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Abstract
Kappaphycus alvarezii reject (KR) and solid food waste (SFW) are unused sources of carbohydrates; the production of 
bioethanol from these raw materials has not yet been reported by any researchers so far. The present study was conducted 
to optimize the fermentation parameters using RSM (Design-Expert version 7.0 software). KR and SFW were fermented 
by using Saccharomyces cerevisiae for bioethanol production. Logistic and modified Gompertz kinetic models were fitted 
fermentation time against bioethanol yield data. The gas chromatography flame ionization detector (GC–FID) was used for 
bioethanol confirmation. The optimum conditions for an incubation time of 24 h, inoculum size of 15 vol%, and agitation 
speed of 90 rpm at pH 5 were predicted by RSM. Under these experimental conditions, the best yield of bioethanol was 
68% (w/w), which is in good agreement with the predicted value from RSM of 70% (w/w) with an R2 of 0.97. Under the 
optimized conditions, the reducing sugar reduced from 30.83 to 8.55 g/L with a conversion efficiency of 70%. Overall, KR 
and SFW were effective resources for the production of bioethanol to meet the future energy demand. The diversion of SFW 
through their study will provide a breakthrough for the reduction of energy potential SFW to landfills, contributing to the 
climate change initiative.
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1  Introduction

Seaweeds are macroalgae; based on the color and biochemi-
cal composition, they are broadly classified into red, brown, 
and green algae. Almost 7.5–8 million tonnes of seaweed 
are harvested worldwide per annum. These macroalgae are 
enormously found on the east and west coastline of India [1]. 
In 2016, nearly 22,000 tonnes of seaweed were harvested 
from Indian coastal lines. This was only 2.5% of 870,000 

tonnes of seaweed available on the Indian coastal line. Sea-
weeds serve as resource for variety of industrially valuable 
products such as Carrgeenan, alginates, agar, and biofuels 
[2]. In industries, during recovery of valuable products, a 
tremendous quantity of algal rejects is produced worldwide. 
Disposal of these algal rejects are challenging and highly 
demandable. Many of the marine algae processing industries 
primarily convert the algae rejects into fertilizer via bio-
processing techniques [3]. Khamathy et al. proved KR to be 
an eligible source for bioethanol production [4]. In the cur-
rent scenario, globally many research groups are engaged in 
converting waste to bioenergy products. Owing to renewable 
and sustainable energy usage, waste diversion to biofuels is 
more recommended than other conversion processes [2, 3].

Food waste is an organic waste that is produced from 
sources such as households, cafes, and restaurants on a day 
to day basis. About 1.3 billion tonnes of food gets wasted 
in the food supply chain [5]. Food waste disposal current 
techniques raise concern for environmental safety as well 
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as protection of natural wealth. Presently, such food wastes 
are disposed through a number of processes, namely dump-
ing on landfills, incineration, and burial etc. These methods 
are less recommended, as they release hazardous gases into 
the atmosphere and contaminate the ground water [6, 7]. 
These drawbacks necessitate safer disposal of food waste. 
Also, the food waste composition (starch and cellulose) 
favors recovery of valuable products [8]. The carbohydrate 
content present in the food waste can be used for produc-
tion of bioethanol through fermentation process. [9]. Also 
several studies have been reported on the conversion of food 
waste into biogas and methane [10–12]. Anaerobic digestion 
of rice straw, rice bran, and food waste resulted in a meth-
ane yield of 235.4 mL/g-VS at the fifth day of incubation 
time [13], while a few others have reported food waste as a 
source for the synthesis of economically viable adsorbent, 
i.e., activated carbon [14].

Fossil fuel usage in the last decades resulted in global 
climatic change, CO2 emissions, fuel insecurity, and higher 
fuel cost [15]. Plants, algal reject waste, food waste, and 
agricultural or forestry residues are the main sources for bio-
fuel production [16, 17]. Among the biofuels, bioethanol is 
one of the green energy sources and has become more gener-
ally embraced as an alternative to fossil fuel [2]. Sudhakar 
et al. reported seaweed reject (Gracilaria corticata) provides 
3.75% w/w ethanol (72 h, pH 5.5) using Saccharomyces 
cerevisiae [18]. From food waste (hamburger), 0.271 g/L 
of ethanol was produced using 0.14 mL/L of α–amylase 
enzyme [19]. Blending of alcohol in gasoline causes slight 
increases in NOX emissions but has led to the decrease in 
smoke and CO emissions [20]. Ethanol produced from fer-
mented pomegranate fruit with 20% blending resulted in 
hydrocarbon emission of 65 ppm but raw petrol resulted in 
150 ppm at engine load of 1500 rpm (Kirloskar, four stroke, 
single cylinder, spark engine) [21].

A variety of computational theoretical modeling 
approaches (artificial neural network (ANN), evolution-
ary computing and response surface methodology (RSM)) 
have recently been used for the optimization of bioprocesses 
[22]. RSM is one such empirical method that is valuable 
for designing, updating, and enhancing processes that are 
used to evaluate the impact of a variety of independent vari-
ables on the device output [23]. This method has been effec-
tively utilized to optimize the alcoholic fermentation pro-
cess [24, 25]. This modeling approach was used and tested 
for its suitability for the production of bioethanol process 
[26]. Until now, to the best of our knowledge, there was no 
study reported on bioethanol production from KR and SFW 
through fermentation using computational technique such 
as RSM.

The objective of the study was to utilize the processed 
algal waste present in the biofertilizer unit and food waste 
to produce an effective bioethanol as well as minimize 

environmental pollution. Most of the studies used raw Kap-
paphycus alvarezii [27] and food waste [28] as raw materials 
for bioethanol production. To the best of our knowledge, 
for the first time, rejects of Kappaphycus alvarezii and food 
waste are currently being combined and used for bioetha-
nol production. Furthermore, the purpose of this study was 
to optimize the experimental conditions such as inoculum 
size (vol%), pH, incubation time (h), and agitation speed 
(rpm) for maximum bioethanol production from KR and 
SFW. In addition, the bioethanol formation efficiency from 
reducing sugar was validated using logistic and modified 
Gompertz models. The produced bioethanol was analyzed 
using GC–FID and compared with standards.

2 � Materials and method

2.1 � Preparation of samples

The KR produced after sap (liquid) extraction was obtained 
from the Centre for Ocean research, Sathyabama Institute of 
Science and Technology, Tamil Nadu, Chennai, India. SFW 
was obtained from the mess hall of Sathyabama Institute 
of Science and Technology, Tamil Nadu, Chennai, India. 
Approximately 800 to 1000 kg of food waste was generated 
per day in the University mess. The samples collected were 
dried under sunlight in order to eliminate the water content 
of the samples and were powdered using a mixer grinder 
(Philips, HL7756/03, India) and sieved in 0.8 mm (SS200, 
Suntech Chennai) [29]. The prepared samples were stored 
in a zip lock cover and kept in a freezer (− 5 °C). De ionized 
water (18.2 MΩcm, Hindustan aqua system, Chennai) was 
used for performing all experiments in this study. All the 
chemicals used in these experiments were purchased from 
Sigma-Aldrich in analytical grade.

2.2 � Biomass analysis

Moisture content (ASTM E949-88), ash content (ASTM 
E830-87), volatile matter (ASTM E897-88), and fixed 
carbon content were analyzed as per individual ASTM 
standards. The carbohydrate content of the KR, SFW, and 
KR:SFW (6:4 ratio) was determined using anthrone reagent 
method. In the anthrone reagent method, the samples were 
hydrolyzed under optimized conditions such as 2.5 N of 
phosphoric acid (H3P04) hydrolysis at temperature of 80 °C 
for time of 3 h (from our previous study) [3].

2.3 � Microorganism and growth conditions

Bread yeast (Saccharomyces cerevisiae) was purchased from 
local market (“Udaya” brand), Chennai, Tamil Nadu, India. 
At room temperature, the yeast was dispersed in distilled 
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water at a concentration of 10 g/L. Initially, the yeast was 
incubated in agar plates comprising agar of 20 g/L, glucose 
of 20 g/L, peptone of 20 g/L, and yeast extract of 10 g/L for 
48 h at 30 °C. A loop of yeast culture from the agar plate 
was transferred to Yeast Peptone Dextrose (YPD) medium 
and pre-cultivated for 24 h at 30 °C and 120 rpm in a shak-
ing incubator [6].

2.4 � Fermentation process

In our previous study, we optimized the Kappaphycus alva-
rezii reject and food waste at different proportions with dif-
ferent parameters such as (time, temperature, concentration, 
and duration) to obtain optimal yield. From this result, we 
chose the proportion KR:SFW (6:4 ratio) for the fermenta-
tion process [3]. Fermentation of KR, SFW, and KR:SFW 
(6:4 ratio) was performed in a 3-L fermenter (Merck, 
India). Pre-cultivated yeast inoculum of 10% (v/v) trans-
ferred to fermentation medium which comprises of diam-
monium sulfate (2 g/L), potassium hydrogen phosphate 
(1 g/L), potassium dihydrogen orthophosphate (1 g/L), zinc 
sulfate (0.2 g/L), magnesium sulfate (0.2 g/L), and yeast 
extract (2 g/L) respectively [30]. The prepared fermentation 
medium was sterilized using an autoclave at a temperature 

of 121 °C for 20 min and cooled to room temperature. For 
the experiments, 10 g of KR, SFW, and KR:SFW (6:4 ratio) 
samples was hydrolyzed individually with 2.5 N (5.7 mL) 
of H3P04 at temperature of 80 °C for time of 3 h. The bio-
reactors loaded with the above-mentioned substrates had an 
overpressure of 1.2 bar during 30 min. Fermentation was 
carried out at various incubation time (24 to 60 h), pH from 
4 to 6, agitation speed (60–120 rpm), and different inocu-
lum sizes (3 to 15 vol%). The inoculation was accomplished 
aseptically condition and the inoculated hydrolysates were 
incubated for fermentation at 30 °C (± 1 °C). Immediately 
after inoculation, nitrogen gas was expelled into the biore-
actors via the aeration device in order to achieve anaerobic 
conditions that were observed by the PO2 electrode.

2.5 � Fermentation kinetics

2.5.1 � Logistic model

The logistic model was used to evaluate the microbial kinetic 
parameters as per Eq. (1)

Table 1   Proximate analysis 
results of KR, SFW, and 
KR:SFW (6:4 ratio) with 
literature

Feedstock Moisture con-
tent (wt%)

Ash content 
(wt%)

Fixed carbon 
(wt%)

Volatile matter 
(wt%)

References

KR 11.41 46 0.72 41.87 In this study
SFW 7.68 32.78 0.77 58.77
KR:SFW (6:4) 9.13 17.05 2.97 70.85
Green seaweed 8 19.6 13.1 59.3 [35]
Red seaweed 17.2 20.1 3.7 76.2 [2]
Brown seaweed 8 15.2 12 72.8
Food wastes (mixed) 11.6 17 6.3 60.1 [34]
Food waste (white rice) 81.5 5.5 1.5 93 [36]
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Fig. 1   Effect of incubation time on bioethanol yield (%), reducing 
sugar concentration (g/L), and conversion efficiency (%) for KR
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where Xo denoted for initial biomass concentration (g/L), 
Xmax for maximum biomass concentration (g/L), X for bio-
mass concentration (g/L), t for incubation time (h), Cpmax 
for maximum specific growth rate (h−1), and lag time (h) 
respectively [26].

2.5.2 � Modified Gompertz model

The experimental observation of bioethanol concentration 
vs time was fitted in to modified Gompertz model as per 
Eq. (2).

From the equation, Cp is denoted for bioethanol concen-
tration (g/L), Cpmax is maximum bioethanol concentration 
(g/L), KPmax is maximum production rate (g/L/h), and tL is 
represented as time from the beginning of the fermentation 

(1)

ln(X∕Xo) =
ln(Xmax|Xo)

{
1 + exp

[
4�max

/
ln(Xmax|Xo) (� − t) + 2

]}

(2)
Cp = Cpmax × exp

{
−exp

[
KPmax × exp(1)∕Cpmax

]
× (tL − t) + 1

}

to exponential bioethanol production (h) [31]. These kinetic 
parameters were predicted from the non-linear regression 
using MATLAB software (Version 19, Mathworks; Natick, 
MA).

2.6 � Response surface methodology

The RSM technique was used to determine modeling and 
optimization of bioethanol production. Central composite 
design (CCD) at three levels was employed for designing the 
experimental data [30]. Design-Expert version 7.0 was used 
to quantify the results of the variables and their correlations. 
To evaluate the potential of ethanol yield from KR:SFW, 
30 experiments (16 factorial, 8 axial, and 6 centers) were 
conducted according to the CCD method. The evaluation of 
variables and their regressions was also conducted to assess 
the significance of the model. The four independent vari-
ables such as (a) inoculum size (vol%), (b) pH, (c) incuba-
tion time (h), and (d) agitation speed (rpm) were considered 
as input parameters and the bioethanol yield (%) considered 
as output of the RSM. The levels of different coded param-
eters are (1) inoculum size (A) range between 3 and 15 vol%; 
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Fig. 3   Effect of incubation time on bioethanol yield (%), reducing 
sugar concentration (g/L), and conversion efficiency (%) for KR:SFW

5

10

15

20

25

30

35

0

20

40

60

80

100

4 4.5 5 5.5 6

Conversion Efficiency (%)

Bioethanol (%)

Reducing sugar (g/L)

pH

)
%(

ycneiciffE
noisrevno

C
Bi

oe
th

an
ol

 (%
)

R
ed

uc
in

g 
su

ga
r 

(g
/L

)

Fig. 4   Effect of pH on bioethanol yield (%), reducing sugar concen-
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Fig. 5   Effect of pH on bioethanol yield (%), reducing sugar concen-
tration (g/L), and conversion efficiency (%) for SFW
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(2) pH (B) range between 4 and 6; (3) incubation time (C) 
range between 24 and 60 h; and (4) agitation speed (D) range 
between 60 and 120 rpm [32].

2.7 � GC FID analysis

The presence of bioethanol in the samples was examined 
using a gas chromatography YL 6500 (Spain) system joined 
with a Hewlett Packard device equipped with the YL-Clarity 
software. A flame ionization detector (FID) is equipped for 
gas chromatography [33]. The length of the capillary column 
was 30 m, the diameter was 0.53 mm, and the thickness of 
the capillary column is 1 µm. It is packed with polyethylene 
glycol. Helium is used as a carrier gas at a steady flow rate 
of 3 mL/min. The ignition and maximum temperature for 
FID were set to 471 K and 513 K respectively. The injection 
volume of 1μL and a split ratio of 10:1 were used as part 
of the GC–FID analysis. The run time of the samples was 
30 min. After analysis of the samples, the oven was cooled 
to 323 K for further analysis.

3 � Results and discussion

3.1 � Biomass characterization

The proximate analysis was preferred to determine the 
essential fractions of biomass like moisture content, ash 
content, volatile matter, and fixed carbon. The moisture 
content in the biomass was an important factor for deter-
mining the bioethanol yield. Moisture content of KR, SFW, 
and KR:SFW was 11.41 wt%, 7.68 wt%, and 9.13 wt%. It 
was stated that lesser the moisture, higher the bioethanol 
yield [3]. The proximate analysis of KR, SFW, and KR:SFW 
is shown in Table 1. The ash content of biomass also plays 
an important role in bioethanol formation. The ash content 
of KR was 46 wt%, SFW was 58.77 wt%, and KR:SFW 
was 17.05 wt% respectively. In another study, Gracilaria 
corticata var corticata algae had an ash content of 20.1 
wt (%) [2]. The volatile matter of KR, SFW, and KR:SFW 
were 41.87 wt%, 58.77 wt%, and 70.85 wt% respectively. 
In another study with food waste (white rice) had volatile 
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Fig. 7   Effect of agitation speed on bioethanol yield (%), reducing 
sugar concentration (g/L), and conversion efficiency (%) for KR
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Fig. 8   Effect of agitation speed on bioethanol yield (%), reducing 
sugar concentration (g/L), and conversion efficiency (%) for SFW
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matter of 60.1 wt% [34]. Mainly, the KR:SFW was rich in 
reducing sugar concentration and it can be used as an alter-
native biomass for bioethanol production through the fer-
mentation process.

3.2 � Fermentation studies

3.2.1 � Effect of incubation time on bioethanol yield

Fermentation of KR, SFW, and KR:SFW was carried out 
at various incubation times (24 to 60 h), pH of 5, agita-
tion speed of 90 rpm, and different inoculum sizes of 15 
vol%. Figures 1, 2, and 3 show the relationship between the 
reducing sugar concentration (g/L), conversion efficiency 
(%), and bioethanol yield (%) against incubation time at lab 
scale. Figure 3 (KR:SFW) shows the Maximum bioethanol 
yield was 68% at 25 h of incubation time. At an incubation 
time of 25 h, the reducing sugar concentration was reduced 
to 11.29 g/L from 30.83 g/L with a conversion efficiency of 
70%. For KR, maximum bioethanol yield was 58% (Fig. 2) 
and SFW was 65% (Fig. 3) with maximum conversion effi-
ciency of 60% and 69%. From the findings, it was clear that 

the increase in the concentration of bioethanol indicates 
the considerable consumption of reducing sugars by Sac-
charomyces cerevisiae yeast during that fermentation time. 
Similar results were obtained from Asmamaw Tesfaw et al.’s 
studies; increasing the reducing sugar content derived from 
food waste leachate from 45 to 75 g/L enhanced ethanol 
production by 2.3-fold using S. cerevisiae KCTC-7904 [37].

3.2.2 � Effect of pH on bioethanol yield

The pH plays an important role during fermentation because 
all the organism and cellular processes are affected by 
pH, that is, because of H + ion concentration in the liquid 
medium. pH 5 was suitable for cell growth because the high 
acidic or basic condition of the medium affects the metabolic 
activities of yeast and cell growth [38]. Figures 4, 5, and 
6 indicate the reducing sugar concentration (g/L), conver-
sion efficiency (%), and bioethanol yield (%) against pH at 
the lab scale. In our present study, the experiment is con-
ducted at pH 4 to 6. From the results, pH 5 resulted in higher 
bioethanol yield (68%) than pH 4 (40%) after 24 h of fer-
mentation time. At pH 5, reducing sugar concentration was 
20.52 (g/L) with conversion efficiency of 70% for KR:SFW 
(Fig. 6). Moreover, KR shows reducing sugar concentration 
was 4.52 (g/L) with a conversion efficiency of 60% and SFW 
shows reducing sugar concentration was 10.52 (g/L) with a 
conversion efficiency of 70%. It was clearly indicated that 
KR:SFW gave high yield compared to KR and SFW.

3.2.3 � Effect of agitation speed on bioethanol yield

The role of reducing sugar concentration (g/L), conversion 
efficiency (%), and bioethanol yield (%) against agitation 
speed (60, 70, 80, 90, 100, 110, and 120 rpm) is shown 
in Figs. 7, 8, and 9. Lower the agitation time, higher the 
bioethanol formation [39]. From the results, KR:SFW 
(Fig. 9) shows at 90 rpm, reducing sugar concentration 
reduced to 16.35 g/L from 30.83 g/L with the conversion 
efficiency of 63%, which is higher than KR (Fig. 7) and 
SFW (Fig. 8). The maximum ethanol yield was 68% at an 
incubation time of 24 h of 90 rpm obtained from KR:SFW 
(Fig. 9). Oxygen plays an important role during the fer-
mentation process. Excessive oxygen in the fermentation 
medium will lead to enhanced cell growth [40].

3.2.4 � Effect of inoculum size on bioethanol yield

Figures 10, 11, and 12 provide information regarding 
reducing sugar concentration (g/L), conversion efficiency 
(%), and bioethanol yield (%) against varying inocu-
lum size concentration (3 to 15 vol%). From Figs. 10, 
11, and 12, it was seen that inoculum size was directly 
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proportional to the bioethanol production. Higher the inoc-
ulum size comprises more number of yeast cells which 
in turn results in higher reducing sugar consumption and 
this results in higher conversion percentage [41]. Figure 12 
shows the bioethanol yield and reducing sugar concentra-
tion of KR: SFW. From the results, it is evident that the 
reducing sugar concentration reduced to 11.67 g/L with 
the conversion efficiency of 73% respectively.

3.3 � Fermentation kinetics

Logistic and modified Gombertz models are used to deter-
mine the kinetic parameters of the fermentation process 
(Figs. 13 and 14). The experimental results for these kinetic 
parameters are represented in Table 2. The methodological 
findings have indicated that the two models are quite well 
calibrated for experimental data (R2 and RMSE) and also the 
overall rate of specific growth (μmax) was the key param-
eter that has an effect on the concentration of bioethanol. 

Thus, accurately estimating the μmax value was important 
for enhancing the bioethanol production [42]. N. Phukoet-
phim et al. reported biomass such as sweet sorghum juice 
produced bioethanol (0.49 g/g) using a modified Gombertz 
kinetic model [43].

Gompertz’s modified model incorporated fermenta-
tion kinetics findings are denoted in Table 2. Maximum 
bioethanol concentration ( Cpmax ), maximum production 
rate ( KPmax ), and the latency period (tL) were analyzed. The 
observations revealed a high significant relation between 
the experimental results and the model (R2 = 0.98). In this 
experiment, the high percentage of bioethanol concentration 
yield was 4.016 g/L, which is comparable to bioethanol pro-
duced from potato peel waste (5.30 g/L) [44]. On the other 
hand, maximum bioethanol production through the modified 
Gombertz model was 69.07 g/L. The earliest stage was rep-
resented as the lag phase of the growth cycle. In the present 
study, the lag phase occurred in the duration of 9 h, which is 
less than found in 12 h [45]. It was stated that the lag phase 

Fig. 13   Fitting of the logistic 
to the experimental results of 
bioethanol concentration (g/L) 
vs time (h)

Fig. 14   Fitting of the modified 
Gompertz models to the experi-
mental results of bioethanol 
concentration (g/L) vs time (h)
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was directly proportional to the substrate composition and 
process of bioethanol production [46].

3.4 � RSM statistical analysis

The obtained RSM experimental data was fitted to four 
types of models such as linear, two-factor interaction (2FI), 
quadratic, and cubic polynomials. Based on Table 3, it is 
concluded that the quadratic model is the best model for rep-
resenting the relationship between the factors and response. 
The cubic model could not be used for further modeling of 
the experimental data because the model was found to be 
aliased. Aliased model occurs due to lack of experimental 
run to independently estimate all the terms for that model 
[32, 47]. The second highest order polynomial model with 
insignificant lack-of-fit must be the choice and hence the 
quadratic model was selected. A good model should have a 
low standard deviation (SD); high coefficient of determina-
tion R-squared (R2) (raw, adjusted, and predicted); and low 
PRESS (predicted residual sum of squares) [32, 48]. Based 
on Table 3, quadratic model is the best model to describe 
the relationship of the factors to the response, since it has 
the lowest SD; highest R2 (raw, adjusted, and predicted); and 
lowest PRESS. It can be concluded that the quadratic model 
is the best polynomial model to describe the relationship 
between the independent variables and their response.

Based on Table 4, the model F-value of 194.24 implies 
the model is significant. There is only a 0.01% chance that 
an F-value this large could occur due to noise. P-values less 
than 0.05 indicate model terms are significant. In this case, 
A, B, D, AB, AC, BD, CD, AA2, BA2, CA2, and DA2 are sig-
nificant model terms. Values greater than 0.1 indicate the 
model terms are not significant. If there are many insignifi-
cant model terms (not counting those required to support 

hierarchy), model reduction may improve the model. The 
lack of fit F-value of 1.24 implies the lack of fit is not signifi-
cant relative to the pure error (Table 5). There is a 43.05% 
chance that a lack of fit F-value this large could occur due to 
noise. The predicted R2 of 0.97 is in reasonable agreement 
with the adjusted of R2 0.98. Adeq precision measures the 
signal to noise ratio. A ratio greater than 4 is desirable. Ratio 
of 45.986 indicates an adequate signal. This model can be 
used to navigate the design space. The coefficient estimate 
represents the expected change in response per unit change 
in factor value when all remaining factors are held constant. 
The intercept in an orthogonal design is the overall average 
response of all the runs [49].

Based on Table 4, A, B, D, AB, AC, BD, CD, AA2, BA2, 
CA2, and DA2 are significant model terms. The predicted 
output of the model was considered to be significant with 
R2 of 0.9752. The predicted and adjusted R2 values were 
0.9894 and were considered to be in fair agreement, i.e., the 
difference is less than 0.2. The quadratic regression model 
bioethanol yield of bioethanol fermentation from KR:SFW 
residues by S. cerevisiae obtained from CCD in terms of 
actual factors is presented in Eq. (3).

The equation in terms of actual factors can be used to 
make predictions about the response to given levels of each 
factor. Here, the levels should be specific in the original units 
for each factor. This equation should not be used to deter-
mine the relative impact of each factor because the coeffi-
cients are scaled to accommodate the units of each factor and 
the intercept is not at the center of the design space. From 
Eq. 3, the positive symbol represents synergistic effect in the 

(3)

Bioethanol yield = − 1.746 + 0.058(Inoculum size)

+ 0.664(pH) + 0.0079(Incubation time)

+ 0.00286(rpm) − 0.00062(Inoculum size)(pH)

− 0.0010 (inoculum size)(Incubation time)

+ 2.31E − 05 (Inoculum size)(agitation speed)

− 0.0001 (pH)(incubation time) − 0.001 (pH)

(agitation speed) − 3.82E − 05 (incubation time)

(agitation speed) − 0.0001 Inoculum size2

− 0.063pH2 + 8.20E − 05 incubation time2

+ 1.98E − 05 agitation speed2

Table 2   Kinetic parameters of fermentation of KR:SFW using logis-
tic and modified Gompertz models

Model Logistic Modified Gombertz

Kinetic parameters ln (Xmax|Xo) = 67.19 KPmax = 69.07
�max = 4.016 Cpmax = 3.871
λ = 5.902 tL = 4.899

R2 0.9898 0.981
RMSE 3.154 4.297

Table 3   Summary of 
probability values and model 
summary statistics

Source Standard deviation Adjusted 
R-squared

Predicted 
R-squared

R-squared PRESS

Linear 0.1162 0.2199 0.0951  − 0.2055 0.5219
2FI 0.1008 0.5538 0.3191 0.2963 0.3046
Quadratic 0.0125 0.9945 0.9894 0.9752 0.0107 Suggested
Cubic 0.0116 0.9978 0.9910 0.9118 0.0382 Aliased
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highest bioethanol yield, whereas negative sign represents 
antagonistic effect [49].

3.5 � Validation of RSM

The main part of the experiment was to predict the suit-
ability of the developed model. The interaction between 
the predicted and actual bioethanol yield values is shown 
in Fig. 15. It was seen that there was a positive correla-
tion (R2 = 0.989) between the predicted and the experi-
mental values, representing that the predicted and the 
experimentally obtained values are in good agreement. 
This implies that the results match well with the model 
and give a convincingly strong approximation for the 
system in the experimental range examined. Figure 16 
displays the normal probability plots of the standard-
ized residues for bioethanol production effectiveness. 

A normal probability plot shows that if the residuals 
obey a normal distribution, then the points should form 
a straight line. Since some refraction is anticipated even 
for normal data, as seen in Fig. 16, it can be concluded 
that the data is distributed normally. Thus, the normal 
probability plot suggests strong validity for the estimate 
of the quadratic regression model. Figure 17 displays 
residual vs. expected bioethanol yield values. In this 
analysis, the points of the observed runs were randomly 
dispersed across the constant residual range throughout 
the line. As a result, there was no clear pattern and pecu-
liar structure. That is, the model is sufficient and there is 
no reason to assume any deviation of the independence 
or a continuous deviation in all cases. The standardized 
residual against run plot displayed in Fig. 18 shows arbi-
trarily dispersed points; the errors were distributed nor-
mally and are negligible [50].

Table 4   Experimental design 
data

S. No Standard Run Space type A B C D Bioethanol 
yield (% w/w)

Theoretical 
bioethanol yield 
(%w/w)

1 6 3 Factorial 15 4 60 60 0.44 0.46
2 15 4 Factorial 6 6 60 120 0.39 0.40
3 3 5 Factorial 6 6 24 60 0.34 0.36
4 1 6 Factorial 6 4 24 60 0.35 0.37
5 8 9 Factorial 15 6 60 60 0.55 0.58
6 11 10 Factorial 6 6 24 120 0.29 0.31
7 14 12 Factorial 15 4 60 120 0.45 0.46
8 16 15 Factorial 15 6 60 120 0.41 0.44
9 7 17 Factorial 6 6 60 60 0.52 0.53
10 12 18 Factorial 15 6 24 120 0.62 0.64
11 13 20 Factorial 6 4 60 120 0.54 0.56
12 10 22 Factorial 15 4 24 120 0.67 0.69
13 4 23 Factorial 15 5 24 90 0.68 0.70
14 5 26 Factorial 6 4 60 60 0.56 0.57
15 2 28 Factorial 15 4 24 60 0.57 0.59
16 9 30 Factorial 6 4 24 120 0.41 0.43
17 24 1 Axial 10.5 5 42 150 0.58 0.60
18 20 2 Axial 10.5 7 42 90 0.26 0.28
19 19 7 Axial 10.5 3 42 90 0.3 0.32
20 17 11 Axial 1.5 5 42 90 0.28 0.30
21 18 13 Axial 19.5 5 42 90 0.51 0.53
22 21 19 Axial 10.5 5 6 90 0.63 0.65
23 23 25 Axial 10.5 5 42 90 0.63 0.65
24 22 29 Axial 10.5 5 78 90 0.65 0.67
25 29 8 Center 10.5 5 42 90 0.53 0.56
26 26 14 Center 10.5 5 42 90 0.54 0.56
27 25 16 Center 10.5 5 42 90 0.54 0.55
28 30 21 Center 10.5 5 42 90 0.53 0.54
29 28 24 Center 10.5 5 42 90 0.53 0.55
30 27 27 Center 10.5 5 42 90 0.56 0.58
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3.6 � Optimum conditions and effect of process 
variables

Numerical optimization was implemented to obtain the 
optimal conditions. The highest potential bioethanol yield 

was observed when the process conditions were at inocu-
lum size of 15 vol%, initial pH 5, 24 h of incubation period 
(h), and 90 agitation speed (rpm). The expected yield of 
the bioethanol from suggested fermentation condition was 
0.70% (w/w). Selectively, four interaction terms between 

Table 5   Analysis of variances 
(ANOVA) for the quadratic 
model

Source Sum of squares Degrees of 
freedom

Mean square F-value p-value

Model 0.4305 14 0.0307 194.24 2.46E − 14 Significant
A 0.0876 1 0.0876 553.28 2.97E − 13
B 0.0030 1 0.0030 19.18 0.0005
C 3.75E − 05 1 3.75E − 05 0.23 0.6335
D 0.0045 1 0.0045 28.65 8.05E − 05
AB 0.0126 1 0.0126 79.93 2.13E − 07
AC 0.1072 1 0.1072 677.40 6.74E − 14
AD 0.0001 1 0.0001 0.98 0.3362
BC 0.0001 1 0.0001 0.98 0.3362
BD 0.0175 1 0.0175 110.88 2.52E − 08
CD 0.0068 1 0.0068 42.98 9.10E − 06
AA2 0.0330 1 0.0330 208.43 3.33E − 10
BA2 0.1103 1 0.1103 697.14 5.46E − 14
CA2 0.0193 1 0.0193 122.22 1.31E − 08
DA2 0.0087 1 0.0087 54.96 2.17E − 06
Residual 0.0023 15 0.0001
Lack of fit 0.0016 10 0.0001 1.23 0.430472 Not significant
Pure error 0.0006 5 0.0001 194.24
Total 0.4329 29 553.28

Fig. 15   Experimental values vs 
predicted values for the model
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the factors had a major impact on the yield of bioethanol 
during fermentation which is obtained from ANOVA test. 
They were coded as AB, AC, BD, and CD, which repre-
sented the interaction between the inoculum size (mL) 
and pH, the inoculum size (mL) and incubation time (h), 

pH and agitation speed (rpm), and incubation time (h) 
and agitation speed (rpm). The contour plots of interac-
tion between inoculum size (vol%), pH, incubation time 
(h), and agitation speed (rpm) are represented in Fig. 19, 
Fig. 20, Fig. 21, and Fig. 22.

Fig. 16   Normal probability plot 
of the residuals

Fig. 17   Diagnostic plots for 
bioethanol yield residual vs 
predicted yield
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Fig. 18   Diagnostic plots for 
bioethanol yield residual vs run 
number

Fig. 19   Contour plot for inocu-
lum size (vol%) and incubation 
time (h)
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The figures show the interaction between respective 
parameters, optimum conditions, and their yield. The 
contour plot of interaction between incubation time and 
inoculum size displayed a part of an ellipses pattern. An 
elliptical contour plot means that the center of the plot 
showed a maximum response as described by Bas et al. 
[51]. The obtained bioethanol percentage was higher than 
bioethanol recovered from palm trunk biomass (0.45 g/g) 
and their effluent [32].

3.7 � Optimization of bioethanol production using 
response surface methodology

The 3D plot of Fig. 23 explains the relationship between 
pH (range of 4 to 6) and inoculum size (3 to 15 vol%) to 
KR:SFW at a stable incubation time (42 h) and 90 agita-
tion speed to bioethanol yield. The bioethanol yield of 
0.56% (w/w) was obtained and a steady rise in the bioetha-
nol yield percentage was established. The gradual decline 

Fig. 20   Contour plot for pH and 
inoculum size (vol%)

Fig. 21   Contour plot for agita-
tion speed (rpm) and incubation 
time (h)



9990	 Biomass Conversion and Biorefinery (2023) 13:9977–9995

1 3

in the bioethanol yield percentage resulted owing to an 
increase in incubation period and agitation speed. Fig-
ure 24 describes the influence of incubation time (range 
of 24 to 60 h) and inoculum size (3 to 15 vol%) at constant 
pH (5) and agitation speed (90 rpm). The 3D plot reveals 
that the bioethanol yield obtained ranges from 0.53% 
(w/w) to 0.68% (w/w). The maximum bioethanol from plot 

is 0.68% (w/w). Figure 25 represents the effect of agitation 
speed (60 to 120 rpm) and inoculum size (3 to 15 vol%) 
at a constant pH (5) and incubation time (42 h). Figure 26 
reflects the incubation time between 24 and 60 h and pH of 
4–6 at a stable inoculum size of 10.5 mL. From the results, 
at 42 h of incubation time indicated a significant drop in 
bioethanol yield from 0.51% (w/w) to 0.49% (w/w). Thus, 

Fig. 22   Contour plot for pH and 
incubation time (h)

Fig. 23   3D plots for pH and 
inoculum size
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24 h of incubation period for KR:SFW, 15 (vol%) inocu-
lum size, pH5, and 90 agitation speed (rpm) are inferred 
to be the optimum conditions required to achieve 0.68% 
(w/w) of the bioethanol yield.

3.8 � GC analysis

Fermented samples were collected and distilled using a 
rotary evaporator (SA-RE29T43, SPAN) at 80 °C, 100 rpm 

for 30 min. The distilled samples were subjected to gas chro-
matography (YL 6500GC) flame ionization detector (FID). 
For confirmation, chemical grade ethanol was injected as 
standard to GC FID (Fig. 27). The obtained peak was com-
pared with KR:SFW bioethanol peak (Fig. 28). The peaks 
show the following components in negligible amount pre-
sent in the bioethanol sample: retention time (2.92) — iso-
propanol, retention time (2.97) — isoflurane, retention time 
(3.9) — bioethanol, retention time (6.4) — toluene, retention 

Fig. 24   3D plots for incubation 
time and inoculum size

Fig. 25   3D plots for agitation 
speed and inoculum size
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time (8.1) — n-butyl acetate [52]. This result showed that 
bioethanol produced from KR:SFW was similar to commer-
cially available chemical grade ethanol. The bioethanol yield 
was found to be 0.68% (w/w). Recent research indicated a 
yield of 0.34 g ethanol/g glucose or 67% theoretical yield, 
which is produced through the pseudostem of Musa Cav-
endish using Saccharomyces cerevisiae MTCC 4779 [33]. 
From above, confirms the KR:SFW can be used as a useful 
alternative biomass for fermentation industries, for the pro-
duction of bioethanol.

4 � Conclusion

The present study revealed the optimization of fermenta-
tion parameters such as incubation time (24 to 60 h), pH 
from 4 to 6, agitation speed (60–120 rpm), and inoculum 
size (3 to 15 vol%) using RSM for bioethanol yield. The 
predicted R2 of 0.97 is in reasonable agreement with the 
adjusted of R2 0.98. The kinetic models such as logistic 
and modified Gombertz models were fitted for bioethanol 
production and it showed high accuracy of R2 > 0.98. The 

Fig. 26   3D plots for incubation 
time and pH

Fig. 27   GC profile of standard ethanol
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optimal conditions are 24 h, 15 (vol%) inoculum size, pH 
5, and 90 agitation speed (rpm) for maximum bioethanol 
yield of 0.68% (w/w). These experimental results pro-
vide substantial knowledge about effective utilization of 
KR:SFW for bioethanol production.
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