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Abstract
The feasibility of using Eucalyptus citriodora leaves (ECL), an abundantly available agricultural waste, for adsorption of an 
anionic dye, direct red 31 (DR31), adsorption from hydrous solution has been examined in the present research. The batch 
adsorption trials were performed to analyse the effects of pH, contact time, initial dye concentration, adsorbent dose, tempera-
ture and particle size on DR31 removal from its aqueous solution on biochar of ECL. A maximum of 97% removal of DR31 
dye was observed at pH and initial adsorbate concentration of 2 and 40 mg/L by the ECL biochar, respectively. Equilibrium 
data were examined by Langmuir and Freundlich isotherms. Langmuir isotherm appeared as the best fit model with the 
highest adsorption capacity of 3.2 mg/g. The kinetic results were also examined and found pseudo-second-order to be the 
best fit which expressed that the adsorption rate was mainly regulated by chemisorption. ECL biochar maintained > 41.56% 
adsorption capacity of DR31 dye even after five adsorption–desorption consecutive cycles. Phytotoxicity studies on Vigna 
radiata substantiated the non-toxic nature of the treated DR31 dye-containing water. The present study reveals that the biochar 
of ECL can be utilized as a cost-effective adsorbent to make the dye-contaminated wastewater reusable.
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1 Introduction

The availability of pure and safe water is essential for the 
health of human beings, ecosystem and sustainable devel-
opment. The continuous decline in groundwater table and 
deterioration of water quality is the matter of great concern. 
Dyes are vastly used to produce colour onto the substrate 
in textile, paint, rubber, plastics, cosmetic, pharmaceutical, 
food, pulp and paper industries [11, 54]. Increased demand 
and exploitation of dyes in different manufacturing units 
has led to the inadvertent release of dye-contaminated water 
directly into the water bodies resulting in environmental 
pollution and health problems [3, 22, 30, 53]. During the 
dyeing process, a significant amount of dye (approximately 
10–15%) remains unbound, and it is mislaid in water and 
discharged as a coloured effluent from production units [18].

Dyes are resistant to removal by conventional methods 
from their aqueous media because of its high solubilizing 
capacity in water [15, 33]. Dyes are a despicable type of pol-
lutant, and their presence in minute concentration  (103 µg/L) 
in the effluent is obvious and undesirable [45]. The pres-
ence of colour in water poses a serious threat to the environ-
ment, affecting light penetration and thereby reducing pho-
tosynthesis and dissolved oxygen, water quality and cause 
toxic impacts on the aquatic ecosystem [56]. Azo dyes have 
−N = N linkages and are widely used in textile industries 
because of low cost, solvable and stable nature. Azo dyes 
and their intermediary products show carcinogenic, toxic 
and mutagenic impacts on a living organism [7]. The con-
tamination of water by dye not only adversely affects the 
aquatic life but may also cause entry of pollutants into the 
food chain harming living organisms by producing carci-
nogenic and mutagenic effects [55]. Hence, it is an urgent 
requirement to develop an economical and effective way of 
dealing with industrial effluent in the face of ever-expanding 
manufacturing activities.

Direct red 31 (DR31), miscible in water, is an anionic 
azo dye used mainly to colour cotton and silk fabrics. It 
is also used in paper and printing industries. Myriads of 
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physical and chemical methods such as photocatalytic 
degradation, osmosis membrane distillation, nanofiltra-
tion, coagulation-flocculation, ozonation and cloud point 
extraction have been employed for dye removal from efflu-
ent [35, 51, 59]. Above mentioned techniques are potent, 
but their implementation is not feasible at large scale due 
to prolonged operation time, excessive use of chemicals, 
requirement of labours, high cost and sludge generation 
which causes secondary pollution [29].

The adsorption is developing as an alternative method 
for dye removal from industrial effluent due to its simplic-
ity of design, convenience, efficiency, ease of operation, 
eco-friendly, non-expensive and flexible nature [42, 46]. 
Biochar (carbonaceous substance generated by biomass 
pyrolysis under zero or limited oxygen supply) has been 
proved effective in enhancing carbon sequestration, waste 
recycling, soil management and wastewater treatment [10, 
17]. In this regard, biochar has appealed significantly for 
removal of dyes due to their structural pores with large 
surface area and cost-effective production due to avail-
ability of substantial agro-waste biomass (Zazycki et al. 
2018; [12]. Earlier workers have reported unconventional, 
economical agricultural waste materials for removal of dye 
and other pollutants from wastewater such as walnut shell 
[9], jackfruit leaf powder [44], Sonchus fruit plant [20], 
pine wood [34], Jatropha husk [25], bael shell [48], coffee 
husk [11], wood waste [26] and palm kernel shell [31].

Eucalyptus citriodora (family Myrtaceae), commonly 
known as lemon-scented eucalyptus, is a readily avail-
able tree widely accessible in different parts of India. E. 
citriodora leaves (ECL) exhibits antibacterial, antispas-
modic, antiseptic and anti-inflammatory properties due 
to the presence of volatile oil [27]. Eucalyptol, essential 
oil present in leaves of E. citriodora, has been used for 
the treatment of bronchitis, sinusitis, asthma, etc. [14]. 
DR31 was taken for this study due to its wide application 
in industries and slow degradation ability. Unfortunately, 
no report is available in the literature on the use of ECL for 
adsorption of DR31 dye. The scientific community is now 
searching the potential of agro-waste-based biochar for 
removal of contaminants from water, owing to their huge 
availability, high efficiency and cost-effectiveness. There-
fore, the aim of the present investigation was to explore 
potential of using ECL biochar for removal of anionic 
dye (DR31) from wastewater. The effects of pH, biochar 
amount, size of particles, dye concentration, temperature 
and exposure time were assessed together with isotherm, 
kinetic and thermodynamic parameters to explore the effi-
cacy of biochar prepared from ECL for removal of DR31. 
Also, adsorbent regeneration and phytotoxicity studies 
were carried out. Surface morphology and functional 
groups characterisation were performed using SEM and 
FTIR, respectively.

2  Materials and methods

2.1  Biochar preparation from E. citriodora leaves 
and proximate analysis

The leaves of E. citriodora were collected from surround-
ing areas of Amity University campus, Noida. The leaves 
were washed with tap water for 5 min, then twice with dou-
ble distilled water to remove dirt and dried in the shade for 
4 days to reduce moisture content. A stainless-steel pyrolysis 
reactor was utilized for biochar production with the gaseous 
nitrogen provided for the non-reactive environment inside 
pyrolyser. An electric heater was used to regulate the tem-
perature. Dried leaves were crushed, and 2.5 kg of the leaves 
were pyrolysed at 500 °C for 3 h. The ECL biochar was 
cleaned with warm Milli-Q water and subsequently dried at 
75 °C for 2 h in an oven to inhibit the presence of microbes 
for further batch adsorption experimental runs (Talha et al. 
2018). The proximate analysis of biochar prepared from 
ECL was done to examine its stability towards the thermo-
chemical conversion process. The proximate analysis was 
performed to estimate the moisture content, volatile matter, 
ash and fixed carbon contents.

2.2  Dye stock solution preparation

DR31 dye, also known as DR12B, was procured from 
Sigma-Aldrich. DR31 has 2 azo, di-sulfonic acid groups and 
an amine group. The diazenyl group is responsible for cova-
lent bonds formation between dye and adsorbent. A stock 
solution of DR31 dye (200 ppm) was made initially with 
distilled water, and it was diluted appropriately to produce 
required concentrations. The dye absorbance was calculated 
by using UV–vis spectrophotometer by scanning from 400 
to 700 nm, and absorbance maximum (λmax) for DR31 dye 
was observed at 520 nm (Table 1).

2.3  Batch adsorption experiments

Batch experiments were conducted to explore the rele-
vancy of ECL biochar (ECLB) as an adsorbent for DR31 
dye removal. The various variables such as the effects of 
pH (2-10), adsorbent amount (0.2–1.0  g), particle size 
(0–500 µm), dye concentration (20–100 ppm), temperature 
(298.15–323.15 K) and exposure time (0–50 min) were 
studied at a constant agitation speed of 120 rpm for DR31 
dye removal from aqueous solution on produced biochar of 
ECL. The experiments were conducted by pouring 100 mL 
of DR31 dye solution (20, 40, 60, 80 and 100 ppm) in five 
different Erlenmeyer flasks with five varied biochar amount 
(0.2, 0.4, 0.6, 0.8, 1.0 g) prepared from ECL. The samples 



8013Biomass Conversion and Biorefinery (2023) 13:8011–8022 

1 3

were taken out at regular interval from incubator shaker, 
and analysis was done by standard procedure. A UV–vis 
spectrophotometer (λmax = 520 nm) was used to determine 
dye concentration before and after treatment. Removal effi-
ciency at each interval was calculated by the given formula:

where  C0 and  Ct are initial and final concentrations of 
DR31 dye in mg/L in sample, respectively.

2.4  Adsorption isotherms

The isotherm models were used to interpret sorption equilib-
rium. One hundred millilitres of DR31 dye (20–100 mg/L) 
solution was mixed with 5 different initial concentrations 
of DR31. The equilibrium solution concentrations and 
adsorption capacity were evaluated with the suitability of 
the isotherm.

2.4.1  Langmuir isotherm

The Langmuir isotherm model speculates that the adsorption 
process takes place in a monolayer mode. It also explains 
that, at a constant temperature, adsorption energy is constant 
over the adsorbates’ layer on the adsorbents’ surface [6]. 
Langmuir equation is expressed as follows:

where  qe (mg/g) is the dye amount adsorbed at equilib-
rium,  qm (mg/g) is the maximum dye amount adsorbed,  Ce 

Percentage removal of DR31 dye =

(

C0 Ct

)

C0

x 100

Ce

qe
=

1

qm KL

+
Ce

qm

is the concentration of dye at equilibrium (mg/L) and  KL is 
Langmuir constant associated with the bonding strength of 
adsorbate on the adsorbent.

2.4.2  Freundlich isotherm

Freundlich isotherm elucidates adsorbate molecules’ distribu-
tion between feed solution and adsorbent at equilibrium. The 
isotherm assumes an exponential disparity in surface energy 
of active sites during adsorption and logarithmic decrease in 
the heat of adsorption [41]. The Freundlich equation can be 
written as follows:

where Freundlich constants such as n and  KF are the inten-
sity of adsorption and adsorption capacity, respectively. The 
value of n indicates nature of process, n < 1 signifies chem-
isorption, n > 1 implies physisorption and n = 1 denotes linear 
adsorption.

2.5  Adsorption kinetics

Adsorption kinetic investigations permit researchers to deter-
mine equilibrium time and adsorption rate through adsorp-
tion modelling. Pseudo-first and second-order kinetic models 
were utilized for estimation of rate constants in the adsorption 
process.

Pseudo-first-order kinetic mechanism can be represented 
as follows [32]:

In qe = In KF +

(

1

n

)

In Ce

In
(

qe − qt
)

= Inqe − k1 t

Table 1  Properties of DR31 dye Dyestuff DR31

C.I. Number C.I.29100

Appearance Red-brown coloured powder

IUPAC Name 2-Naphthalenesulfonicacid,7,7’-iminobis[4hydroxy-3-(2-

phenyldiazenyl)-,sodium salt (1:2)

Empirical Formula C32H21N5Na2O8S2

Molecular Weight 713.7 g/mol

Molecular Structure

λmax 520 nm
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where  qe and  qt are amount of DR31 dye adsorbed at 
equilibrium and time t, and  k1 is rate constant of pseudo-
first-order adsorption  (min−1).

Pseudo-second-order reaction can be analysed by the fol-
lowing equation [21]:

where  qe is the quantity of DR31 dye adsorbed on biochar 
at equilibrium and  k2 is pseudo-second-order adsorption rate 
constant (g/mg·min).

2.6  Thermodynamic analysis

The free energy, enthalpy and entropy changes were ana-
lysed for adsorption of DR31 dye onto ECL biochar. The 
thermodynamic parameters were evaluated using the fol-
lowing equations:

After rearranging the equation, changes in free energy, 
enthalpy and entropy were evaluated by using the curve 
fitting method for the adsorption process.

2.7  Regeneration analysis

In the regeneration analysis, 100  mL of DR31 dye 
solution of various concentrations (20–100 mg/L) was 
mixed with the used adsorbent (ECL biochar), and the 
resulting solution was placed under shaking incubator 
(180 rpm) at 32 °C for 45 min. The dye-loaded biochar 
was separated by centrifugation, and DR31 dye residue 
in the supernatant was analysed to know the amount 
of dye adsorbed by biochar particles. After that, 0.1 g 
dye-loaded dried biochar (dried at 50  °C for 7–8  h) 
was mixed to the desorbing solution (1 N each of HCl 
and NaOH) and shaken at 180 rpm for 45 min. DR31 
dye released in desorbing solution was determined by 
UV–visible spectrophotometer. The adsorbent (biochar) 
separated from the desorbing solution was cleaned with 
the distilled water 3–4 times to detach the desorbing 
solution. The washed biochar particles were dried at 
50 °C up to 8–10 h for further use. The regeneration test 
was repeated five cycles for exploring the recyclability 
of the utilized biochar. The desorption (%) of dye was 
measured by the given formula:

t

qt
=

1

k2qe
+

t

qe

ΔG0
= −RTlnKd

Kd =
qe

Ce

ΔG0
= ΔH0

− TΔS0

Percentage desorption =
Amount of dye desorbed

Amount of dye adsorbed
x100

2.8  Phytotoxicity assay

The toxicity of DR31 dye before and after treatment with 
ECL biochar was examined on Vigna radiata seeds. V. 
radiata seeds were cleaned with tap water, sterilized 
the surface using the diluted solution of NaOCl (10% 
(w/v)) for 5–7 min for microbial disinfection and further 
washed for 4–5 times with double distilled water. Two 
treatment sets were prepared in which mung bean seeds 
were soaked in (i) DR31 dye solution (40 mg/L) and (ii) 
ECL biochar treated dye solution for 4 h, respectively. 
After 4 h, mung bean seeds were transferred into steri-
lized Petri dishes (20 cm diameter) and kept in a seed 
germinator for 1 week under 85% relative humidity at 
25 ± 2 °C with a photoperiod of ½ day [23]. The ger-
mination of seed and other growth parameters such as 
seedling length and vigour index were assessed in control 
and treatment. The plumule and radicle length of seed-
lings were assessed after 8 days of seed sowing with a 
measuring scale [23]. Germination % and vigour index 
were calculated by the following equations (Abdul—Baki 
and Anderson 1973):

2.9  Characterisation of adsorbent

The functional groups present on ECL biochar before and 
after DR31 dye adsorption were analysed by using Fourier 
transform infrared (FTIR) spectroscopy in wavenumber 
ranging of 400–4000  cm−1 using KBr pellet technique. The 
external surfaces of ECL biochar before and after DR31 
dye adsorption were visualized by using scanning electron 
microscopy (SEM) at a magnification of × 1000.

2.10  Statistical analysis

Treatments were organized with three replicates in randomized 
block design. The data were determined by using ANOVA and 
SPSS software. Mean of treatment was assessed by Duncan’s 
multiple range test at P < 0.05.

Percentage germination =
Total number of seeds germinated

otal number of seeds sowed
x100

Vigour index = Total seedling length in mm x Percentage germination
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3  Results and discussion

Proximate analysis of biochar prepared from E. citriodora.
Proximate analysis was conducted to determine the 

percentage of fixed carbon, volatile matter, moisture 
and ash contents in an ECL biochar. The data exhibited 

that adsorbent has 67.49% fixed carbon, 12.02% vola-
tile matter, 10.71% moisture and 9.78% ash contents 
(Table 2).

3.1  Investigations on effect of process parameters 
on DR31 dye adsorption by ECL biochar

3.1.1  Initial solution pH

The pH of solution plays a vital role in the dye adsorp-
tion process. The pH effect on DR31 dye removal from 
the aqueous solution (20–100 mg/L dye concentration) 
was analysed by changing pH from 2 to 10 at 27 ± 2 °C. 
The pH of adsorbate solution is an essential parameter 
for adsorption studies and considered as one of the most 

Table 2  Proximate analysis of ECL biochar

S. no ECL Weight (%)

1 Moisture content 10.71
2 Volatile matter 12.02
3 Ash content 9.78
4 Fixed carbon 67.49

Fig. 1  Effect of a pH, b time, 
c initial dye concentration, d 
adsorbent dosage, e temperature 
and f particle size on DR31 
removal by ECL biochar
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influencing factors [24]. The maximum 97% removal of 
DR31 dye (40 mg/L) was observed by ECL biochar at 
lower pH (2) whereas 78, 49 and 23% DR31 removal was 
reported at pH 6, 8 and 10, respectively (Fig. 1a). DR31 
dye removal was found significantly at low pH due to the 
participation of more  H+ in solution. At low pH, the adsor-
bent surface was positively charged, which attracts DR31 
dye (anionic dye). Thus, the electrostatic attraction was 
responsible for the high rate of dye adsorption by ECL 
biochar at low pH.

3.1.2  Exposure time

Dye removal percentage was observed to augment with 
increasing contact time. Variation in dye percentage 
removal with contact time is shown in Fig. 1b. At ear-
lier stages, DR31 dye removal or dye amount adsorbed 
was significant as compared to the end of the process. 
The effect of contact time on DR31 dye adsorption 
was studied to determine equilibrium time. DR31 dye 
removal 74, 89 and 96% was observed after 10, 20 and 
30 min for 40 mg/L dye concentration. In the present 
study, 30 min was considered as equilibrium time for 
adsorption process because after this duration, no rise 

in dye adsorption was observed. Rapid uptake of DR31 
dye and attaining equilibrium in less duration indicates 
dye removal efficiency of biochar. The fast dye removal 
rate was found during an earlier stage of adsorption due 
to free sites availability on biochar [19]. Similar find-
ings were observed for Azure dye adsorption on dried 
sunflower seed hull [43].

3.1.3  Initial DR31 dye concentration

The initial dye concentration provides energy to control 
mass transfer resistances of molecules between solid and 
aqueous phases [47]. Figure 1c shows removal of DR31 dye 
by ECL biochar under various dye concentrations. The dye 
adsorption reduces with the rise in DR31 dye concentra-
tion. With low concentration of dye, more colour removal 
was observed, but at high concentration of DR31, the dye 
removal rate was reduced due to impregnation of adsorbent 
surface.

3.1.4  Adsorbent dose

Adsorbent (ECL biochar) amount on DR31 dye removal 
was examined by varying amount from 0.2–1.2 g at differ-
ent dye concentrations. DR31 dye removal was enhanced 
from 46 to 85% as the adsorbent dose increased from 
0.2–1.2 g, observed in Fig. 1d. The maximum 96% DR31 
dye removal was observed with 0.8 g of ECL biochar. 
The specific surface area, pore structure, particle size and 
functional groups present on biochar are main physico-
chemical parameters that regulate dye adsorption. The 
rise in dye removal rate with high biochar amount may 
be because of increase in available active sites due to 
enhanced surface area and functional groups available 
for adsorption, thus making easier attachment of dye onto 
adsorption sites [4]

Table 3  Isotherm constants for DR31 dye adsorption by ECL biochar

Isotherm Equation Parameters Value

Langmuir Ce

qe
=

1

qmKL

+
Ce

qm

qm (mg/g) 3.2
KL (l/mg) 0.0338
R2 0.9918

Freundlich lnqe = lnKF +

(

1

n

)

lnCe
1/n 5.2548

KF (mg/g) 2.130379
R2 0.9424

Fig 2  a Langmuir and b Freun-
dlich isotherms for adsorption 
of DR31 dye by ECL biochar.
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3.1.5  Temperature

DR31 dye adsorption on ECL biochar was investigated 
at different temperatures such as 298.15, 303.15, 308.15, 
313.15, 318.15 and 323.15 K. In the present study, DR31 
dye showed 82 and 86% adsorption at 298.15 and 303.15 K, 
respectively, and dye adsorption was enhanced to 92% at 
318.15 K (Fig. 1e). The increased adsorption at high tem-
perature was suggested to be due to rise in surface sites 
availability and high adsorbent porosity and pore volume.

3.1.6  Particle size

The surface area of prepared biochar is directly proportional 
to the removal of DR31 dye. The adsorption of DR31 dye 
was analysed with three different particle sizes of ECL bio-
char, i.e. 0–170, 230–300 and 320–500 µm. It was found that 
as the size of particle decreases, dye molecules adsorption 
enhances, might be due to availability of more surface area 
on small-sized particles. The diffusion resistance to mass 
transport is high for large-sized particles, and the internal 
surface of the particle may not be used for adsorption, and 
due to this, only a few amount of dye was adsorbed. The 

impact of variation in the particle sizes on the dye adsorption 
rate is given in Fig. 1f.

3.2  Adsorption isotherms

Adsorption isotherm reflected how dye molecules were 
dispersed between liquid and solid phases at a constant 
temperature under equilibrium. The isotherm models pro-
vide valuable information on adsorption mechanism, sur-
face property and adsorbent capacity. Hence, isotherm data 
of DR31 dye adsorption on ECL biochar was assessed by 
using Langmuir and Freundlich models (Table 3; Fig. 2a 
and b).

In the present study, Langmuir isotherm reflected better 
fitting model than Freundlich as observed by high correla-
tion coefficient  (R2 = 0.9918). It showed monolayer cover-
age of DR31 dye on ECLB adsorbent [56, 57]. After cal-
culation by the equation, Langmuir constants showed the 
following values:  qm = 3.20 mg/g and k = 0.0338  mg−1 and 
Freundlich constants were  Kf = 2.130379 and n = 5.2548 and 
 R2 = 0.9424.

3.3  Adsorption kinetics

The kinetic study provides knowledge regarding adsorp-
tion efficiency and reaction pathway. Kinetic models were 
utilized to determine the adsorption of DR31 dye by ECL 
biochar. The coefficients of determination  (R2) were 0.3524 
and 0.9678 for pseudo-first and second-order model, respec-
tively. Pseudo-second-order kinetic model was followed due 
to its more correlation coefficient value (Table 4; Fig. 3a 
and b).

Data reflected that the adsorption process was con-
trolled by sorption between molecules of dye and 
ECL biochar surface. Pseudo-second-order model was 
obtained in earlier reports such as adsorption of direct 

Table 4  Kinetic parameters for adsorption of DR31 dye onto E. citri-
odora adsorbent

Model Equation Parameters Value

Pseudo-first-order ln
(

qe − qt
)

= lnqe − k1tk1  (min−1) 0.018
qe (mg/g) 1.893
R2 0.3524

Pseudo-second-order t

qt
=

1

k2qe
+

t

qe

K2 (g/mg min) 0.194

qe (mg/g) 3.736
R2 0.9678

Fig. 3  a Pseudo-first-order and 
b pseudo-second-order models 
or DR31 dye adsorption by ECL 
biochar.
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red 12B on garlic peel [5], adsorption of direct red 81 by 
Argemone mexicana, adsorption of crystal violet dye by 
Tectona grandis [37] and coffee husk [11].

3.4  Thermodynamic analysis

Gibb’s free energy of adsorption (ΔG°), enthalpy (ΔH°) 
and entropy (ΔS°) changes were determined to antici-
pate the adsorption phenomenon. In this study, adsorp-
tion experiments were done at various absolute tempera-
tures like 298.15, 303.15, 308.15, 313.15, 318.15 and 
323.15 K (Table 5). A negative value of ΔG° at varied 
temperature exhibited spontaneous nature of DR31 dye 
adsorption onto ECL biochar [25].

The negative value of ΔH° (− 19.905 kJ  mol−1) further 
established that process was exothermic. The positive 
value of ΔS° (57.672 J/K) reflected the rise in adsorbate 
concentration in the solid phase. Enhanced randomness 

at the solid–liquid interface was also reported during 
adsorption. According to Kołodyńska et  al. (2017), 
physical adsorption carried out by electrostatic interac-
tions. Based on the findings, DR31 dye adsorption onto 
ECL biochar was an exothermic and spontaneous process 
which was persistent with results reported in isotherm 
study.

3.5  Characterisation of adsorbent

Figure 4 shows the FTIR spectra of ECL biochar before 
and after adsorption. The functional groups present in 
biochar corresponds to the wavenumbers of 3700, 2275, 
1600, 1450, 1150 and 1000  cm−1, characteristic of the 
C = C, C = O and C–O bonds. In ECL biochar before 
adsorption, there was more change in absorbance from 
1600 to 1675  cm−1 concerning the stretching movement 
of the C = C bonds of molecules in the aromatic com-
pounds and the carboxyl group (C = O). After adsorption, 
the vibrational movement of C = O in the molecule was 
observed, which exhibits the ketone group (2275  cm−1). 
The significant changes were noticed between 1000 and 
1450  cm−1 attributed to the C − H and C − O bonds, indi-
cating the ester and alcohol groups formation. In grass 
and wood biochar, vibrational elongation of the C = C 
bond was observed (Keiluweit et al. (2010)).

Figure 5 shows the scanning electron micrographs of 
adsorbent before and after adsorption. Figure 5a shows the 
adsorbent with more number of pores, which indicates that the 
adsorbent is prepared to adsorb adsorbate molecules. Figure b 
illustrates the pores covered with adsorbate molecules.

Table 5  Thermodynamic variables for adsorption of DR31 dye by 
ECL biochar

S. no Temperature (K) Free energy 
change (∆G°) kJ/
mol

ΔH°
(kJ  mol−1)

ΔS°
(J/K)

1 298.15  − 3393.07  − 19.905 57.672
2 303.18  − 2432.8
3 308.15  − 443.99
4 313.15  − 2418.35
5 318.15  − 2024.18
6 323.15  − 1224.85

Fig. 4  FTIR of adsorbent before 
and after adsorption
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3.6  Regeneration analysis

The recyclability of adsorbent is an essential index for evalu-
ating the potential application of an adsorbent. It reduces the 
total cost of adsorption process and also checks secondary 
pollution, which may cause if these are dumped directly into 
the environment. The regenerated biochar showed 78.32, 
66.41, 57.24, 49.63 and 41.56% DR31 dye adsorption effi-
ciency from first to fifth cycle, respectively (Fig. 6) The re-
produced biochar (ECLB) can be reapplied efficiently for 
DR31 dye adsorption.

3.7  Phytotoxicity assay

The ecotoxicological test, such as phytotoxicity of 
untreated and treated DR31 dye solution, was evaluated 
by observing germination and growth parameters of V. 
radiata seeds. The notable changes were reported among 
treatment for the following parameters such as seed ger-
mination, radicle and plumule length and vigour index 
of mung bean seeds. The seed germination was 98% in 
control, whereas DR31 dye (40 mg/L) treated V. radiata 
seeds showed only 16% germination. The mung bean seeds 
germination was enhanced to 83% in dye solution treated 

Fig. 5  Scanning electron micro-
graphs of ECL biochar a before 
and b after adsorption

Fig. 6  Removal of DR31 dye by 
ECL biochar up to five cycles
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with ECL biochar. In control, radicle and plumule length 
were 3.3 and 10.6 cm but decreased to 1.8 and 0.21 cm in 
the DR31 dye solution. ECL biochar treated dye solution 
reflected a significant rise in seedling length and vigour 
index as compared to the DR31 dye solution. The vigour 
index of V. radiata seeds exhibited the following order: 
control > ECL biochar treated DR31 dye solution > DR31 
dye solution (Table 6).

3.8  Statistical analysis

All the experiments were carried out in triplicate, and the 
coefficient of variance was found within ± 10%.

3.9  Performance of the prepared ECL biochar

Efficiency of prepared ECL biochar for DR31 dye adsorp-
tion compared with other relevant studies is given in 
Table 7. Adsorption capacity  (qmax) was used for compari-
son. The  qmax value is in agreement with earlier reports, 
suggesting that DR31 dye can be smoothly adsorbed on 
ECLB. It shows ECL can be an effective and promising 
adsorbent for anionic dyes.

The treatment of azo dyes in wastewater is a challenging 
task because these dyes are electron-deficient xenobiotic 
complexes which are resistant to degradation. The present 
study revealed that ECLB is a reliable, simple, adaptable and 
affordable adsorbent for removal of DR31 dye from contami-
nated wastewater and can be used successfully at large scale.

4  Conclusion

The possibility of biochar prepared from ECL for removing 
DR31 was investigated in this study. FTIR spectra indicated 
that prepared biochar carries different functional groups 
which can be used for adsorption of DR31 dye. Langmuir 
adsorption isotherm was reported the best fit to experimen-
tal data and showed a maximum adsorption capacity of 
3.20 mg/g. A negative value of ∆H° confirmed that adsorp-
tion was spontaneous and exothermic. Regenerated biochar 
indicated favourable results up to five consecutive cycles 
for DR31 dye removal. The regeneration characteristic also 
reflects its potential for practical application. Therefore, bio-
char from agro-waste, i.e. ECL, can be cost-effective adsor-
bent for removal of DR31 dye from industrial wastewater.

Table 6  Comparison of 
phytotoxicity of DR31 dye 
solution before and after 
treatment on seed germination 
and growth parameters of V. 
radiata 

Treatment Seed germination (%) Plumule length (cm) Radicle length (cm) Vigour index

Control 98 ± 0.71 10.6 ± 0.88 3.3 ± 0.85 13,622
DR31 dye solution 

(40 mg/L)
16 ± 1.22 1.8 ± 0.25 0.21 ± 0.01 321.6

ECL biochar 
treated DR31 
dye solution

83 ± 1.41 7.5 ± 0.07 2.2 ± 0.21 8439

Table 7  Maximum adsorption 
capacity  (qmax) of DR31 dye 
with different adsorbents

Dye Source of biochar qmax (mg/g) Reference

DR31 Rice bran 1.23 Sankar et al. [50]
Biogas residual slurry 3.46 Namasivayam and Yamuna [40]
Fe (III)/Cr (III) hydroxide 5 Namasivayam and Sumithra [39]
Banana pith 5.92 Namasivayam et al. [38]
Hazelnut shell 18.24 Fathi and Asfaram [16]
Biosilica/calcium alginate composite 33.78 Soltani et al. [52]
Garlic peel 37.96 Asfaram et al. [5]
ZnCl2 activated Jatropha husk 39 Karthick et al. [25]
Modified magnetic ferrite nanoparticle 55.56 Mahmoodi [36]
Rice husk 57.88 Yusra and Nawaz (2011)
Cone shell of Calabrian pine 66.02 Deniz [13]
ECL 3.2 This study
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