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Abstract
Rapid treatment processing for corn stover and black liquor is of the utmost importance with the boom in China’s agriculture 
sector. Aerobic fermentation composting via microbial/black liquor inoculation is superior to traditional composting with 
enhanced compost maturity and accelerated organic matter degradation. This research aimed to investigate the feasibility of 
black liquor addition and the effect of microbial/black liquor inoculation on the chemical composition and physiochemical 
and biological parameters for compost quality assessment. Results indicated that both the microbial/black liquor and the black 
liquor inoculation improved the heating rate. After composting for 18 days, the C contents and H contents were decreased 
to 44.29 ± 0.19% and 5.98 ± 0.05%, while the O contents and N contents were increased to 45.25 ± 0.15% and 3.48 ± 0.01%, 
which is consistent with the results of elemental analysis. This result indicated that black liquor and microbial inoculations 
accelerated the formation of nitrogen structures and recalcitrant nitrogenous oxygenated compounds. The FTIR analysis of 
four treatments confirmed that the microbial/black liquor inoculation could promote lignocellulose degradation and lignin 
degradation in subsequent composting. 16S rRNA sequencing revealed Deinooccola, Gemmatimonadota, and Chloroflexi 
as the predominant bacteria. The study suggested corm stover/black liquor composting as a promising technique for rapid 
and enhanced quality compost production.
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1  Introduction

Corn stover (CS) is one of the major agricultural residues 
which is about 300 million tons per year in China [1]. Dump-
ing CS wastes valuable resources and causes pollutant emis-
sions to the atmosphere and ground water [2]. Methods to 
utilize crop stover include straw recycling, straw materiali-
zation, stockfeed, and straw biorefinery (cellulosic ethanol, 
cellulosic lactic acid, chemical feedstock, and bio-based 
materials) [3–5]. Among these methods, straw biorefinery 
is the most promising and value-added utilization [6, 7]. In 
the straw biorefinery process, pretreatment technology of 
corn stover is the key process. Our previous study developed 
a novel corn stover pretreatment process via NaOH/urea at 
60–80 °C [8]. The glucose yield was up to 0.55 t/t pretreated 
corn stover which showed a promising trend in industrial 
application. However, it will produce 10–20 times black liq-
uor with the production of glucose. The black liquor contrib-
utes 10–15% urea and lignin degradation products (coniferyl 
alcohol, dibutyl phthalate, 4-hydroxybenzaldehyde, trans-
sinapyl alcohol, and acetosyringone). Urea is not only the 
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most suitable inorganic nitrogen source for the growth of 
bacteria, but also the source of nitrogen fertilizer for plants. 
Lignin degraders are important for the formation of humus. 
Therefore, the addition of black liquor will contribute to the 
composting process of corn stover and deer manure. Utili-
zation of black liquor from straw pretreatment has attracted 
widespread attention. Black liquor-based hydrogel (BLH) 
was prepared and its application as both water retention 
material and slow release fertilizer was proved [9]. Biochar 
catalyst was also prepared from black liquor by spray drying 
and fluidized bed carbonation for biodiesel synthesis [10]. 
Black liquor played the same role as NaOH during pretreat-
ment at the study of Zhang et al. [11]. Hydrogen produc-
tion from soda black liquor with V2O5 loading amount of 
45 wt% was studied by Cao et al. [12]. On the other hand, 
in agriculture, the continuous and excessive application of 
chemical fertilizers has led to soil degradation and loss of 
productivity [13, 14]. The overuse of chemical fertilizer has 
resulted soil infertility, biodiversity loss, increased salin-
ity, etc. In response, the Chinese government has issued 
legislation to protect agricultural land and restrict the use 
of chemical fertilizer. The production and application of 
organic fertilizer will undoubtedly form part of the solution 
to these problems. According to studies by scientists and 
farmers, the effects of organic fertilizer include not only the 
promotion of plant root growth but also the protection of 
the environment from manure and agricultural residues pol-
lution. Therefore, composting of corn stover, black liquor, 
and livestock manure should be an economical, effective, 
and environment-friendly process for the transformation of 
corn stover into a safe and stable material for application to 
the soil. Composting is a promising method for soil reclama-
tion with the help of microorganisms [15, 16]. Composting 
of livestock manure and agricultural residues is one of the 
most effective composting techniques [17, 18]. Indeed, many 
recent studies have suggested composting with agricultural 
residues and manure as a potential solution for agricultural 
waste disposal all over the world [19, 20]. Composting is 
an aerobic, thermophilic, solid-state fermentation process 
where microorganisms play a major role. Microorganisms 
are the power system of composting. Inoculation of com-
pound microbial agents can increase enzyme activity and 
improve the diversity of microbial communities [21]. Indeed, 
Zhang’s study found that Phanerochaete chrysosporium 
inoculation can significantly affect the composting process. 
The inoculation of lignocellulose-degrading bacteria can 
effectively reduce arginine in pig manure compost, which 
affects human health through the food chain [22]. All of 
these studies indicate the essential role of microorganisms. 
According to our previous studies, corn stover pretreatment 
process using NaOH/urea generates black liquor as a by-
product and poses a significant effluent problem. However, 
black liquor can act as a rich source of nitrogen required 

for microbial activity in fermentation processes [8, 23, 24]. 
Therefore, the main objectives of this study were to identify 
dynamic changes of enzyme activity, bacterial succession, 
and compost quality during microbial and black liquor inoc-
ulation in the composting processes. The study attempt to 
reveal the mechanism of high-efficiency composting based 
on the correlation of microbial/black liquor inoculation and 
composting process.

2 � Materials and methods

2.1 � Materials

Corn stover was collected from Changchun Jingyue National 
High-Tech Industrial Development Zone, Jilin Province, 
China (125.35° N, 43.88° E). Deer manure was collected 
from Shuangyang District, Changchun City, Jilin Province, 
China (125.6° N, 43.5° E). The basic characteristics of the 
composting materials are listed in Table S1. The chemi-
cal reagents used in this study including urea, citric acid, 
potassium hydroxide, ammonium sulfate, disodium hydro-
gen phosphate, and 3,5-dinitrosalicylic acid were obtained 
from Sinopharm (Changchun, China). The preparation of 
black liquor was referred our previous study [8], and the 
components are listed in Table S2. All other chemicals were 
of reagent grade.

2.2 � Preparation of microbial inoculation

The microbial inoculation used in this experiment was from 
microbes preserved in the Education Ministry Key Labora-
tory of Straw Biology and Utilization (Changchun, China). 
The inoculation used Aspergillus niger, Trichoderma ree-
sei, Bacillus subtilis, and Bacillus megaterium at a ratio of 
1:1:2:2 (this ratio in laboratory-scale gave the highest deg-
radation rate of corn stover/deer manure/black liquor and the 
highest degradation rate of deer manure composting), and 
the concentration of the liquid inoculant suspended in liquid 
medium met the requirements for agromicrobial agents at 
about 1.0 × 109 CFU mL−1.

2.3 � Composting experiment design

Composting experiments were carried out in a laboratory-
scale reactor (Fig. S1) fitted with a gas supply, thermal insu-
lation, temperature monitoring system, and a leachate col-
lection device. The laboratory was situated in the Education 
Ministry Key Laboratory of Straw Biology and Utilization. 
The working volume of the reactor was 25 L (46 cm high, 
30-cm base diameter). The optimal composting conditions 
of oxygen concentration, water content, and initial C/N ratio 
have been referred by Xie et al. [25]. The C/N ratio of 25:1 
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is considered optimal for the composting process [26], the 
moisture content was 40–60% [27], the air flow was 0.6 L/
min, and the oxygen supply was used for 20 min every 2 h. 
The composting process was divided into the four treatments 
of CD, CDM, CDB, and CDMB, which are defined as the 
following:

CD: 3 kg of corn straw and 7 kg of deer manure
CDM: 3 kg of corn straw, 7 kg of deer manure, and 1% 
microbial inoculation
CDB: 3 kg of corn straw, 7 kg of deer manure, and 10% 
black liquor
CDMB: 3 kg of corn straw, 7 kg of deer manure, 1% 
microbial inoculation, and 10% black liquor

Compost samples were sampling on days 3, 9, and 18, 
randomly from three different layers. Each compost treat-
ment was divided into four sections. Approximately 500 g 
(untreated) of each sample was collected for the follow-
ing study; one quarter was preserved at − 80 °C for high-
throughput 16S rDNA pyrosequencing, and one quarter 
was dried at room temperature for component and Fourier 
infrared analysis after crushing and passing a 60-mesh sieve; 
and one part was crushed, passed through a 60-mesh sieve, 
and prepared via aqueous extraction for elemental analysis. 
Urease activities and enzyme activity unit were referred by 
Yin’s study and determined at 578 nm [28].

2.4 � Analytical methods

2.4.1 � Fourier transform infrared spectroscopy

In order to analyze the changes in chemical bonds during 
the composting process, the samples were analyzed by Fou-
rier transform infrared spectroscopy (FTIR; Nicolet IS10, 
Thermo Fisher, MA, USA) according to the published 
method [29]. The FTIR spectra were recorded within the 
wavenumber range of 400–4000 cm−1.

2.4.2 � High‑throughput sequencing of four composting 
process

Use the Fast DNA™ SPIN kit for soil (MP Biomedicals, 
Solon, OH, USA) to extract the total DNA and store the total 
DNA at − 80 °C. PCR was used to amplify 16 S rRNA for 
analysis of bacterial community. Sequencing of the library 
was analyzed on Illumina HiSeq platform.

2.4.3 � Bioinformatics analyses

The original Illumina FASTQ file is demultiplexed, quality 
filtered, and analyzed using the “Quantitative Analysis of 
Microbial Ecology (QIIME)” software. The representative 

sequence was compared with the Silva database, and a con-
fidence level of 0.8 was used.

2.4.4 � General analytical methods

Temperature was measured using a soil thermometer. Water 
content, electrical conductivity, and pH were all monitored 
by equipment produced by Chinese Jinghe company. Organic 
carbon was determined using a potassium dichromate wet 
oxidation method [30]. Total nitrogen was determined by the 
Kjeldahl digestion method [31].

3 � Results and discussion

3.1 � Variation of parameters during fermentation

Temperature is one of the main parameters for monitoring 
the composting process because it reflects the degree of 
microbial activity while change in temperature can reflect a 
reduction in the number of pathogenic bacteria. The com-
bination of black liquor and microbial inoculation (CDMB) 
exhibits a faster heating rate and a higher peak temperature 
(60.93 °C) than the others, which means that the microbial 
inoculation played a key role in the whole fermentation 
phase. Black liquor inoculation alone also showed a faster 
heating rate than control group (Fig. 1A). This is mainly due 
to the high concentration of nitrogen source in black liquor, 
which promoted microbial reproduction. The black liquor 
also contains sugar, protein, and organic matter hydrolyzed 
from corn stalk pretreatment [32]. Although the concentra-
tions of these nutrients were low, they can also contribute 
to microorganism growth in the compost. This is consistent 
with the study of [33], which showed that black liquor can 
promote the growth of white-rot fungi.

pH is another key parameter which is related to bacterial 
diversity and abundance. Under conditions close to neutral 
pH, bacteria can make good use of the nutrients in compost 
[34]. The overall trend in pH is an increase from the first 
day to the end of composting, which may be attributed to 
the degradation of organic nitrogen during composting to 
produce a large amount of NH4

+ (Fig. 1B). The pH values 
of CD and CDM both changed from acidic to neutral, while 
those of CDB and CDMB with added black liquor were neu-
tral and rose slowly. These trends indicated that the fermen-
tation maintained a neutral or weakly alkaline environment 
regardless of the composting process.

Changes in the water content for the four treatments 
are shown in Fig. 1C. The water content increased in the 
first 2 days of the fermentations because of the tempera-
ture rise and the closed fermentation system. However, in 
the next few days, the water content began to fall with the 
increased microbial consumption. If the water content is too 
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low, the growth and metabolism of microorganisms in the 
composting process are affected [35]. Therefore, we regu-
larly replenished water and strictly controlled the moisture 
content of the four treatments to 40–60%. Changes in the 
electrical conductivity of the fermentations are shown in 
Fig. 1D. Electrical conductivity is one of the main factors 
to affect the composition of the bacterial community and 
is related to the salt content in the material [36]. In addi-
tion, the transfer capacity of surface electrons in compost is 
related to the redox activity of microorganisms [37]. In the 
four compost treatments, the electrical conductivity reached 
a peak on the ninth day. At this time, the fermentations had 
reached or were close to peak temperature. With the addi-
tion of black liquor in CDB and CDMB, the initial conduc-
tivity, upward trend, and peak value were all higher than 
those without added black liquor. Studies have shown that 
the electrical conductivity of compost should be lower than 
5500 µS/cm; otherwise, the high salt content responsible for 
the high conductivity reading will damage the organisms 
[38]. The observed results suggest that adding black liquor 
can supplement salt in the compost and increase the activity 
of microorganisms as long as the electrical conductivity of 
fermentation does not exceed 5500 µS/cm.

3.2 � Characteristics of organic carbon, total 
nitrogen, and C/N ratio

Changes in organic carbon, total nitrogen, and C/N ratio 
of compost samples reflect the composting process. Dur-
ing the entire composting period, microbial and black liquor 
inoculation (CDMB) showed the largest decrease of organic 

carbon (Fig. 2). Organic carbon content of 130 g/kg and 
140.3 g/kg was observed on days 3 and 21 at CDMB and 
CDB, respectively. Nitrogen is also important as the main 
nutrient element for microbial activities. The nitrogen con-
tent was observed to decline in each of the four composting 
treatments. The nitrogen content was higher in black liquor 
inoculation alone (CDB) than control group (CD) in the 
whole composting phase which means that the nitrogen can-
not be quickly utilized by the natural microorganisms in deer 
dung. However, the nitrogen source was well utilized in the 
microbial and black liquor inoculation (CDMB). This result 
means that the inoculation of microorganisms improved the 
fermentation efficiency. It produced a lot of biological heat, 

Fig. 1   Parameter data during 
composting of different treat-
ment groups: A temperature, 
B pH, C moisture content, D 
electrical conductivity

Fig. 2   Changes in organic carbon, total nitrogen, and C/N ratio
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which also can be proved in the result of Fig. 1A. The C/N 
ratio in four treatments also declined. It reflects the relative 
accumulation of nitrogen during substrate utilization and 
because of loss of organic carbon to carbon dioxide [39].

3.3 � Changes of urease activity

Urease is an important indicator to characterize the conver-
sion of urea to ammonia and carbon dioxide, and its activity 
is closely related to nitrogen metabolism in compost [40]. 
Urease initially showed a trend of increased activity and 
then decreased during the remainder of the composting pro-
cess (Fig. 3). For days 3–18, the highest urease were meas-
ured at 1.25-, 1.75-, 1.5-, and 2.25-g amino acid nitrogen 
(g·24 h)−1 on the ninth day for CD, CDM, CDB, and CDMB, 
respectively. By comparing the urease levels of these four 
treatments, inoculation of microorganisms will increase 
the metabolism of microorganisms, thereby resisting high 
temperature, accelerating mineralization and decomposing 
nitrogenous organic matter, and increasing urease activity. 
In comparing the data for CDB and CDMB, it appears that 
black liquor also promoted urease production during the 
whole composting process. At the end of the thermophilic 
stage period and when the temperature began to drop, the 
urease activity of the four treatments was decreasing. Con-
tinuous decrease in urease activity can be attributed to the 
exhaustion of easily biodegradable organic matter [41]. The 
urease activity of CD, CDB, CDM, and CDMB at day 21 
was similar, although the nitrogen content and microbial 

biomass were different. This result means the manure of 
composting.

3.4 � Fourier transform infrared spectroscopy

The addition of black liquor and lignocellulose-degrad-
ing bacteria promotes the degradation of cellulose and 
promotes the humus process (Fig.  4). Samples col-
lected from four different treatments had similar peaks: 
3430–3410 cm−1 for the wide peak stretching vibration 
of -OH in carbohydrates and water molecules, and the 
absorption of N–H stretching vibration in protein and 
amide compounds. A band at 2850 cm−1 was attributed 
to the -CH3 and -CH2- groups in aliphatic compounds 
and lignin, while the band at 1650–1630 cm−1 was used 
to characterize C-O stretching vibration connected with 
aromatic groups in lignin. Observation of an absorption 
at 1506 cm−1 was considered the characteristic of lignin 
degradation [42, 43]. Samples from the four compost treat-
ments were analyzed by FTIR spectroscopy in the wave-
number range of 400–4000 cm−1. Six major peaks were 
detected at 3402, 2930, 1506, 1030, 875, and 670 cm−1, 
which was consistent with other studies [44–46]. These 
results indicate that the content of protein, cellulose, and 
polysaccharides will change and degrade at the same time 
during composting which is the same as Ouaqoudi’s study 
[47]. The transmittance at 1506 cm−1 was enhanced in 
CDM, CDB, and CDMB, and the results were suggestive 
of the partial removal of lignin. This evidence suggests 

Fig. 3   Urease activities during 
composting for different treat-
ment groups
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that thermophilic lignocellulose-degrading strains seem 
to play a key role. The spectral changes are similar to 
previous studies, in which the lignin content changes are 
quantitatively analyzed by FTIR spectroscopy [48]. After 
adding lignocellulose-degrading bacteria, the transmit-
tance of CDM and CDMB at 873–875 cm−1 and 670 cm−1 
was all increased which indicated that the degree of cel-
lulose penetration increased during the composting pro-
cess. Furthermore, the transmittance of CDM compost was 
higher than CDMB compost, which indicated that black 
liquor had a negative effect on the composting process. 
Transmittance at 1030 cm−1 for the four treatments was 
also increased, indicating the destruction of cellulose and 
lignin structures.

3.5 � Elemental analysis

Changes of C, H, O, and N content indicate that dehydro-
genation, oxidation, and incorporation of nitrogen occur 
throughout the composting process [49]. Throughout the 
composting treatments of 18 days, both the C and H contents 
were decreased, while the O and N contents were increased. 
The O contents and N contents at the end of composting 
in CDMB were 45.25 ± 0.25% and 44.29 ± 0.19%, and in 
CD were 44.42 ± 0.07% and 44.97 ± 0.03%, respectively 
(Table 1). This suggests that black liquor plus microbial 
inoculation could promote the formation of stable nitrogen 
structures and recalcitrant oxygenated compounds. These 
results also suggested that organic carbon compounds in 
CDM and CDMB degraded faster than in CD and CDB at 

Fig. 4   Fourier transform infra-
red spectroscopy of different 
composting treatments at day 18
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the beginning of the composting phase (day 3). This was 
likely caused by the microbial inoculation, which acceler-
ated the composting process. Table 1 also shows the changes 
of C/H, C/N, and C/O element ratios. The C/N ratio in CDB 
and CDMB was significantly reduced, indicating that the 
compost can concentrate the nitrogen-rich structure as the 
compost proceeds. This result was attributed to the decom-
position of biodegradable materials, such as protein decom-
position products, formed by condensation of nitrogen-rich 
compounds. In addition, during days 3–18, the decreases in 
the C/N ratio for CD, CDM, and CDB were higher than that 
in CDMB. From these results, the C/N ratio declined with 
the temperature rising. These observations were supported 
by the fact that microbial inoculation enhanced humifica-
tion, which was apparent in CDB and CDMB treatments. 

Based on the above analysis, we conclude that microbial 
inoculation attributed the aromatization reactions during 
composting process, while black liquor inoculation playing 
a supporting role on the composting process.

3.6 � Variation of microbial community composition 
during composting

16S rRNA clone libraries obtained from the four compost-
ing samples at day 18 were analyzed after quality filtering. 
Comparing the number of 16S rRNA OTUs between differ-
ent treatments, it was found that there were differences in 
the diversity of bacterial communities between the samples 
(Fig. 5). The common OTU data between CD, CDM, CDB, 
and CDMB amounted to 35.94%, 55.28%, 57.78%, and 

Table 1   Elemental composition 
of four composting treatments at 
different stages of composting

Means with the different superscript letters in a column differ significantly (P < 0.05)

Composts Elapsed 
time (d)

C N H O Atomic ratios

C/N C/H C/O

CD 3 48.95 ± 0.01a 3.22 ± 0.04d 6.3 ± 0.12a 40.55 ± 0.09a 15.20 7.77 1.21
9 47.87 ± 0.01b 3.56 ± 0.01b 6.35 ± 0.07a 41.23 ± 0.09b 13.45 7.54 1.16
18 44.97 ± 0.03 h 3.57 ± 0.05b 6.06 ± 0.14a 44.42 ± 0.07ef 12.60 7.42 1.01

CDM 3 45.74 ± 0.05e 2.96 ± 0.04e 5.99 ± 0.15a 44.32 ± 0.07f 15.45 7.64 1.03
9 45.34 ± 0.09 g 3.3 ± 0.02c 5.72 ± 0.04b 44.64 ± 0.07e 13.74 7.93 1.02
18 40.44 ± 0.03j 2.85 ± 0.01f 4.85 ± 0.05c 50.87 ± 0.09c 14.19 8.34 0.79

CDB 3 46.73 ± 0.01d 3.3 ± 0.03c 6.5 ± 0.01a 42.48 ± 0.04i 14.16 7.19 1.10
9 45.86 ± 0.22e 3.53 ± 0.01b 6.27 ± 0.04a 43.34 ± 0.17 g 12.99 7.31 1.06
18 46.39 ± 0.22d 3.61 ± 0.05b 6.19 ± 0.13a 42.82 ± 0.03 h 12.85 7.49 1.08

CDMB 3 47.86 ± 0.18c 3.46 ± 0.01b 6.4 ± 0.03a 41.29 ± 0.14j 13.83 7.48 1.16
9 46.16 ± 0.06d 3.75 ± 0.04a 6.09 ± 0.05 43.01 ± 0.15 h 12.31 7.58 1.07
18 44.29 ± 0.19i 3.48 ± 0.01b 5.98 ± 0.05 45.25 ± 0.25d 12.73 7.41 0.98

Fig. 5   Venn diagram of shared 
16S rRNA OTUs (a) and 
heatmap of the log relative 
abundance of top genera from 
CD, CDM, CDB, and CDMB 
samples (b) during the compost-
ing process
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62.94%, respectively, which means that most of the bacte-
rial community was different (Fig. 5A). The CDMB process 
contains the largest number of unique OTUs. The diversity 
of functional bacteria in four composting treatments was 
determined by 16S rRNA sequencing. Figure 5B shows a 
heatmap analysis of the 36 identified bacterial species. The 
results were same as the previous studies [50]. The rela-
tive abundances of Deinooccola, Gemmatimonadota, and 
Chloroflexi were high during the fermentation. These obser-
vations are consistent with Green’s study [51]. The microbial 
community composition analysis was not enough to explain 
the mechanism of carbon and nitrogen cycle. Black liquor 
and microbial inoculation helped the composting process. 
The bacterial and fungal community should be analyzed in 
detail in future study.

4 � Conclusions

This study demonstrated the feasibility of composting from 
corn stover and deer manure with the addition of black 
liquor and microbial inoculation. The results showed that 
fermentation processes were improved with the addition 
of bacteria and black liquor. Changes in physicochemical 
factors after black liquor addition were similar with those 
observed without black liquor, although a higher tempera-
ture peak was observed. FTIR spectroscopy proved the effect 
of black liquor on composting process. Elemental analysis, 
microbial analysis, and monitoring of urease activity showed 
that CDMB treatment had higher dissolved N concentra-
tion, which was more favorable for the conversion of corn 
stover into fertilizer. Such technology should be useful for 
the resource utilization of both black liquor and corn stover. 
It may be also helpful for developing a straw biorefinery 
industry without pollution or emissions.
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