complex polyphe-
nol structure that constitutes lignin. After laccases, lignin per-
oxidase (LiP) and manganese peroxidase (MnP) are the most
significant ligninolytic enzymes. They belong to the heme
proteins because they have the protoporphyrin IX as a pros-
thetic group. Lignin peroxidase (LiP) (E.C. 1.11.1.14) can
catalyze and degrade a wide number of aromatic structures
such veratryl alcohol (3,4-dimethoxybenzyl) and
methoxybenzenes. LiP oxidizes aromatic rings moderately
activated by electron-donating substitutes [48].

Glyoxal oxidases (GLOX) are a type of extracellular H2O2-
generating peroxidases mainly oxidizing aldehydes generated
during lignin and carbohydrate degradation [49]. Aryl-alcohol
oxidase (AAO) is providing H2O2 needed by ligninolytic per-
oxidases for lignin degradation. Thermostable endoglucanase
(EndoI) produced by the thermophilic fungus Thermoascus
aurantiacus was also found effective [50]. Zhang et al. [51]
reported that permeases are responsible for incorporating var-
ious essential nutrients and excluding harmful products.
Family 1 carbohydrate-binding modules (CBHI) enhance sac-
charification rates by cloning and expressing CBHI CBM
from T. harzianum (CBMCBHI) into Escherichia coli by
small ubiquitin-like modifier (SUMO) [52].

Deesterification of the plant biomass is achieved by carbo-
hydrate esterases to make it more approachable for the hydro-
lytic enzymes such as cellulases, hemicellulases, ligninolytic,
and pectinases [53]. A thermostable laccase was produced
from Thermus sp. 2.9 for the delignification of Eucalyptus
biomass [54]. A new thermo and solvent-stable xylanase
was extracted from Bacillus oceanisediminis strain SJ3 by
three-phase partitioning [55].

To enhance the activity and thermal stability as well as
flexibility of proteins, disulfide bonds present in
Trichoderma reesei–based endoglucanase II have been

eliminated by site-directed mutagenesis. Replacement of
Cysteine99 with valine and Cysteine323 with histidine caused
the elimination of two disulfide bonds [56]. To improve the
degradation efficiency of cellulases, endoglucanase (Endo5),
exoglucanase (Exo5), and different carbohydrate-binding
modules (CBMs) were fused to yield several bifunctional cel-
lulases, containing Endo5-2CBM-Exo5, Endo5-CBM3b-
Exo5, and Endo5-CBM28-Exo5 [57].

Laccase derived from Trametes maxima IIPLC-32 is used
for the detoxification of phenolic inhibitors [58]. Escherichia
coli–based laccase CueOwas fused with the Dockerin domain
of a cellulosome system and finally assembled with the
scaffoldin miniCbpA to make a laccase–miniCbpA complex
with increased laccase activity [59]. Lytic polysaccharide
monooxygenases (LPMOs) have recently been shown to sig-
nificantly enhance the degradation of recalcitrant polysaccha-
rides. The copper-containing LPMOs utilize electrons to oxi-
datively cleave polysaccharides [60]. Chimeric thermostable
GH7 cellobiohydrolases in Saccharomyces cerevisiae were
engineered along with overexpressed glucose-tolerant β-glu-
cosidase [61]. Expressing glycosyl hydrolases in the
lignocellulosic-based feedstock is an approving alternative
for its utilization. Yeast having laccase with ABTS was effec-
tive for direct fermentation of cellulosic materials [5, 62].

4 Raw materials used in bioethanol
production

Lignocellulose is a renewable structural component of all
plants. Lignocellulose consists of three major components
(cellulose, hemicellulose, and lignin) linked by non-covalent
forces as well as covalent crossed connections. Lignin acts as
a barrier for any treatment due to strong networking with both
hemicelluloses and cellulose, therefore prevents the penetra-
tion of lignocellulolytic enzymes used for bioconversion [4,
19].

There are various raw materials, which have been used as a
potential source for bioethanol production, viz. wheat straw
[63–65], baggasse [66], corn cobs [67–69], pineapple waste
[70], Jabon wood [71], cotton waste biomass [72, 73], banana
residue [74], old newspapers waste [75], acid hydrolyzate of
rice water waste [76], rice husk [77, 78], rice straw [79–82],
rice bran [83], rice hull [84], seed cake [85], dairy industry
effluents (cheese whey) [86, 87], domestic food waste [88],
papaya peel (PP) [89], spent tea waste (STW), spent wash
[90]. sorghum bagasse [91, 92], and sugarcane leaves [93].

Other waste biomasses used are kitchen wastes [94], castor
plant [95], potato pulp [96], algal hydrolysates [97], solid
digestate from anaerobic digestion [98], oat hulls [99],
Arundo donax biomass [100], loblolly pine [101], distillery
stillage [102], banana peels [103], Prosopis juliflora [104],
olive tree biomass (OTB) [105], jackfruit outer rind [106],
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Jerusalem artichoke [107], coffee residue waste (CRW) [108],
coffee pulp [109], Jerusalem artichoke (Helianthus tuberosus
L.) tubers [110], napier grass [111], aloe vera leaf rind [112],
waste newspaper hydrolysates [113], safflower plant [114],
and palm wood [115].

Other resources are, viz. citrus peel [116], globe artichoke
crop residues [117], date waste [118], sorghum milling waste
[119], switchgrass [120], Miscanthus grass [121],
Conocarpus erectus leaves [122], pineapple fruit peel [123],
duckweeds [124], seaweed biomass [125, 126], grape winery
waste [127], horticultural waste [128], synthesis gas [129],
sweet sorghum juice [130], sugi pulp [131], cow manure
[132], cotton gin trash (CGT) [133], high rate algal pond
(HRAP) [134], Isoberlinia doka sawdust [19], Ulva fasciata
seaweeds [135], palm date [136], orange peel [137], pome-
granate peels [138], anaerobic digested sludge (ADS) [139],
okara (soybean residue) [140], spent maitake culture medium
(SMCM) [9], palm kernel cake [141], kans grass biomass
[142], carob solid waste [143], cardoon (Cynara cardunculus)
and rockrose (Cistus ladanifer) [144], lemon peels [145],
cogongrass [146], Salicornia bigelovii (halophyte plant)
[147], cotton stalk [148], and water hyacinth biomass [149].

Scientists have also utilized rapeseed and corn stalks for
bioethanol production [150]. Turkish hazelnut husk into lig-
nocellulosic ethanol was investigated [151]. The application
of ultrasonic treated sweet lime peel for bioethanol production
was also investigated [152]. Stillage from distiller’s dried
grains with solubles (DDGS), a by-product of the bioethanol
industry, has also been used for bioethanol production [153,
154]. Aloe vera rind (AVR) obtained after extraction of the gel
was used for bioethanol production [155]. Hydrolyzed spiru-
lina biomass along with molasses serves as a substrate in
bioethanol production [156]. Raw oil palm leaves were used
as a substrate for ethanol production [157]. Partially
delignified cellulignin (PDCL) was studied for biothanol pro-
duction [158]. Olive mill waste (OMW), a semisolid waste
generated from olive oil production, acts as an attractive sub-
strate for bioethanol production [159]. Hemicellulose fraction
of palm fiber is used as a source of sugars for the production of
bioethanol by Scheffersomyces stipites [160].

Acid-hydrolyzed broth of banana pseudostem is a potential
candidate for ethanol production [161]. Fermented rice noodle
wastewater was investigated for ethanol production under an
entrapped yeast cell sequencing batch reactor (ECSBR) [162].
Supplementation fruit pulps (mango, banana, and sapota), 4%
fruit pulp/puree, enhanced ethanol production (up to 83.1%)
in very high-gravity (VHG) fermentation [163]. Switchgrass
is a potential source of renewable biomass for conversion to
bioethanol [164]. Hardwood spent sulphite liquors (HSSLs)
were used in bioethanol production [165]. Soft drinks
industry–based wastewater was examined as a media source
for bioethanol fermentation [166, 167]. Bioethanol production
from autohydrolyzed green coconut shell was also

investigated [168]. A wild-growing glucose-rich (56.7% glu-
cose content) brown seaweed species Laminaria digitata was
used as the feedstock for bioethanol production [169]. Corn
hybrids with high stalk sugar content or “sugarcorn” were
used for bioethanol production [170]. Gelidium latifolium
was selected as a potential resource [171]. Recycled paper
sludge was valorized by a bioethanol production process with
cellulase recycling [172].

Bioethanol was also produced from the macroalgae
Sargassum spp. [173]. Breadfruit starch hydrolysate (BFSH)
was used as the sole carbon source for bioethanol production
[174]. Water hyacinth (Eichhornia crassipes), a fast-growing
aquatic weed, was used for bioethanol production [175]. De-
oiled Pongamia pinnata seed cake acts as a promising feed-
stock for ethanol production [176]. Kappaphycus alvarezii
biorefineries are used for bioethanol production [177].
Bioethanol was also produced from the delignified coconut
fiber [178]. Eastern gamagrass C4 perennial grass was used
as an alternative cellulosic feedstock for bioethanol produc-
tion [179].

Waste cotton materials were used as a substrate for
bioethanol production [180]. Bioethanol was also produced
from Parthenium hysterophorus biomass [181]. The potential
of Brachiaria mutica (Para grass) for bioethanol production
from Loktak Lake was investigated by Sahoo et al. [182].
Bioethanol production from Japanese bamboo was studied
by Singh et al. [183]. Kitchen waste was utilized for
bioethanol production [184]. Saccharum biomasses
(Saccharum munja and sugarcane bagasse) were used for
bioethanol production [185].

Bioethanol production from black tea waste biomass was in-
vestigated by Priharto et al. [186]. Ethanol was also produced
from rice straw hydrolysate by non-conventional yeasts [187].
Empty fruit bunch was considered a substrate for bioethanol
[188]. Oil palm frond juice was used as a renewable source [189].

Salicornia sinus-persica, a succulent halophyte, was used
as a raw material for bioethanol production [190]. Eucalyptus
sawdust was used for ethanol production [191]. Sulla
(Hedysarum coronarium L.) was used as a potential feedstock
for biofuel and protein [192]. High solid SSCF of alkaline-
pretreated corncob is also used for ethanol production by re-
combinant Zymomonas mobilis CP4 [193].

Seaweed biomass (Kappaphycus alvarezii, red algal bio-
mass) was utilized by marine yeast for bioethanol production
[194]. Bioethanol was also produced from seaweeds
(Laminaria digitata, Ulvalactuca, and Dilsea carnosa)
[195]. N-Acetyl-d-glucosamine (GlcNAc) was used for etha-
nol production by Scheffersomyces stipitis strains [196].
Acacia mangium, Paraserianthes falcataria wood, and
Elaeis guineensis trunk were investigated for ethanol produc-
tion by Kaida et al. [197]. Microalgae (Microcystis
aeruginosa) were used for efficient bioethanol production.
The valorization of coffee byproducts for bioethanol
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production was studied by Dadi et al. [198]. Eco-friendly pro-
cesses were studied for soft drink industry wastewater reuse as
a growth medium for Saccharomyces cerevisiae–based
bioethanol production [167].The utilization of various raw
materials for bioethanol production is also illustrated in
Table 1.

5 Fermentation strategies used

A number of fermentation strategies have been already used for
the effective and economical production of bioethanol such as
separate hydrolysis and fermentation (SHF), simultaneous sac-
charification and fermentation (SSF), and simultaneous sacchar-
ification and co-fermentation (SSCF). The new approaches such
as simultaneous isomerisation and fermentation (SIF) of xylose
and simultaneous isomerisation and co-fermentation (SICF) of a
glucose/xylose mixture were carried out by Saccharomyces
cerevisiae in the presence of xylose isomerase [303].
Simultaneous saccharification and fermentation of waste
wheat–rye bread were investigated and achieved a final ethanol
concentration of 128.01 g/L [304]. Semi-simultaneous sacchari-
fication and fermentation (SSSF) of ethanol production has also
been investigated [305]. Dilute phosphoric acid and steam-based
pretreatment of Eucalyptus benthamii for biofuel production was
carried out under liquefaction plus simultaneous saccharification
and co-fermentation (L+SSCF) process [306]. Biomass was sub-
jected to simultaneous pretreatment and saccharification (SPS)
using a cocktail of hydrolytic and oxidizing enzymes for
bioethanol production [307]. Bioethanol production was im-
proved by Scheffersomyces stipitis using retentostat extractive
fermentation at high xylose concentration [308]. Bioethanol pro-
duction from pretreated mango stem bark after maceration
(MSBAM) was evaluated. The highest yield (84.5%) was ob-
tained under pre-saccharification followed by simultaneous sac-
charification and fermentation (PSSF) process [309]. Damaged
rice grains were used for bioethanol production using
presacchararification step followed by simultaneous saccharifica-
tion and fermentation (SSF) by usingwaste brewer’s yeast [310].
Sequential fermentation by Saccharomyces cerevisiae and
Pichia stipitis improved bioethanol production [311]. A fluidized
bed fermenter under a magnetic field was also used for
bioethanol production [312].

6 Strategies used for improvement in ethanol
production

6.1 Engineered biomass for efficient utilization

The volatile matter and fixed carbon influenced the biological
conversion process of the fuel. Woody biomass has a much
higher fixed carbon content as compared to LCB. The

biomass fuel efficacy does depend not only on the proximate
and ultimate analysis but also on the atomic ratio of H/C
(hydrogen/carbon) and O/C (oxygen/carbon). The lower the
ratio, the higher the energy content. The material with a rela-
tively low O/C ratio has more energy density and higher
heating value. LCB feedstocks are primarily composed of
carbohydrate polymer and a lower concentration of proteins,
acids, salts, and minerals [2].

The structural configuration, arrangement, and chemical
composition of wood cell walls have directly affected the hy-
drolysis process of biofuel production. The understanding of
the construction patterns and nature of the cell wall is the key
point of second-generation biofuels, which has been done by
glycome profiling [313]. Control of phase transition between
vegetative to reproductive may also improve biomass yield
with reducing lignin content. Delayed floral initiation may
be used as a convenient tool for improving biomass quantity
and quality [314]. For improved saccharification efficiency,
the genetic variability of cell wall degradability has been
accessed [315].

Quantitative trait locus (QTL) analysis was used to
determine the zones of the phenotypic variation of chem-
ical traits in the genome of interest. Signals for QTLs
were assigned to G-lignin and S-lignin, and the ratio be-
tween them determines the cellulose, hemicellulose, and
water contents. QTL mapped onto chromosomes V, X,
XI, and XVI signifies that the saccharification process is
under the influence of genetic impact. There may be op-
portunities to improve the breeding programs for willows
for increasing enzymatic saccharification yields and bio-
fuel production [316, 317]. Altering the “Glycomic Code”
of cell wall polysaccharides may improve bioenergy pro-
duction efficiency. The identification of pointrons (hydro-
lysis resistant) possibly transformed into pexons (avail-
able for enzyme attack) is important so that walls would
become susceptible for hydrolysis [318].

Cell wall engineering was carried out by heterologous ex-
pression of cell wall–degrading enzymes for better conversion
of lignocellulosic biomass. Cell wall–hydrolyzing enzymes
alter the structural arrangements of the cell wall and reduce
cell wall rigidity [319]. The various interactions in the cell
wall architecture based on acetyl and phenolic linkages as well
as polysaccharide–polysaccharide linkage play a vital role in
the development of efficient bioethanol production [320]. Cell
wall modification may enhance saccharification [321].

The wall structure of sengon (Paraserianthes falcataria)
has been modified through overexpression of poplar cellulase
in the cell walls. The overexpression caused a decrement in
xyloglucan bound to the walls [322]. To determine lignocel-
lulosic biomass biodegradability, cellulose nanowhiskers gel,
lignocellulosic-based xylan matrix, and synthetic lignin were
constructed. Application of these materials indicates that the
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lignocellulosic utilization depended strongly on the xylan Ara/
Xyl ratio and the cellulose crystallinity [323].

6.2 Pretreatment approaches used

Pretreatment of raw materials has often been found useful
to improve its digestibility and accessibility for microbial
attack (by removing core and noncore lignin fractions). It
results in enlargement of the inner surface area of sub-
strate particles, accomplished by partial solubilization
and/or degradation of hemicellulose and lignin [324,
325]. The goal of any pretreatment process is to alter or
remove structural and compositional impediments by
breaking the lignin seal, thereby separating the carbohy-
drates from the lignin matrix as well as disrupting the
crystalline structure of cellulose. An efficient pretreatment
must free the highly crystalline structure of cellulose and
extend the amorphous areas [326–328]. Various pretreat-
ment methods such as physical, chemical, physicochemi-
cal, and biological methods are described in Table 2.

Pulsed-electric field (PEF) pretreatment exposes the cellu-
lose present in the biomass by creating the pores in the cell
membrane, thereby allowing the entry of agents that will break
the cellulose into constituent sugars. Under this treatment,
biomass is subjected to a sudden burst of high voltage between
5.0 and 20.0 kV/cm for short durations (nano to milliseconds)
[330]. Another method is by using a deep eutectic solvent (a
fluid generally composed of two or three cheap and safe com-
ponents) that are capable of self-association, often through
hydrogen bond interactions, to form a eutectic mixture with
a melting point lower than that of each component. Choline
chloride (ChCl)–based deep eutectic solvents (DES) are used
for the pretreatment process [331].

H2O2 (0.5% v/v)-based pretreatment at 121°C for 30 min
was used as an effective method for the conversion of waste
office paper and newspaper into fermentable sugars and after
bioethanol [332]. Retama raetam biomass was pretreated by
thermo-mechanical process for effective utilization [333].
Soaking-assisted and thermal-pretreated cassava peel waste
was investigated for bioethanol production [334]. Bioethanol
was also produced from Calliandra calothyrsus shrub
pretreated under hot water–based hydrothermal explosion
[335]. Acid impregnation-steam explosion was used as a pre-
treatment method for ethanol production from oil palm empty
fruit bunch (EFB) [336]. A series of ionic liquids including
conventional, protic, and brønsted acidic type ionic liquids
were evaluated as a source for the pretreatment of Taiwan
grass [337]. Sonication after acid hydrolysis enhanced the
total reducing sugar (TRS) extraction from sugarcane bagasse
[338]. Cactus (CAC) and green and mature coconut shells
were pretreated by NaClO2–C2H4O2 and sequential
NaClO2–C2H4O2/autohydrolysis for their better utilization
[339].

The combined effect of ionic liquid (1-butyl-3-
methylimidazolium chloride, [BMIM]Cl) and radiation
(Tungsten–Halogen) on hydrolysis of waste papaya epidermis
was explored by Chatterjee et al. [340]. Chitosan-coated mag-
netic nanoparticle (C-MNP)–based immobilized laccase was
applied for agave biomass pretreatment [341]. Ionic liquid 1-
ethyl-3-methylimidazolium acetate pretreated with the Agave
tequilana bagasse has shown promising results [342]. The
modified thermochemical disk refining pretreatment
(TCDRP) has a greater effect on agricultural biomass and
hardwood (white birch) utilization [343].

Microwave-assisted lignin solubilized in protic ionic com-
pounds containing 2,3,4,5-tetraphenyl-1H-imidazolium and
inorganic anions was used as pretreatment [344]. For effective
biomass utilization, mild photocatalyzed and catalyzed green
oxidation of lignin was investigated. Lignins showed some
mineralization when irradiated in the presence of
H5[PMo10V2O40] × H2O (POM-1), K5[Ru(H2O)PW11O39]
(POM-2), K4[SiW12O40]8H2O (POM-3), and TiO2 [345].
Dielectric barrier discharge (DBD) plasma can be used for
the pretreatment of lignocellulosic materials. Such plasmas
are sources of highly reactive species (radicals, ozone, atoms,
ions, and excited molecules) [346]. Low-moisture anhydrous
ammonia (LMAA) was used for the pretreatment of napier
grass (Pennisetum purpureum Schumach) [347].

Electron beam irradiation–based biodegradation (EBIBB)
was used for rice straw depolymerizations [348]. Microwave-
assisted chemical pretreatment of miscanthus was studied
[349]. Alkaline wet oxidation (WO) was used for the pretreat-
ment of wheat straw, result ing in a formation of
hemicellulose-rich hydrolysate and a cellulose-rich solid frac-
tion [350].

Hydrothermal carbonization (HTC) is used as a method of
pretreatment for efficient biomass utilization [351].
Phosphoric acid (1% w/w)–based steam explosion is used
for olive tree pruning utilization [352]. Lower S/G ratio, as
well as reduced number of phenolic OH group in acid-
pretreated lignin, may affect simultaneous saccharification
and fermentation [353]. S/G/H ratios of lignin fractions are
important to rationalize the differences among the feedstock
behavior [354]. Holocellulase immobilized on iron oxide
(Fe2O3) nanoparticles improved hydrolysis of paddy straw.
It has also been suggested that magnetic enzyme nanoparticle
complexes (MENC) showed better immobilization efficiency
(60–80%) for different enzymes [355]. Membrane-based sep-
aration increased the ethanol yields during fermentation which
suggests the importance of separation after pretreatment [356].
The effect of ultrasound on enzymatic hydrolysis of a news-
paper was investigated. The combined effect of ultrasound
and enzymes lowers the diffusion-limiting barrier to
enzyme/substrate binding to increase the reaction rate [357].

High solid loading hydrolysis (HSLEH) of sugarcane ba-
gasse (SCB) pretreated by low-temperature aqueous ammonia
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soaking (AAS) was performed to obtain high concentrations
of glucose [358]. Surfactant-assisted ionic liquid 1-ethyl-3-
methylimidazolium acetate ([EMIM]OAc)–based pretreat-
ment of beech wood waste was used for enhanced ethanol
production [359]. WO (wet oxidation) and BM (ball mill-
ing)–based pretreatment of the macroalgae Chaetomorpha
linum showed the highest ethanol yield [360].

Acid-catalyzed choline acetate ionic liquid pretreatment of
paperboard mill sludge was used for effective production
[361]. Zirconium metal–based organic framework (MOF)–
assisted hydrothermally pretreated Platanus × acerifolia ex-
foliating bark was used for bioethanol production with prom-
ising results such as altered the morphology and higher the
porosity and surface area [362].

Eucalyptus globulus andNothofagus pumilio residues were
pretreated with ionic liquids (IL) such as 1-N-ethyl-3-
methylimidazolium chloride (C2mimCl) and 1-N-ethyl-3-
methylimidazolium acetate (C2minOAc) for efficient conver-
sion [363]. Steam-exploded and N-methylmorpholine-N-
oxide (NMMO)–treated pinewood was investigated for biofu-
el production [364]. Two different acid-functionalized mag-
netic nanoparticles (MNPs), i.e., alkylsulfonic acid (Fe3O4-
MNPs@[Si@AS) and butylcarboxylic acid (Fe3O4-
MNPs@Si@BCOOH), were synthesized and evaluated for
the pretreatment of sugarcane bagasse. Both Fe3O4-
MNPs@Si@AS and Fe3O4-MNPs@Si@BCOOH showed
the maximum amount of sugar (xylose) liberated, i.e., 18.83
g/L and 18.67 g/L, respectively [365].

Table 2 Various pretreatment methods applied in utilization of lignocellulosic biomass

Pretreatment
methods

Agents Procedure Temperature/
pressure

Reaction
time
(min)

Pretreated
materials

Remarks

Physical methods

Mechanical
comminu-
tion

- Chipping, grinding,
milling

- - Wood, forestry
waste, cane
baggase, alfalfa

Vibratory ball mill (size 0.2–2 mm) or
hammer mill (3–6 mm)

Pyrolysis - Intense heating, cooling,
condensing

>300°C - Wood, corn stover Formation of volatile products and char

Physicochemical methods

Steam
explosion

Saturated steam Saturated steam
treatment then
decompression

160–300°C,
0.69–4.85-
MPa

Sec or
min

Poplar, eucalyptus,
soft wood,
bagasse straw

It can handle high solid loads, inhibitor
formation, lignin is not solubilized,
80–100% hemicelluloses hydrolysis

Liquid hot
water

Hot water Pressurized hot water 170–230°C,
p>5MPa

1–45 min Bagasse, alfalfa,
corn stover

Cellulose depolymerization, 80–98%
xylose recovery, no formation of
inhibitors, partial solubilization of
lignin

Ammonia
fiber
explosion

Ammonia 1–2 kg ammonia/kg dry
biomass

90°C,
1.12–1.36-
MPa

30 min Switch , bermuda
grass, news
print, MSW,
bagasse straw

Ammonia recovery is required, no
inhibitors formation,10–20% lignin
solubilization

CO2

explosion
CO2 4 kg CO2/kg fiber 5.62 MPa - Bagasse, recycled

paper
Cellulose conversion can be >75%, no

inhibitors formation

Chemical methods

Dilute acid
hydrolysis

0.75–5%H2SO4,
HCl, or HNO3

Continuous process for
low solids loads , batch
process for high solids
load

120–200°C,
1MPa

2–10 min Poplar wood,
bagasse, grass,
wheat straw

Lignin is not solubilized but it is
redistributed,pH neutralization is
required

Conc acid
hydrolysis

10-30%H2SO4 Same as dilute
hydrolysis, 1:1.6 solid
:liquid ratio

170–190°C - Bagasse, saw dust Residence time greater, acid recovery is
required

Alkaline
hydrolysis

Dilute NaOH,
Ca(OH)2

Dilute NaOH, Ca(OH)2
addition, H2O2 added
at 35°C

60°C for
NaOH,
120° for
Ca(OH)2

- Hardwood,
bagasse

Reactror cost lower compared to acid,
cellulose swelling, 24–55% lignin
removal for hard wood, lesser for soft
wood

Biological methods

Fungal
treatment

Brown, white,
and soft rot
fungi

Fungi produces cellulase,
hemicellulases,
ligninase

- - Corn stover , wheat
straw

Brown rot fungi degrades cellulose,
white and soft rot degrades cellulose
and lignin.

Source: [328, 329]
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A sequentially two-stage pretreatment process of
autohydrolysis and alkaline extraction was carried out for ef-
fective bamboo utilization [366]. Phosphoric acid along with
hydrogen peroxide (HP) pretreatment was employed on wheat
straw for ethanol conversion [367]. Acidic ionic liquids
(AILs) are a type of IL that has emerged as very attractive
pretreatment solvents for biomass utilization [368].
Enhancement of enzymatic digestibility of Miscanthus bio-
mass was improved by chemical-based electron beam irradi-
ation [369]. The saccharification process was improved by
gamma irradiation [370]. High pressure–assisted alkali pre-
treatment (HPAP) of cotton stalk led to the highest reducing
sugar and ethanol yields (271.70 mg g−1 and 45.53%, respec-
tively) [371].

Bioethanol production from ultrasonic irradiated waste
newspaper by Saccharomyces cerevisiae was investigated
by Preeti et al. [372]. Microwave irradiation accelerated pine
cones act as a potential feedstock for bioethanol production
[373]. Microwave-assisted ionic liquid–based catalytic con-
version of non-edible lignocellulosic sunn hemp fibers to
bioethanol was reported [374]. Bermuda grass, reed, and rape-
seed were pretreated with phosphoric acid–acetone for ethanol
production [375]. Two-stage pretreatment of Eucalyptus
woody biomass with alkaline sulphonation and steam was
carried out to enhance its enzymatic digestibility for
bioethanol production [376]. Cellulase-bound magnetic nano-
particles were used as nanobiocatalyst for the hydrolysis of
Sesbania aculeate biomass [377]. Microwave-assisted acid
hydrolysis (H2SO4 and HCl with >0.5 mol/L) to produce
bioethanol from sago pith waste (SPW) was studied [378].
The application of nano-biocatalyst (NiO) in simultaneous
saccharification and fermentation of potato peel waste mean-
ingfully enhanced bioethanol production (>65%) [379].

The nanofiltration (NF) and reverse osmosis (RO) mem-
branes were chosen to evaluate their sugar rejection and in-
hibitor removal performance [380]. NaIO4 + H2SO4 and elec-
tron beam irradiation (EBI) pretreatment was used in the pro-
cess to enhance the efficiency of straw conversion [381].
Alkali metal salt along with orthophosphoric acid was used
for the pretreatment of microwave-assisted biomass to en-
hance sugar and bioethanol generation [382]. Organosolv pre-
treatment removes lignin from the biomass and makes the
sugars available for conversion [383].

Pretreatment of sugarcane bagasse with liquid hot water
(LHW) and aqueous ammonia (AA) showed better perfor-
mance in terms of hemicellulose solubilization and lignin re-
moval [384]. Ozonation of lignocellulosic waste (municipal
trimmings) acts as an energetically suitable pretreatment
method [385]. Two-stage dilute acid pretreatment was per-
formed for effective utilization of Loblolly Pine [386].
Pycnoporus cinnabarinus–based laccase-mediator 1-
hydroxybenzotriazole (HBT) was found effective for pretreat-
ment of wheat straw [387]. The utilization of blue agave

bagasse was enhanced under a combined extrusion–
saccharification process [388]. Oxidative depolymerization
along with acidic hydrolysis has consistently been used for
the pretreatment of lignocellulosic biomass (wheat straw, saw-
dust, and lignin), which makes it possible to obtain a high
content of soluble organic compounds in the hydrolysate
(44–94 g COD/L) and to enhance the concentration of reduc-
ing sugars from 1 to 36% [389]. Peracetic acid–ionic liquid
pretreatment was used for utilization of seaweed waste bio-
mass from the carrageenan industry for bioethanol production
[390]. During the pretreatment process, various toxic com-
pounds may be generated that cause strong inhibition on cell
growth and the metabolic capacity of fermenting strains.
These are furan aldehydes, 2-furylaldehyde (furfural), and 5-
hydroxymethyl-2-furaldehyde (HMF) produced by the degra-
dation of pentose and hexose sugars respectively [391].
Inhibitory effects of phenolic components of spruce hydroly-
sates, viz. homovanilyl alcohol, vanillin, syringic acid,
vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid,
hydroquinone, ferulic acid, homovanillic acid, 4-
hydroxybenzoic acid, 4-hydroxy-3-methoxycinnamaldehyde,
and vanillylidenacetone, were investigated on the cell growth
of Saccharomyces cerevisiae and it was observed that 4-
hydroxy-3-methoxycinnamaldehyde was found to be the most
toxic that inhibits the growth even at a very low concentration
at 1.8 mM [392].

6.3 Genetic engineering aspects

For the holistic development of interesting microbes used in
bioethanol production, genetic engineering could be playing a
vital role. The host organism generally used for bioethanol
production may not be tolerant of certain conditions such as
temperature, pH, and ethanol stresses. Therefore, the host or-
ganisms used for bioethanol production need to be genetically
engineered to make an effective and efficient condition for
ethanol production. Recently, several genome engineering
techniques have been developed. These techniques include
(a) CRISPR/Cas system, (b) nuclease-based TALEN system,
(c) zinc finger domain–based ZFN system, (d) meganuclease
system, and (e) oligonucleotide-based YOGE system. Protein
engineering studies as well as whole genome sequencing of
bioethanol producers suggest that alteration of one or more
nucleotides can bring out large changes in the direction of
improved bioethanol production [393].

A lot of attention has also been focused on genetically
engineered strains that can efficiently utilize both glucose
and pentoses, and convert them to ethanol. Metabolic strate-
gies seek to generate efficient biocatalysts (bacteria and yeast)
for the bioconversion of most hemicellulosic sugars to prod-
ucts such as ethanol [394]. The biochemical production ca-
pacity of E. coli has been enhanced by the combinatorial ap-
plication of recent approaches, viz. metabolic engineering,
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systems biology, synthetic biology, and evolutionary engi-
neering [395].

CRISPR/Cas9 i s used to d i s rup t the a lcoho l
dehydrogenase-2 gene in Saccharomyces cerevisiae via com-
plete deletion of the gene and introduction of a frameshift
mutation in the ADH2 locus for improved ethanol yield
[396]. For better utilization of xylose, metabolically
engineered Saccharomyces cerevisiae was produced by inte-
grating xylitol dehydrogenase gene (XYL2) into the chromo-
some [397]. A putative thermostable endoglucanase gene was
inserted into a pET21 vector and transformed in E. coli BL21
for expression [398]. Bioethanol from lignocellulosic biomass
requires robust Saccharomyces cerevisiae strains with im-
proved tolerance capacity for toxic compounds. Genes
(ADH6, HAA1, or PMA1) involved in detoxification and
tolerance to inhibitors have been recognized. Overexpressing
genes encode the transcription factor (YAP1) and the mito-
chondrial NADH-cytochrome b5 reductase (MCR1) for faster
hexose catabolism [399].

Redox imbalance is the major challenge in the recombinant
strains expressing S. stipitisXR-XDH pathway–based xylose-
metabolizing cells, because xylose reductase prefers NADPH,
whereas xylitol dehydrogenase strictly utilizes NAD+, leading
to the accumulation of NADP+ and NADH. The ratio of
NADP+/NADPH directly influences the activity of glucose-
6-phosphate dehydrogenase and thereby affects sugar utiliza-
tion [400]. Acremonium cellulolyticus was transformed
(YKX1) by the β-xylosidase gene driven by the
cellobiohydrolase Ι (cbh1) promoter by the protoplast-
polyethyleneglycol (PEG) method. Now YKX1 can produce
a higher amount of β-xylosidase [401].

C l on ing o f nove l b a c t e r i a l xy l ana s e s f r om
lignocellulose-enriched compost metagenomic libraries
was performed for the complete hydrolysis of lignocellu-
losic biomass into fermentable sugars [402]. To develop
multiple stress tolerance (high-temperature and osmotic
stress) in Saccharomyces cerevisiae , intracellular
osmolyte glycerol production was quickly induced by os-
motic shock due to overexpression of GPD1 and GPD2
genes encoding isoenzymes of NAD-dependent glycerol
3-phosphate dehydrogenase under the regulation of high
osmolarity glycerol (HOG) pathway [403].

Tolerance for ethanol and heat stresses in Saccharomyces
cerevisiae strains are important for industrial ethanol produc-
tion. Genes accountable for ethano-thermotolerance were
identified by transposon mutagenesis in Saccharomyces
cerevisiae. Seven responsible genes (CMP2, IMD4, SSK2,
PPG1, DLD3, PAM1, and MSN2) were identified.
Knockout mutants of seven individual genes were ethanol
tolerant whereas three of them (SSK2, PPG1, and PAM1)
were tolerant to heat. The genes identified under this investi-
gation may be helpful in the development of industrial yeast
strains [404].

In another investigation, stress tolerance and the perfor-
mance of ethanol fermentation of the four euploid strains were
compared. Triploid showed a higher fermentation rate even in
the presence of lignocellulosic hydrolysate–based inhibitors
[405]. The thermotolerant Kluyveromyces marxianus is a po-
tential candidate for high-temperature ethanol fermentation.
At high temperatures, mitochondrial respiration is stimulated,
leading to more reactive oxygen species (ROS) formation and
lowered ratio of reduced NADH/oxidized NAD+ [406].
Overexpressed SNARE genes increased heterologous cellu-
lase secretion in Saccharomyces cerevisiae. Soluble N-
ethylmaleimide-sensitive factor attachment receptor proteins
(SNAREs) play an important role in yeast protein-trafficking
[407] . Adapt ive evolut ion of xylose-ferment ing
Saccharomyces cerevisiae strains was performed with δ-
integration of different xylA genes of the fungus
Orpinomyces sp. and bacterium Prevotella ruminicola, there-
by constructing two industrial S. cerevisiae strains, O7 and P5
[408].

A rumen metagenomic DNA fragment (Csd4) expressed in
Escherichia coli MS04 improves ethanol fermentation. Csd4
acts as a saccharification enhancer to reduce the enzymatic
load and operating time required for cellulose deconstruction
[409]. A recombinant Saccharomyces cerevisiae strain was
transformed with xylose reductase (XR) and xylitol dehydro-
genase (XDH) genes from Pichia stipites; increment in etha-
nol production may be due to cofactor imbalance between
NADPH-preferring XR and NAD+-dependent XDH [410].
Sometimes high hydrostatic pressure activates gene expres-
sion that leads to enhancement in ethanol production [411].

Proline acts as an osmotic stress protectant in yeast.
Proline-accumulated S. cerevisiae cells were constructed by
disrupting the PUT1 gene. Engineered strains revealed higher
tolerance to many stresses, viz. freezing, desiccation, oxida-
tion, and ethanol as well [412]. The efficient fermentation of
glucose and xylose can improve by a two-stage transcriptional
reprogramming (TSTR) strategy. The TSTR strategy im-
proves ethanol production efficiency [376]. The
thermotolerant methylotrophic yeast Hansenula polymorpha
can ferment xylose, glucose, and cellobiose at elevated tem-
peratures. Recombinant alcohol dehydrogenase 1 of
H. polymorpha (HpADH1) overexpressed in Escherichia coli
exhibited much higher catalytic efficiency for ethanol produc-
tion [413]. The ethanol fermentation ability of the
thermotolerant yeast Kluyveromyces marxianus (able to uti-
lize glucose, mannose, galactose, xylose, and arabinose) was
examined. It was found that KmGAL1 and KmXYL1 genes
are responsible for sugar utilization [414].

Clustered regularly interspaced short palindromic repeats
(CRISPR)–associated protein (CRISPR-Cas) technology with
targeted genome editing exhibits a more precise and accurate
gene knockout and knock-in system as compared to zinc fin-
ger nucleases (ZFN) and transcription activator-like effector
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nucleases (TALEN) [415]. Improvement in multiple stress
tolerance capacity of yeast strain RPR39 by sequential muta-
genesis (ethyl methane sulfonate, N-methyl-N′-nitro-N-
nitrosoguanidine, near and far ultraviolet radiations) for en-
hanced bioethanol production [416]. Activation of β-
glucosidase expression system in the multiple stress-tolerant
(acid, ethanol and thermo) yeast Issatchenkia orientalis MF-
121 strain for efficient ethanol production [417]. Formic acid–
tolerant recombinant yeast strains were constructed by upreg-
ulation of formate dehydrogenase genes (FDH1 and FDH2)
[418].

Furfural is one of the major inhibitors generated during
bioethanol fermentation. Enhanced furfural tolerance of Tn 2
may be deliberated by the combined effect of lesser ROS
(reactive oxygen sp) accumulation (early event) and an effi-
cient detoxification of furfural (late event) [419]. For better
biomass utilization, the endoglucanase I and II genes (egI or
Cel7B and egII or Cel5A) of Trichoderma reesei QM6a were
successfully cloned and expressed in Saccharomyces
cerevisiae under the transcriptional control of the yeast
ENO1 promoter and terminator sequences [420]. Co-
expression of a cellobiose phosphorylase and lactose perme-
ase allows intracel lular cellobiose uti l ization by
Saccharomyces cerevisiae [421]. Scheffersomyces stipitis
strain expressing xylose reductase–xylitol dehydrogenase
(XR-XDH) pathway under adaptive evolution treatment af-
fects sulfur amino acid biosynthesis and redox stress as well.
These findings provide new insights for engineered
bioethanol-producing strain through reverse metabolic engi-
neering [422]. Neotermes koshunensis (termite) secretes en-
dogenous β-glucosidase in the salivary glands and this was
successfully expressed in Aspergillus oryzae [423].

A xylose-metabolizing yeast was constructed by the inte-
gration of XI overexpression cassettes into the genome of the
Saccharomyces cerevisiae MT8-1 strain. Knockout of GRE3
(a gene encoding nonspecific aldose reductase) of the host
yeast strain improved ethanol productivity [424]. A recombi-
nant of xylose and cellooligosaccharide-assimilating yeast
strain has been constructed by integrating genes responsible
for the expressions of xylose reductase and xylitol dehydro-
genase from Pichia stipitis, and xylulokinase from
Saccharomyces cerevisiae as well as β-glucosidase from
Aspergillus acleatus on the cell surface [425]. Improvement
in tolerance of Saccharomyces cerevisiae for hot-compressed
water-treated cellulose by expression of ADH1 [426].
Pyruvate decarboxylase (PDC) of Gluconobacter oxydans
was considered to be a suitable candidate for heterologous
e x p r e s s i o n i n t h e t h e rm o p h i l e Geo b a c i l l u s
thermoglucosidasius for ethanol production [427]. A combi-
nation of UV mutagenesis and protoplast fusion was used to
construct strains with improved stress performance [428]. One
major barrier to the economic conversion of biomass to etha-
nol is the inhibitory compound such as furfural and 5-

hydroxymethylfurfural (HMF). Ethanologenic yeasts undergo
a genomic adaptation process during the adaptation phase for
various inhibitors [429].

SUMOylation acts as a novel potential mechanism to re-
duce the multiple inhibitory effects of fermentation inhibitors
by regulating the lag phase [430]. More oleic acid in the plas-
ma membrane contributes to the acetic acid tolerance of yeast
[431]. Ethanol production from xylose is improved by mating
recombinant xylose-fermenting Saccharomyces cerevisiae
strains. Xylose-fermenting, haploid, yeast cells of the opposite
mating type were hybridized to produce a diploid strain hiding
two sets of xylose-assimilating genes encoding xylose reduc-
tase, xylitol dehydrogenase, and xylulokinase resulting in im-
provements in fermentation ability [432]. Zymobacter palmae
directly fermented cellulosic materials by co-expressing for-
eign endoglucanase and β-glucosidase genes [433].

Engineered microbes with vgb/VHb could be useful in en-
hancing bioethanol production [434]. Ethanol is directly pro-
duced at high temperature using the thermotolerant yeast
Kluyveromyces marxianus displaying cellulolytic enzymes.
The strain was genetically engineered to display
Trichoderma reesei endoglucanase and Aspergillus aculeatus
β-glucosidase on the cell surface [435]. Genetically
engineered Zymomonas mobilis efficiently produced
bioethanol from the hydrolysate of wood biomass containing
glucose, mannose, and xylose as major sugar components
[436]. Pyruvate decarboxylase (pdc) and alcohol dehydroge-
nase II (adhII), from Zymomonas mobilis, were heterologous-
ly expressed in the gram-positive bacterium Streptomyces
lividans TK24 [437]. A novel endoglucanase encoding gene
was cloned from Alicyclobacillus vulcanalis and expressed in
E. coli for hydrolysis [438]. A recombinant S. cerevisiae strain
is constructed displaying phytase on the cell surface which
could improve ethanol production performance and effective-
ly reduce the discharge of phosphorus [439].

A novel agglutinin expression system is constructed as
well as immobilization β-glucosidase1 on the surface of
wild-type Saccharomyces cerevisiae Y5 exhibiting a
strong bioethanol fermentation capacity [440]. A novel
aldehyde reductase encoded by YML131W from
Saccharomyces cerevisiae gives tolerance to furfural de-
rived from lignocellulosic biomass conversion [441]. The
expression of cellulolytic genes is elicited using a recom-
binant endoxylanase from Trichoderma harzianum IOC-
3844 [442]. Engineering of cellulolytic Saccharomyces
cerevisiae strains is a promising way for lignocellulosic
ethanol production [443]. Komeshu et al. used genetically
engineered microbes for bioethanol production [444]. The
activities and thermostabilities of the four PPP enzymes
(transaldolase: TAL1, transketolase: TKL1, ribose-5-
phosphate ketol-isomerase: RKI1, and d-ribulose-5-
phosphate 3-epimerase: RPE1) can affect the efficiency
of ce l lu lo s i c e thano l p roduc t ion . S t r a in s tha t
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overexpressed S. cerevisiae TKL1 exhibited the highest
rate of xylose consumption [445].

Disruption of the alkaline phosphatase gene PHO13 en-
hances ethanol production by a strain expressing the xylose
reductase (XR) and xylitol dehydrogenase (XDH) gene [446].
S. cerevisiae strain co-expressing genes for several cell surface
cellulases and the cellodextrin transporter was constructed to
improving the efficiency of direct ethanol fermentation [447].
A novel xylose-fermenting yeast strain, FSC1, was developed
for ethanol production by intergeneric hybridization between
S. cerevisiae and Candida intermediamutants by using a pro-
toplast fusion technique [448]. Ethanolic xylose fermentation
is controlled by the XR activity. Xylose transport also plays an
important role in ethanol production [449]. A novel
Clostridium thermocellum cellulolytic recombinant cellulase
is expressed in Escherichia coli cells [23].

Overexpression or deletion of genes enhances acetic acid
tolerance. Strains overexpressing ASC1 and GND1 displayed
enhanced tolerance to acetic acid [450]. Multifunctional β-
glucosidase/β-xylosidase/α-arabinosidase (Bgxa1) is found
as an interesting candidate for the saccharification of lignocel-
lulosic material [451]. Overexpression of GRE2 gene from
Scheffersomyces stipitis to Saccharomyces cerevisiae as an
aldehyde reductase contributes tolerance to aldehyde inhibi-
tors produced from lignocellulosic biomass. GRE2 can reduce
furfural to FM and reduce hydroxymethyl furfural to FDM
[452]. Expression of dehydrin gene from Arctic Cerastium
arcticum increases abiotic stress tolerance and fermentation
capacity of a genetically engineered Saccharomyces
cerevisiae [453]. It has been demonstrated that S. cerevisiae
has the ability of in situ detoxification of aldehydes (furan,
aliphatic, and phenolic) to their corresponding less toxic alco-
hols by the action of NAD(P)H-dependent aldehyde reduc-
tases [454].

Heterologous genes for xylose utilization were introduced
into an industrial Saccharomyces cerevisiae [455].
Overexpression of PMA1 enhances tolerance to various types
of stress and constitutively activates the SAPK pathways in
Saccharomyces cerevisiae [456]. Restitution of the NAD+/
NADH redox balance plays a vital role in ethanol stress re-
sponse [457]. Multiple gene-mediated NAD(P)H-dependent
aldehyde reduction is a mechanism of in situ detoxification
of furfural and 5-hydroxymethylfurfural by Saccharomyces
cerevisiae [458]. Overexpression of native Saccharomyces
cerevisiae exocytic SNARE genes increased cellulase secre-
tion. SNAREs (soluble NSF [N-ethylmaleimide-sensitive fac-
tor attachment receptor proteins) are required for fusion events
under intracellular membrane transport and facilitate protein
trafficking between the various membrane-enclosed organ-
elles and the plasma membrane [407]. Co-expression of
TAL1 and ADH1 in recombinant Saccharomyces cerevisiae
improves ethanol production from lignocellulosic hydroly-
sates [459].

Deletion of the PHO13 gene in Saccharomyces cerevisiae
improves ethanol production from lignocellulosic hydrolysate
in the presence of acetic and formic acids, and furfural [460].
PRS3, RPB4, and ZWF1 were identified as key genes for
yeast tolerance to lignocellulose-derived inhibitors or multiple
stresses [461]. Ethanol production is improved through de-
creased glycerol synthesis in Saccharomyces cerevisiae by
metabolic and genetic engineering approaches. Glycerol pro-
duction was hindered by the deletion of the most important
GPD genes involved in glycerol production [462]. The Msn2
overexpression of various antioxidant enzyme genes in micro-
bial strain showed tolerance to oxidative stress during ethanol
production [463].

A recombinant S. cerevisiae strain (SK-NY), overexpress-
ing GRE3-encoded NADPH-dependent aldose reductase and
NADP+-dependent xylulokinase, was constructed for efficient
bioethanol production [464]. The redox balance between xy-
lose reductase (XR) and xylitol dehydrogenase (XDH) is an
important parameter for effective xylose fermentation. Xylitol
accumulation is reduced and ethanol production is improved
by reversing the dependency of XDH from NAD+ to NADP+

[465]. Efficient xylose-fermenting Saccharomyces cerevisiae
is constructed through a synthetic isozyme system of xylose
reductase from Scheffersomyces stipites. The xylose-
metabolic genes (XYL1, XYL2 and XYL3) from
Scheffersomyces stipitis have been engineered into
S. cerevisiae [466].

Ethanol production from xylose in the presence of acetic
acid is improved by the overexpression of HAA1 gene and
the deletion of PHO13 gene in Saccharomyces cerevisiae
[467]. Improved sucrose metabolism by overexpressing in-
vertase is an attractive strategy to improve ethanol yields.
The promoter and 5′ coding sequences of SUC2 are
engineered, resulting in (94%) cytosolic localization of in-
vertase [468]. Co-consumption of multiple sugars can be
attained by modulating phosphotransferase system (PTS);
this may be improved by amplifying the non-PTS pathway
genes such as galP and glk [469]. The xylose utilization
capability of Saccharomyces cerevisiae was enhanced by
applying the concept of inverse metabolic engineering to
identify the factors involved in improving xylose utilization.
It has been observed that deletion of molecular chaperone-
encoding genes HSP26, SSA1, and HSP104 facilitates the
protein folding of xylose isomerase and enhancing xylose
isomerase activity [470]. Saitoh et al. [471] constructed the
triple auxotrophic strain OC2-HUT and introduced cell
surface–displaying β-glucosidase (BGL) gene and a
xylose-assimilating gene to generate the final strain OC2-
ABGL4Xyl for efficient ethanol production. Improved xy-
lose isomerase activity, upregulation of glycolysis and glu-
tamate synthesis enzymes, and downregulation of trehalose
and glycogen synthesis altogether contribute to the effective
xylose utilization by the strain [472].
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Co-fermentation of cellulose/xylan was investigated by
the engineered industrial yeast strain OC-2 displaying
bo t h β - g l u c o s i d a s e a nd β - x y l o s i d a s e [ 473 ] .
Saccharomyces cerevisiae strain was engineered for xy-
lose assimilation by the constitutive overexpression of the
Orp inomyces xy lo se i some ra s e , S . ce rev i s i ae
xylulokinase, and the Pichia stipitis SUT1 sugar trans-
porter genes [474]. To enhance heterologous cellulase
protein production in yeast, a plasmid embracing the
endoglucanase gene from Clostridium thermocellum
(Ctcel8A) was used to transform a homozygous diploid
yeast [475]. Saccharomyces cerevisiae strain was
engineered with a three-plasmid SUMO yeast expression
system by utilizing the portable small ubiquitin-like mod-
ifier (SUMO) vector set combined with the efficient en-
dogenous yeast protease Ulp1 [476]. Transaldolase and
transketolase are the key enzymes responsible for non-
oxidative pentose phosphate pathway–based xylose utili-
zation in recombinant Saccharomyces cerevisiae .
Overexpression of TAL1 (transaldolase gene) and TKL1
(transketolase gene) increases the flux from the pentose
phosphate pathway into the glycolytic pathway [477].

Improvement in cellulase production can also be done
by modifying regulator expression in T. harzianum [478].
PfMig188, a catabolically derepressed engineered strain
of the hyper-cellulolytic fungus Penicillium funiculosum
NCIM1228, was investigated. Results demonstrated that
the PfMig188 secretome has relatively broad substrate
specificity and acts as an efficient substitute for
T. reesei–based secretomes for diverse biomass sacchari-
fication [479].

Deletion of the HXK2 gene (a moonlighting protein) in
Saccharomyces cerevisiae enables mixed sugar fermentation
of glucose and galactose (major sugar components of red
seaweeds) in oxygen- l imi ted condi t ions [480] .
Overexpression of native PSE1 and SOD1 genes under the
transcriptional control of the constitutive PGK1 promoter in
Saccharomyces cerevisiae improved heterologous cellulase
secretion. The effect of these genes on heterologous protein
secretion of three cellulases—an exoglucanase encoded by
cel6A of Neocallimastix patriciarum, a β-glucosidase
encoded by cel3A of Saccharomycopsis fibuligera, and an
endoglucanase encoded by cel7B of Trichoderma reesei—
was investigated by integrating the PGK1P/T–PSE1 and
PGK1P/T–SOD1 cassettes into S. cerevisiae strains to pro-
duce the relevant cellulases [481]. A novel β-glucosidase
gene encoding a protein (BglA) of 446 amino acid, belong-
ing to the glycoside hydrolase family 1 (GH1), was cloned
from a hyperthermophilic bacterium Thermotoga
naphthophila RKU-10T and overexpressed in Escherichia
coli BL21CodonPlus. All these significant features make
BglA an appropriate candidate for biotechnological and in-
dustrial applications [482].

6.4 Attachment on cell surface aspects

Yeast cell surface engineering enables more than 100 en-
zymes to be displayed on the surface of a yeast cell. The
displaying yeast can be used as a whole-cell biocatalyst with-
out requiring enzyme separation and purification processes
[483]. Construction of a new system for endoglucanases
exhibiting carbohydrate-binding modules using yeast cell sur-
face engineering. Saccharomyces cerevisiae BY4741 (Δ
sed1) exhibiting 3 cellulases (Trichoderma reesei
endoglucanase II [EG], T. reesei cellobiohydrolase II
[CBH], and Aspergillus aculeatus β-glucosidase I [BG])
was constructed by yeast cell surface engineering [484]. For
making more efficient bioethanol production, the
endoglucanase gene endo753 of Aspergillus flavus
NRRL3357 was introduced on the cell surface of
Saccharomyces cerevisiae EBY100 strain by the C-terminal
fusion using Aga2p protein as an anchor attachment tag [485].

Heterologous cellulolytic enzymes were expressed on the
Z. palmae cell surface by cell surface display motif of the
Pseudomonas ice nucleation protein N-terminal anchoring
[486]. Yeast strain was engineered by codisplaying several
hemicellulolytic enzymes on the surface of xylose-utilizing
Saccharomyces cerevisiae cells [487]. A recombinant was
developed by expressing three cellulases from Clostridium
cellulolyticum—endoglucanase (Cel5A), exoglucanase
(Cel9E), and β-glucosidase—on the surface of the
Escherichia coli LY01 [488].

6.5 By checking bacterial contamination

The presence of bacterial contaminants reduces alcoholic fer-
mentation. Antibiotics are currently used to control contami-
nation, but their residues may be detected; therefore the anti-
microbial activity of the natural compounds such as hops ex-
tract, 4-hydroxybenzoic acid, nisin Z, and lysozyme were in-
vestigated and found their great potential for the substitute of
antibiotics used conventionally in the ethanol industry [489].
Bioethanol fermentation is usually suppressed by lactic acid
bacteria (LAB), thereby leading to a decrease in bioethanol
yield. Nisin-loaded P4VP microspheres were added into the
simulated contaminative fermentation system for controlling
the L. plantarum contamination in bioethanol fermentation
[490].

Bacteriophage can be used as a potential alternative agent
for controlling Lactobacillus plantarum contamination during
bioethanol production. Moreover, increased concentrations of
monounsaturated fatty acids due to bacteriophage treatment
might lead to more membrane fluidity and promote the cell
viability of S. cerevisiae [491]. Bacteriocins, bacteriophages,
and beneficial bacteria are used as a non-conventional antimi-
crobial agents to reduce bacterial contamination in the
bioethanol industry [492]. Brettanomyces/Dekkera
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bruxellensis–based microbial contamination of ethanol fer-
mentation has been controlled by saccharomycin (biocide
composed of antimicrobial peptides) secreted by
Saccharomyces cerevisiae [493]. Transcriptional profile
(genes with significantly repressed or induced expression) of
a bioethanol production contaminant can provide information
on antimicrobials, to combat yeast contamination during in-
dustrial bioethanol production [494].

6.6 To develop ethanol and acetate tolerance

Alcohol toxicity is a more serious problem for bioproduction
using bacteria. Alcohols interact directly with the lipid bilayer
because of their amphiphilicity and thereby, membrane fluid-
ity is altered. These changes in fluidity increase membrane
permeability and induce conformational changes in mem-
brane proteins. Ethanol-induced membrane induces the ex-
pression of heat-shock and phage-shock proteins.
Transcriptomic analyses identified important roles of the
groESL chaperone system and the global regulator of sporu-
lation in alcohol tolerance [495]. Higher ethanol concentration
in Saccharomyces cerevisiae leads to cell growth inhibition
and ultimately cell death. Several mechanisms, viz. changes in
gene expression, membrane composition, and increment in
chaperone proteins, help stabilize other denatured proteins
[496].

Ethanol and acetate accumulation under the fermentation
process affects ethanol yield by stressing the metabolic capa-
bilities of the microorganisms. Such conditions can be regu-
lated by overexpression of the iron-sulfur cluster (ISC) in the
E. coli KO11 strain [497, 498]. Green tea polyphenols (GTP)
enhance the ethanol tolerance of S. cerevisiae may be due to
the significantly differentially expression of large amounts of
genes related to the cell wall, cell membrane, basic metabo-
lism, and redox regulation [499]. Amend effect of Cyclocarya
paliurus (C. paliurus) triterpenoids on S. cerevisiae under the
ethanol stress was explored. It has been observed that the
treatment of triterpenoids enhances ethanol tolerance of
S. cerevisiae [500].

Bacterial signals of N-acyl homoserine lactones induce the
changes of S. cerevisiae morphology, thus making it more
ethanol tolerant. Bacterial signals QSMs (quorum signal mol-
ecules) of N-acyl homoserine lactones induce the changes of
morphology and ethanol tolerance in Saccharomyces
cerevisiae. Microbes communicate with each other using
chemical signal molecules, termed autoinducers (AI) or quo-
rum sensing molecules (QSM). When the signal molecules
accumulate a threshold, the communicating microbes begin
to alter gene expression and therefore behavior in response.
Saccharomyces cerevisiae, exposed to short-chain 3-OC6-
HSL and long-chain C12-HSL, showed obvious changes in
morphology and ethanol tolerance [501]. Issatchenkia
orientalis, a non-Saccharomyces yeast that can resist a wide

variety of environmental stresses (ethanol stress), has potential
use in bioethanol production [502]. The metabolic differences
of diploid (α/a) and haploid (α, a) yeasts in response to etha-
nol stress were recently studied. It was found that the haploid
genotype being more susceptible to ethanol stress as com-
pared to diploid may be due to its higher content of protective
metabolites including polyols [503]. Antiseptics such as hy-
drogen peroxide, potassium metabisulfite, and 3,4,4-
trichlorocarbanilide have been shown to inhibit and control
bacterial contamination in ethanol fermentations [504].

Stress-tolerant Saccharomyces cerevisiae strains are devel-
oped by metabolic engineering through cell flocculation and
zinc supplementation [505]. Metabolically engineered
Saccharomyces cerevisiae strain showed tolerance for acetic
and formic acids. Improved activities of transaldolase (TAL)
and formate dehydrogenase (FDH) through metabolic engi-
neering successfully deliberated resistance to weak acids in a
recombinant xylose-fermenting Saccharomyces cerevisiae
strain [506]. Plasma membrane proteins Yro2 and Mrh1 are
required for acetic acid tolerance in Saccharomyces cerevisiae
[507]. Creation of yeasts with acid tolerance was successful
using yeast cell surface engineering. The cell wall of
Saccharomyces cerevisiae plays a crucial role in the biophys-
ical characteristics of the cell surface. The modification of the
cell wall property is an important factor for adaptation under a
stressful environment. A novel peptide, Scr35, that provides
acid tolerance in yeasts was obtained [508].

Expression of a salt-induced 2-Cys peroxiredoxin from
Oryza sativa improves stress tolerance in the recombinant
yeast Saccharomyces cerevisiae. Peroxiredoxins (Prxs) are a
thiol-specific antioxidant enzymes that are seriously involved
in cell defense and protect cells from oxidative damage [509].
Adaptive laboratory evolution (ALE) was used for the devel-
opment of furfural and acetic acid–tolerant strain [510]. Rpn4
and proteasome-mediated yeast resistance to ethanol includes
regulation of autophagy. It has been suggested that Rpn4 af-
fects the autophagic system activity upon ethanol stress
through the PRB1 regulation [511]. One approach to alleviate
the inhibition problem is to use genetic engineering to intro-
duce increased tolerance by overexpression of Saccharomyces
cerevisiae Pad1p. The overexpressing transformants showed
approximately tenfold higher activity [512].

Acetate is an effective agent for the prevention of bacterial
contamination, but it negatively affects the fermentation abil-
ity of S. cerevisiae. Overexpression of the organic acid–
tolerant HAA1 gene, which encodes a transcriptional activa-
tor, could be a useful molecular breeding method for acetate-
tolerant yeast strains [513].
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7 Future prospects

To develop a successful and commercially viable technology
for bioethanol production, novel strategies for generating en-
zyme cocktails for lignocellulose hydrolysis in biorefineries
would be developed by enzyme engineering, reconstitution of
enzyme mixtures, and bioprospecting for superior enzymes.
The current situation warrants the need for integrated research
and development of lignocellulosic biomass utilization [514].
Understanding of the complexity of lignocellulose feedstock,
their chemical compositions, and the knowledge of pretreat-
ment methods are required [19].

Functional metagenomic strategies for the finding of novel
enzymes for biomass hydrolysis and biofuel production such
as new-generation sequencing and mining the metagenome
are becoming more efficient [515]. In recent years, post-
genomic approaches such as metabolomics in combination
with other omics such as genomics, chemogenomics, tran-
scriptomics, and proteomics were studied to boost the use of
systems metabolic engineering tools in industrial settings. It
provides insights of the mechanisms and interactions of genes
and allowed to better understand under severe environments,
overexpression and downregulation of multiple genes, and
construction of synthetic regulatory proteins and other com-
ponents such as ethanol and acetic acid tolerance [495, 498,
516–518].

Permeases are directly involved in the utilization of and
regulatory response to nutrient sources. Permease regulatory
mechanisms on yeast metabolic engineering provide impor-
tant insights for the elimination of harmful substances in
S. cerevisiae [519]. S. cerevisiae is frequently challenged by
bacterial contamination and a combination of lignocellulosic
inhibitors formed during the pretreatment so it can be checked
[520]. Required robust Saccharomyces cerevisiae strains with
improved capacity to cope with the toxic compounds formed
during the biomass pretreatment, among which are 5-
hydroxymethylfurfural (HMF), furfural, weak organic acids,
and phenolic compounds generated [399].

Recently, global transcription machinery engineering
(gTME) has been applied as an effective technique to enhance
the target specific phenotype of microbes for enhanced etha-
nol production. The gTME uses randommutagenesis libraries
of global transcription factors generated by error-prone PCR
to reprogram transcription and obtain specific phenotypes. Ep-
PCR is a fast and cheap molecular biology method for the
random mutation in a particular piece of DNA [495, 521].
Microorganisms have great potential for the engineering
and/or incorporation of complete metabolic pathways for the
over production of value-added chemicals. Despite the wide
capability of microorganisms, there is still a lack of knowl-
edge about the metabolic networks responsible for such pro-
cesses. Metabolomics are used for microbial strain selection

and engineering novel biochemical pathways strictly respon-
sible for efficient biomass conversion [503, 522].

Xylose acts as the second most prevalent sugar after glu-
cose in lignocellulosic biomass utilization; therefore, exten-
sive research efforts have been made and still needed to intro-
duce heterologous genes for xylose metabolism into
S. cerevisiae. For this reason, detailed studies about naturally
xylose-fermenting yeasts species (Scheffersomyces stipitis or
Pachisolen tannophilus), comparative genomics, and evolu-
tionary analysis are needed as effective approaches to deter-
mine the l imi t ing s teps in pentose metabol ism.
Overexpression of genes encoding enzymes of non-
oxidative pentose phosphate pathway (PPP) and replacement
of a small amount of enzymes of xylose metabolism, as well
as isolation of xylose transporters were pointed out as crucial
factors for the adequate function of this pathway [522, 523].

The combination of metabolomics, fluxomics, and synthet-
ic biology is used as a powerful tool for prospecting novel
metabolic routes [524, 525]. Designer cellulosomes (also
known as chimeras) unlike native cellulosomes are artificial
constructs, composed of chimeric scaffoldin and enzymes
with cohesins and dockerins of divergent specificities, thus
providing interdomain flexibility in the enzyme complex for
effective utilization [21]. Recent trends in ligninolytic green
biotechnology by immobilization engineering processes sug-
gest the potential industrial applications of ligninolytic en-
zymes in various sectors of the modern industry [526].

Nanoparticles are gaining increasing interest among re-
searchers due to their exquisite properties. They are also being
explored in biofuels to improve the performance of bioethanol
production. Different types of nanomaterials (metallic, nano-
fibers, and nanotubes) have been used and they can effectively
suppress inhibitory compounds under certain conditions
[527]. Metabolic engineering is used of microorganisms for
biofuel production. Metabolically engineered yeasts in surface
displaying various hydrolytic enzymes appear to hold the
greatest potential. The bacterium Zymomonas mobilis meta-
bolically engineered to make bioethanol from pentose sugars
is already being commercialized [51, 415, 528].

Chromosomal integration of genetic material is the pre-
ferred method to overcome gene loss that may occur by ho-
mologous recombination. The use of CRISPR/Cas9 provides
a marker-free genome-editing tool and thereby, it should open
a new avenue in creating microbial biorefineries for enhanced
bioethanol production by engineering the microbial genomes
for desired traits such as enhancing the biofuel tolerance, in-
hibitor tolerance, and thermotolerance as well as modifying
the cellulases and hemicelluloses enzymes [415, 529].

However, more research on the metabolic pathways, regu-
lation of end-product formation, and construction of geneti-
cally engineered thermophilic/thermotolerant microorganisms
with high tolerance to ethanol is required for industrial fer-
mentations. Evolutionary engineering is another approach for
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development. It uses laboratory evolution for selecting indus-
trially relevant traits. By integrating whole genome sequenc-
ing, bioinformatics, classical genetics, and genome-editing
techniques, evolutionary engineering has also become a pow-
erful approach for the identification and reverse engineering
of molecular mechanisms that underlie industrially relevant
traits [524].

Adaptive laboratory evolution (ALE) is a powerful tool for
analyzing phenotypic and genotypic changes during bacterial
evolution. In this approach, cells are cultured under a selective
environment for many generations, leading to adaptive evolu-
tion [495]. DNA microarrays can also be used in detecting
transcription factor binding sites and single-nucleotide poly-
morphisms. Target genes for genetic manipulation should be
identified to confer useful phenotypes, such as stress tolerance
and high fermentation activity, and to improve the production
of the target product [530]. It is possible to evaluate the effects
of specific mutations on alcohol tolerance using genome-
editing technology [495].

Genome shuffling is an efficient way to improve complex
traits or phenotypes under the control of multiple genes.
Genome shuffling is the best way for strain improvement in
very high-gravity (VHG) fermentation [531, 532]. A better
perception of the yeast adaptation under multiple stresses is
of critical importance to develop strategies to improve yeast
robustness and bioconversion capacity from lignocellulosic
biomass [533]. Design and engineer a strain with a high se-
cretory phenotype, bioethanol-specific stressors, including
tolerance to products formed during hydrolysis of lignocellu-
losic substrates [534]. Industrial yeast strains with better xy-
lose fermentation ability and stress tolerance are important for
economical lignocellulosic bioethanol technology [535].
Isolated strains of Saccharomyces cerevisiae from different
sources display extensive genetic and phenotypic diversity.
To better understand how genomic changes influence pheno-
types is more important for developing strategies. Whole ge-
nome sequencing was carried out based on single-nucleotide
variations and small insertions/deletions/annotations in the ge-
nome. Phylogenetic analysis also recommended the unique
genes, obtained through horizontal gene transfer from other
species. RNA-Seq analysis also suggests that sometimes
unique genes are not functional due to unidentified intron
sequences [376].

As an efficient ethanol-producing bacterium, Zymomonas
mobilis has created special attention due to several properties,
viz. high sugar uptake, ethanol yield, and tolerance. Different
metabolic engineering strategies have been used to create a
new metabolic pathway for Z. mobilis to broaden its applica-
tion range [51]. Expressing hydrolase in the lignocellulosic
feedstock is a favorable alternative, due to the large availabil-
ity of biomass [5]. The mixed feedstock approach to lignocel-
lulosic ethanol production has shown that their use can bring
about significant cost savings as compared to single feedstock

utilization [536]. Stress tolerance in industrial yeast strains is
an important point for cost-effective bioprocessing. It opti-
mizes microbial systems to adapt under environmental stress-
es and thus has a huge power of the creation of robust stress-
tolerant yeasts [537]. The future of lignocellulosic biomass
would be based on improvements of plant biomass, metabolic
engineering of ethanol production pathway and hydrolytic
enzyme-producing microorganisms, and the fullest exploita-
tion of waste biomass and process integration of the individual
steps involved in bioethanol production [538].

8 Conclusions

Lignocellulosic biomass, as a waste material, offers an attrac-
tive alternative for its valorization into valuable products.
However, the recalcitrance of these materials and the inability
of microorganisms to efficiently ferment each sugar present as
well as lignocellulosic hydrolysates still lower the production
of bioethanol. The viability of lignocellulosic material for eth-
anol production has been still searched around the world de-
pending upon its availability. More attention is required on the
development of sustainable and scalable fuels from renewable
biomass, viz. agricultural and industrial residues, as a means
to curb global warming. There is an intense emphasis on low-
ering the costs of renewable bioethanol production by over-
coming the challenges connected to high substrate costs, lim-
ited microbial capacity, stress tolerance, low titers, and low
production rates.
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