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Effective depolymerization of alkali lignin into phenolic monomers
over ZrP catalysts promoted by Ni and W
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Abstract
A large amount of alkali lignin by-product is produced by the pulp and paper industry which can be further processed and
transformed into valuable chemicals. In this study, the catalyst Ni-W/ZrP was prepared via chemical reduction for catalyzing
alkali lignin depolymerization. Effective conversion of alkali lignin to phenolic monomers with assistance of formic acid acted as
an internal hydrogen donor was performed in isopropanol system from 180 to 240 °C. Effects of reaction temperature, catalyst
loading, and formic acid addition on lignin conversion were all investigated. Results showed that the highest oil yield was
obtained (74.66 wt%) at 240 °C. The presence of formic acid could enhance alkali lignin conversion (the yield of bio-oil ranged
from 17 to 23 wt% at 220 °C when the reaction conditions were changed from no added formic acid to only added formic acid).
According to the GC/MS analysis, when metal loading (the mass ratio of Ni and W is 1:1) was 20 wt% (based on ZrP input), the
prepared catalyst (Ni-W)20/ZrP had best selectivity for the phenolic products (88.25%, relative content). Furthermore, the
obtained catalyst had different catalytic selectivities to G-type phenols and vanillin at different temperatures (from 180 to
240 °C). The quantitative analysis of bio-oil showed that the four products with high content in bio-oil were phenol, 2-
methoxy (1.21 wt%), phenol, 4-ethyl-2-methoxy (0.45 wt%), vanillin (4.09 wt%), and ethenone,1-(4-hydroxy-3-methox-henyl)
(0.86 wt%). FTIR analysis showed that peaks at 1267 cm−1, 1213 cm−1, 1130 cm−1, and 1046 cm−1 (C-O bonds in guaiac-based
and clove-based units) gradually decrease with the increase of temperature which indicates that lignin is depolymerized to
monoaromatic units effectively. Finally, the catalyst (Ni-W)20/ZrP can be recycled five times without significant activity loss,
indicating that it was a promising catalyst for lignin depolymerization.
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1 Introduction

Lignin is the largest renewable resource of aromatic biopoly-
mer on earth, accounting for 15–40% of dry weight of most

plants. However, it is often underutilized in biorefining and
pulping processes and is considered a low-value by-product
[1].

Lignin is mainly composed of three kinds of alcohol mono-
mers (coniferyl, para-coumaryl, and sinapyl alcohol) through
C-O-C bond (e.g., β-O-4, α-O-4, and 4-O-5) and C-C bond
(e.g., β-1, β-β, and 5-5) formed a cross-linked phenolic poly-
mer [2–4]. Moreover, it has various functional groups, such as
hydroxyl and benzene, which make lignin have a high using
value. Through depolymerization reactions, lignin can be con-
verted into phenols, aliphatics, acids, etc. [1].

There are many ways to convert lignin into chemicals, such
as gas i f i ca t ion , py ro lys i s [5 , 6 ] , l i que fac t ion ,
hydrodeoxygenat ion [7–9] , hydrolys is [10–12] ,
hydrogenolysis [13–15], and oxidation [16–18]. Nowadays,
as hydrolysis can lead to higher lignin conversion, catalytic
selectivity, and production towards phenolic monomers, it is
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considered to be the most promising method [19]. In order to
enhance the selective depolymerization of lignin, selecting an
efficient and feasible catalyst is essential. Various noble
metal–loaded catalysts (e.g., Pt/C, Pd/C, and Ru/C) were used
in lignin-catalyzed hydrogenolysis [13, 20, 21]. However, due
to the expensive price of noble metal–loaded catalysts, they do
not meet the requirement of industrial production.

Moreover, it can lead to excessive hydrogenation of obtain-
ed products and increasing generation of char. Therefore, non-
noble metal–loaded catalysts have become the hot researching
spot for lignin hydrogenolysis, wherein Ni-, Mo-, and W-
supported mesoporous catalysts are recognized as effective
ones towards lignin hydrogenolysis [19, 22, 23]. Because
these non-precious metals exhibit effective catalytic activity
and selectivity in the catalytic conversion of lignin [24, 25].
For example, Song et al. [26] demonstrated that Ni/C showed
effective catalytic activity and selectivity during the conver-
sion of lignin into phenolic compounds (containing
propylguaiacol, and propylsyringol). Meanwhile, Song et al.
[27] used Co-Mo/ZrO2 catalyst to catalyze lignin, and the
yield of aromatic hydrocarbons was 21.9 wt%. Except for
active metals, properties of support also play a key role in
catalytic activity. For instance, zirconium phosphate (ZrP) is
a layered solid catalyst containing abundant Lewis acid sites,
which is demonstrated to be beneficial for lignin depolymer-
ization [28, 29]; thus, it has been widely used as an efficient
catalyst in biomass catalytic conversion [30, 31].

In this paper, a non-noble bimetallic catalyst Ni-W/ZrPwas
prepared via chemical reduction method using NaBH4 as a
reduction agent. The chemical and physical properties of pre-
pared catalyst were studied by XRD, SEM-EDX, and BET.

Additionally, effects of reaction temperature (from 180 to
240 °C), metal loading (Ni and W, from 10 to 25 wt%, based
on ZrP input), catalyst, and FA additions on the depolymeri-
zation of alkali lignin were all studied. For further figuring out
the depolymerized mechanism, lignin-derived bio-oil and
unreacted lignin were analyzed by various physicochemical
characterizations including GC-MS and FTIR. At last, four
experimental runs of catalyst were conducted for evaluating
the catalyst recyclability.

2 Experimental section

2.1 Materials

Alkali lignin was purchased from TCI Development Co., Ltd.
(Shanghai, China). Table 1 shows the elemental analysis of
alkali lignin.

Zirconyl chloride octahydrate (ZrOCl2·8H2O, AR, 98%),
ammonium metatungstate ((NH4)6H2W12O40.xH2O, AR,
98%), nickel (II) nitrate hexahydrate (Ni(NO3)2·6H2O, AR,
98%), ammonium dihydrogen phosphate (H6NO4P, AR,
99%), sodium borohydride (NaBH4, AR, 90%), sodium hy-
droxide (NaOH, AR, 96%), formic acid (FA, AR, 85%),
isopropanol (HPLC, ≥ 99.9%), ethanol (AR, 95%; HPLC, ≥
99.8%), and dichloromethane (DCM, AR, 99%) were all pur-
chased from Nanjing Chemical Reagent Co., Ltd. (Nanjing,
China).

2.2 Catalyst preparation

Zirconium phosphate (ZrP) support was first prepared by de-
position precipitation method; 140 mL NH4H2PO4 solution
(0.5 mol L−1) was added rapidly into 35 mL ZrOCl2·8H2O
solution (1.0 mol L−1) in a three-necked flask. After 1 h stir,
the obtained white precipitate was filtered, and centrifuged 3
times by washing with distilled water and dried at 100 °C. The
resulting solid was ground (100–120 mesh). Finally, the ZrP
support was obtained by calcined at 400 °C for 4 h with a
heating rate of 5 °C/min in static air.

The preparation of a catalyst (Ni-W/ZrP) is by chemical
reduction, and the reducing agent is NaHB4. The mass ratio
of two metals was 1:1, and four different metal loadings (wt%,
(Ni-W)x/ZrP, where x = 10, 15, 20, and 25 wt%) were

Table 1 Elemental analysis of alkali lignin

Sample Carbon/
wt%

Nitrogen/
wt%

Hydrogen/
wt%

Oxygen/
wt%a

Lignin 42.96 5.23 5.48 46.33

aCalculate the oxygen content by difference

Alkali lignin

Depolymerized mixture products

Filtrate Solid

Bio-oil

Char and catalystUnreacted alkali lignin

FA, catalyst and isopropanol

Removing solvent Washed by NaOH

Filtration

Gas

Fig. 1 Separation steps of depolymerization products of alkali lignin

Table 2 Composition of
(Ni-W)20/ZrP catalyst Element wt%

P 33.12

Zr 47.87

Ni 9.89

W 9.11
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conducted as the following steps. Taking the synthesis of (Ni-
W)10/ZrP as the example, 0.2477 g nickel (II) nitrate hexahy-
drate and 0.8089 g ammonium metatungstate hydrate were
added into 30 mL deionized water and stirred for 30 min until
dissolution. After 1 h of stirring, 1 g of the support was added
into the metal precursor solution, and stirring was continued
for 2 h. Then, excessive NaHB4 was added to the previous
solution and continued to stir for 2 h to complete the reduc-
tion. At last, (Ni-W)10/ZrP catalyst was obtained by filtration,
washing with deionized water for 3 times, and drying at
100 °C for 24 h.

2.3 Catalyst characterization

The morphology and elemental composition of the prepared
catalyst were determined by scanning electron microscope-
energy dispersive x-ray spectroscopy (SEM-EDX). The phase
transition and crystal structure of the synthesis catalyst were
studied by powder x-ray diffraction (XRD) technology. The
wavelength of Cu Kα radiation was 1.54006 Å. The scan
angle of 2θ was measured from 10 to 80° at a scan rate of
0.05° s−1. The specific surface area, pore volume, and pore
size of the catalyst were measured by Micromeritics 113
ASAP 2020 instrument. Set the liquid nitrogen temperature
to 77 K (−196 °C) and degassed all samples under 150 °C N2

atmosphere before the start of the adsorption process.

2.4 Depolymerization of lignin

The lignin depolymerization reaction was conducted in a
100 mL reaction kettle. Then, 0.5 g lignin, 0.2 g catalyst,
5 mL FA, and 50 mL isopropanol were charged into the stain-
less steel reactor. In the absence of external pressure, the stain-
less steel reactor was heated to the specified temperature
(180~240 °C) for 8 h. After the reaction is completed, the
reactor is put into ice water to quench the reaction.

Figure 1 shows the separation process of lignin depolymer-
ization. The obtained products were divided into three com-
ponents (gas, liquid, and solid phases), while the discussion on
gas is ignored because of the relatively small amount of gas
production (less than 0.5 wt%). According to the previous
study [32], solid-liquid separation was performed by the suc-
tion filter and the char was washed with dichloromethane
(50 mL × 3), and liquid products obtained were evaporated
at 55 °C to remove solvent and DCM to obtain bio-oil. In
order to recycle the catalyst used, the coke, catalyst, and
unreacted lignin were dissolved in 0.025 mol L−1 NaOH so-
lution, and the resulting solid was used in the cycle experi-
ment. The resulting liquid was acidified with HCI to obtain
unreacted lignin. The remaining solid (used catalyst and char)
was dried overnight at 105 °C for further test.

2.5 Product characterization

Vario EL III was used to analyze the content (wt%) of carbon
(C), hydrogen (H), and nitrogen (N) in the CHN mode, and the
difference method was used (100 wt% − (C wt% +N wt%+H
wt%)) to carry out the content (wt%) of oxygen (O). The chang-
es in the functional groups of the unreacted ligninwere obtained
by Fourier-transform infrared spectroscopy (FTIR) on a Vertex
70 spectrometer. The wavelength range is 4000–500 cm−1 with
32 scans collected per spectrum and a resolution of 4
wavenumbers. The composition of bio-oil was analyzed by
the Gas chromatography−mass spectrometer (GC-MS).
Before analysis, all bio-oil samples were dissolved in ethanol
(HPLC) to a uniform concentration of 50mgmL−1. The heating
start temperature was 50 °C, keep it for 1 min, then adjusted the
heating rate to 8°Cmin−1 and kept it for 1 min; the final tem-
perature was 220 °C, finally adjusted the heating rate to
10 °C min−1 and kept it for 1 min; and the final temperature
was 300 °C. The gas chromatography-flame ionization detector
(GC-FID) (Agilent 5975C) was used to quantitatively analyze
bio-oil with acetophenone as the internal standard, and the pro-
gram conditions are the same as GC-MS analysis.

Finally, the yields (wt%) of gas, char, bio-oil, unreacted
lignin, and main phenolic products were figured up across
Eq. (1–5).

the yield of bio−oil wt:%ð Þ ¼ mbio−oil

malkalilignin
ð1Þ

the yield of gas wt:%ð Þ ¼ mdifference

malkalilignin
� 100% ð2Þ

the yield of unreacted alkali lignin wt:%ð Þ

¼ munreactedalkalilignin

malkalilignin
� 100% ð3Þ

the yield of char wt:%ð Þ

¼ msolid−mcatalyst−munreactedalkalilignin

malkalilignin
� 100% ð4Þ

the yield of phenolic products wt:%ð Þ

¼ mphenolicproducts

malkalilignin
� 100% ð5Þ

mbio − oil is the weight of the bio-oil obtained after the reac-
tion. mdifference is the weight difference before and after the
reaction minus the theoretical mass of CO2 produced by the
decomposition of formic acid,malkali lignin is the total weight of
alkali lignin added before the depolymerization reaction, m-
unreacted alkali lignin is the weight of unreacted lignin obtained at
the end of the reaction, msolid is the weight of the solid obtain-
ed after the reaction (including char, catalyst and unreacted
lignin),mcatalyst is the weight of catalyst, andmphenolic products is
the weight of phenol products (the weight of phenol products
was obtained by GC-FID analysis).
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3 Analysis of result

3.1 Catalyst analysis

3.1.1 SEM

To investigate the influence of metal loading on morphology
and microstructure of catalyst, catalysts were analyzed across
means of SEM, the images are shown in Fig. 2. It can be found
that all samples exhibit lamellar stacking structure. From
Fig. 2a–e, when the metal loading increases from 10 to
25 wt%, the distribution of active metals on support becomes
more uniformed. However, the catalyst shows irregular parti-
cle structure in the absence of Ni and W rather than the lamel-
lar stacking one. EDX results of (Ni-W)20/ZrP catalyst are
presented in Fig. 2g and Table 2. It can be found that the
element of P and Zr has a higher content (33.12 and
47.87 wt%) and that of Ni and W elements closes to theoret-
ical ratio of 1:1 (9.89 and 9.11 wt%). Figure 2f shows that the
catalyst remained intact after five re-uses which indicates that
the catalyst has good stability during the alkali lignin depoly-
merization process.

3.1.2 XRD

Figure 3 shows XRD patterns of (Ni-W)x/ZrP catalysts and
ZrP support, and ZrP skeletal chain can been observed obvi-
ously from all curves. The peaks of nickel oxide (NiO) and
tungsten oxide (WO3) are not observed by XRD. However,
EDX results (see Fig. 2f and Table 2) clearly exhibit the

e

a b c

d f

NiP

WZr

g

Fig. 2 SEM images of a (Ni-
W)10/ZrP, b (Ni-W)15/ZrP, c (Ni-
W)20/ZrP, d (Ni-W)25/ZrP, e ZrP,
f (Ni-W)20/ZrP catalyst after
5 cycles, g EDX analysis of the
catalyst (Ni-W)20/ZrP
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(Ni-W)10/ZrP
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Fig. 3 XRD patterns of the support and (Ni-W)x/ZrP
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content of Ni and W elements, which indicates that Ni and W
metal are evenly dispersed on the surface of ZrP support or are
possibly formed as the metal alloy (Ni-W-Zr/Ox).

3.1.3 BET

N2 adsorption–desorption isotherms of catalysts and support
are shown in Fig. 4. All isotherms show a clear type IV pat-
tern, with the ordered nature of the mesopores illustrated by
the H3 lag loop at P/P0 of 0.6–1.0 [33–35]. Table 3 gives the
physicochemical properties of (Ni-W)x/ZrP and ZrP. ZrP sup-
port shows the highest surface area of 85.8 m2 g−1, while the
surface area and pore volume tend to decrease with the in-
creasing of metal loading, which is due to the pore blockage.
As shown in Fig. 4b, the pore volume tends to decrease with
increasing Ni, W metal loading compared to the support,
which follows the same trend as the pore volume (BJH meth-
od) distribution given in Table 3. All catalysts have small pore
sizes (5–6 nm), indicating that metals of Ni, W are uniformly
dispersed on the support and can particular in lignin depoly-
merization efficiently.

3.2 Effects of reaction parameters

3.2.1 Effects of FA and catalyst additions on lignin
depolymerization

Figure 5 shows effects of catalyst and formic acid (FA) addi-
tions on depolymerization of alkali lignin. The highest yield of

unreacted alkali lignin (60.30 wt%), and the lowest bio-oil
yield (17.85 wt%) are all obtained at NON. The yield of bio-
oil increases as adding the catalyst (Ni-W)20/ZrP or FA, which
can be explained that the catalyst (Ni-W)20/ZrP inhibits the
formation of char to a certain extent. However, as only adding
FA, the char yield increases significantly from 11.23 to
47.30 wt%, which demonstrates that FA is favorable for alkali
lignin depolymerization but also plays a role in promoting the
formation of char. However, the yield of bio-oil is as high as
74.66 wt% and the char yield is significantly low (only
11.23 wt%) with the synergistic effect of FA and catalyst. It
is suggested that FA can act as a good hydrogen donor to
assist the catalyst on alkali lignin depolymerization.

3.2.2 Effect of reaction temperature on alkali lignin
depolymerization

Figure 6 shows the effect of reaction temperature (180–
240 °C) on alkali lignin depolymerization with the metal load-
ing of 20 wt% (Ni, W). The yield of bio-oil increases from
43.10 to 74.66 wt% as temperature increases from 180 to
240 °C, which can be instructed that the depolymerization of
alkali lignin is a heat absorption reaction [32]. When the reac-
tion temperature increases from 180 to 220 °C, the yield of
char decreases from 25.68 to 11.23 wt%. Figure 5 illustrates
that when only FA was added, the char yield is high, so at low
temperature, the char yield is high which could be explained
by the FA mainly acting as acid catalyst instead of hydrogen
donor. Higher temperature seems to be required to activate the

Table 3 Physicochemical
properties of ZrP support and (Ni-
W)x/ZrP catalysts

Entry Sample Surface area/m2 g−1 Pore volume/cm3 g−1 Pore size/nm

1 (Ni-W)10/ZrP 40.87 0.06 5.77

2 (Ni-W)15/ZrP 37.75 0.05 5.64

3 (Ni-W)20/ZrP 36.48 0.05 5.93

4 (Ni-W)25/ZrP 33.00 0.04 5.87

5 ZrP 85.80 0.10 5.30
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dehydrogenation of the FA. When the temperature was in-
creased, the yield of unreacted lignin also showed a decreasing
trend, which can further indicate that higher temperature can
promote the depolymerization of alkali lignin. However, the
char yield does not further reduce by continuously increasing
the temperature. Because at high temperature range, the
repolymerization of monomers occurs, which will accelerate
char formation [36, 37].

3.2.3 Effects of Ni, W loadings on lignin depolymerization

Figures 7 a and b show the effect of Ni and W loadings on
alkali lignin depolymerization. From Fig. 7a, the highest con-
version rate of alkali lignin is 74.66 wt% as the active metal
loading is 20 wt%. No obvious increase occurs in lignin con-
version when the metal loading continuously increases, which
is because the excessive loading of activemetal will lead to the
excessive hydrogenolysis of lignin [38]. From Fig. 7b, further
analysis of GC-MS shows that, when the metal loading is
25 wt%, the relative content of phenolic monomers decreases
significantly from 88.25 to 74.69 wt%, and that of aliphatic
compounds (shown in Table 4) which are mainly generated
by esterification, etherification, dehydration condensation re-
action between formic acid and depolymerization product or
between solvent molecules, increases significantly from 11.75
to 25.31 wt%. In particular, over (Ni-W)10/ZrP catalyst, only
56.68 wt% of alkali lignin was converted to product (bio-oil)
due to the limited number of active metal centers (Ni and W).

3.3 Product analysis

3.3.1 GC/MS analysis of bio-oil

GC/MS analysis was applied to analyze the substances in bio-
oil. From Fig. 8a, the relative content (%) of phenols obtained is
based on all substances detected in bio-oil, including ketones,
ethers, lipids, and phenolic components, by the normalization
of peak area. Figure 8 b, c, and d show the relative content of
phenolic monomers on the base of all phenols (including G-,
H-, and S-types) by the normalization of peak area. Table 5
shows the information of the main G-phenolic products in the
bio-oil which was obtained under different reaction conditions.
Figure 8a shows the relative content of total phenols G-phenols
obtained at different temperatures differs very little, indicating
that the catalyst (Ni-W)20/ZrP has excellent selectivity for G-
phenolic products. The total relative content of phenolic sub-
stances declines from 88.54 to 80.79% as the temperature in-
creases from 180 to 240 °C. It demonstrates that high temper-
atures have an active effect on the yield of bio-oil, but there is a
negative effect on the selectivity of phenolic substances. At
high temperatures, phenolic monomers produced have under-
gone further hydrolysis, and some aliphatic compounds (ethers,
lipids, etc.) have been generated through a series of hydrolysis,

hydrogenation, and polymerization. Figure 8b shows the selec-
tivity of vanillin in bio-oil at different reaction temperatures.
Vanillin is used in cosmetics, tobacco, and food industries, as
a growth promoter of plants, fungicides, etc., and can be used as
an important intermediate in the manufacture of medicines and
other spices. The relative content of vanillin (G7) decreases
from 45.59 to 8.55% as the temperature increases from 180 to
240 °C, which can be explained by the fact that low temperature
favors the selectivity conversion of alkali lignin to vanillin. The
selectivity to alkyl G-type phenols (G1, G2, G3, G4, G5, G6,
and G8) tended to increase with increasing temperature (from
18.65% to 58.47%). Some phenolic monomer products with
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Fig. 5 Effects of catalyst and FA additions on the depolymerization of
alkali lignin. (Catalyst: only 0.2 g catalyst (Ni-W)20/ZrP is added.
Catalyst and FA: 0.2 g Ni-W20/ZrP catalyst and 5 mL formic acid are
added. FA: only 5 mL FA is added. NON: neither catalyst nor FA is
added.) Common conditions: lignin 0.5 g, isopropanol 50 mL

180 200 220 240

0

20

40

60

80

100

%t
w/

dlei
Y

Gas Unreacted lignin Solid Bio-oil

Fig. 6 Effect of reaction temperature on alkali lignin depolymerization.
Common conditions: 0.5 g alkali lignin; 0. 1 g Ni-W20/ZrP catalyst;
50 mL isopropanol; 5 mL FA
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oxygen (G9~G18), which can be reprocessed and reused for
high value-added chemicals such as petroleum energy.
Figure 8c shows that when formic acid and catalyst are added
at the same time, the types of phenolic monomers in bio-oil are
more abundant, which indicates that formic acid and catalyst
have a good synergistic effect on the selective depolymerization
process of alkali lignin.

3.3.2 GC-FID analysis of bio-oil

Figure 9 shows the quantitative yields of the main phenolic
products in the bio-oil obtained during the depolymerization
of alkali lignin by the catalyst at different reaction tempera-
tures. Four main phenolic products with high content in bio-
oil are phenol,2-methoxy-, phenol,4-ethyl-2-methoxy,

Table 4 Information on the main aliphatic compounds in bio-oil

No. RT (min) Aliphatic Compound Compound Structure

1 6.62 (S)-Isopropyl lactate

2 9.62 Dodecane

3 10.24 2-Propanone, 1,1-dibutoxy-

4 10.34 Succinic acid diisopropyl ester

5 11.71 Propanoic acid, 2-methyl-, anhydride

6 18.69 n-Hexadecanoic acid

10 15 20 25
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Y

Gas Unreacted lignin char bio-oii(a)

Ni,W metal load/wt%
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Fig. 7 Effect of Ni andW loading on hydrogenolysis of alkali lignin. Common conditions: reaction temperature: 240 °C; reaction time: 8 h; alkali lignin:
0.5 g; catalyst addition: 0.1 g; formic acid addition: 5 mL; isopropanol 50 mL
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Table 5 Information on G-type phenols in bio-oil under different reaction conditions

No.
RT 

(min)
Compound

Compound 

Structure

Area (%)

180
o
C 200

o
C 220

o
C 240

o
C Cat. FA NON

G1 8.15
Phenol,2-met

hoxy-
9.17 8.31 9.23 9.00 15.99 9.23 14.1

G2 9.68 Creosol - 2.76 8.29 18.67 13.17 20.5 12.25

G3 10.90

Phenol,

4-ethyl-2-met

hoxy-

0.49 1.94 3.23 3.59 4.78 4.72 6.57

G4 11.40
2-Methoxy-4

-vinylphenol
11.40 0.75 - - 1.42 - -

G5 11.97 Eugenol 0.84 0.94 1.14 1.37 0.75 1.37 -

G6 12.09

Phenol,2-met

hoxy-4-propy

l-

- - 1.00 1.59 0.65 2.59 0.97

G7 12.61 Vanillin 32.61 22.02 10.82 5.75 7.84 2.54 3.08

G8 13.18

Phenol,2-met

hoxy-4-(1pro

penyl)-, (E)-

1.29 3.73 5.26 5.08 2.72 5.33 1.57

G9 13.33

Phenol,4-(eth

oxymehyl)-2-

methoxy-

- - 0.47 - - - -

G10 13.71

Ethanone,1-(

4-hydroxy-3-

methox 

-henyl)-

6.86 5.18 3.93 3.60 6.73 3.05 6.84
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Table 5 (continue)

G11 14.22

2-Propanone, 

1-(4-hydroxy

-3-methoxyp

henyl)-

1.86 2.73 4.29 2.44 4.47 2.07 1.89

G12 14.28
Homovanillyl 

alcohol
- 0.82 - 2.45 - 2.86 2.09

G13 15.64
Benzeneprop

anol,4-hydro
1.75 0.99 - 1.54 7.16 1.67 6.23

xy-3-methox

y-

G14 15.73

2-Propanone, 

1-hydroxy-3-

(4-hydroxy-3

-methoxyphe

nyl)-

3.96 5.49 6.75 5.57 - 5.35 5.23

G15 16.61

Phenylacetylf

ormic 

acid,4-hydrox

y-3-methoxy-

5.58 5.59 5.37 4.04 - 3.19 -

G16 16.72
Coniferyl 

aldehyde
0.52 - - - - - -

G17 16.94

Benzeneaceti

c acid, 

à,4-dihydrox

y-3-methoxy-

, methyl ester

0.98 - - - - - -

G18 16.97

Ethyl-á-(4-hy

droxy-3-meth

oxy-phenyl)-

propionate

- - - 1.00 1.48 0.92 0.97
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vanillin, and ethenone,1-(4-hydroxy-3-methox-henyl) which
can be used as edible spice and medicinal herbs in the indus-
trial production. Figure 9 shows that temperature has a greater
influence on the content of the phenolic products. When the
reaction temperature is 240 °C, the total content of phenolic

monomers is at a minimum (2.77 wt%), which can be ex-
plained by further reactions (repolymerization) of the phenolic
monomers at higher temperatures leading to the formation of
dimer.

(a)

(b) (c)

Fig. 8 a Effect of reaction temperature on the selective conversion of
alkali lignin to phenol products (including G-, H- and S-type phenols,
relative content, %). b Effect of reaction temperature on the selective

conversion of alkali lignin to G-type phenols (relative content, %). c
Effect of catalyst and FA additions on the selective conversion of alkali
lignin to G-type phenols (relative content, %)
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Fig. 9 The mass of main phenolic products at different temperatures
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Figure 10 shows the mass of main phenolic products under
different reaction conditions. When only catalyst was added, the
total phenolic product content was 4.43 wt%; however, when
only formic acid was added, the phenolic product content was
reduced to 2.5 wt%, indicating that the (Ni-W)20/ZrP shows
excellent ability for hydrogenolysis of ether bonds in alkali lignin
and performed relatively well in the depolymerization of alkali
lignin. The total content (6.16 wt%) of phenol products in bio-oil
was much higher when formic acid and catalyst acted synergis-
tically than when only formic acid or only catalyst was added
during the depolymerization of alkali lignin. It can be explained
that formic acid can assist the catalyst of (Ni-W)20/ZrP in the
depolymerization of alkali lignin with excellent performance.

Related reports [39–41] also indicate that in the depolymer-
ization process of alkali lignin with formic acid or related
catalysts, the yield of phenolic products is highly dependent
on reaction conditions such as temperature and pressure.

However, although the yield of bio-oil has been improved in
this study, the yields of bio-oil are mostly inferior aromatic
products, and the yield of phenolic products was very low,
generally not exceeding 6 wt%. The total yield of phenolic
products obtained in this study is not less than 6.16 wt%,
which further illustrates the effectiveness and high selectivity
of the prepared catalyst of (Ni-W)20/ZrP.

3.4 Reusability of catalyst

The stability of synthetic catalyst is an important index to
show whether the catalyst can be used effectively. In this
study, the stability of the catalyst was investigated by using
the catalyst separated from the first experiment in the cycle
experiment. From Fig. 11, it can be seen that after five cycles,
the catalyst performance was almost stable. The yield of bio-
oil decreased from 77.46% to 57.64 wt% and then gradually
stabilized.

3.5 Analysis of unreacted lignin

FTIR results of alkali lignin and unreacted lignin are shown in
Fig. 12, in which the FT-IR spectrum is allocated by referring
to references [42, 43]. The spectra of lignin and unreacted
lignin are similar, indicating that their functional groups are
similar. FT-IR results of the original lignin showed a broad
absorption peak at 3439 cm−1 due to the stretching effect of
the -OH groups. Vibrations located at 2965 cm−1 and
2932 cm−1 are derived from methyl and methylene C-H
bonds. Vibrations located at 1601 cm−1, 1514 cm−1, and
1460 cm−1 and 650 cm−1 are attributed to aromatic ring. In
addition, peak at 1390 cm−1 finds the C-H symmetric defor-
mation band in methoxy-CH3. Finally, the peaks of
1267 cm−1, 1213 cm−1, 1130 cm−1, and 1046 cm−1 are derived
from vibrating of the C-O bond in the guaiac-based and clove-
based units.

1 2 3 4 5

0

20

40

60

80

100

%t
w/

dlei
Y

 Gas  Unreacted lignin  char  Bio-oil

Number of cycles

Fig. 11 Reusability test of (Ni-W)20/ZrP catalyst for alkali lignin
depolymerization at 240 °C for 8 h
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Fig. 12 FTIR spectra of original
lignin and unreacted lignin after
depolymerization
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The absorbance of functional groups in unreacted lignin
decreases with increasing temperature compared to pristine
lignin. When the reaction temperature increases to 240 °C,
the signal of -OH stretching decreases which presents the dis-
appearance of hydroxyl groups in lignin structure. In particu-
lar, peaks at 1267 cm−1,1213 cm−1,1130 cm−1, and 1046 cm−1

(C-O bonds in guaiac-based and clove-based units) gradually
decrease with the increase of temperature which indicates that
lignin is depolymerized to monoaromatic units effectively.

4 Conclusions

Ni-Wx/ZrP catalysts prepared by chemical reduction provided
effectively catalytic activity in lignin depolymerization. The
highest catalytic effect was achieved when the ZrP support is
loaded with Ni, W at 20 wt%. Excessive loading could lead to
excessive hydrogenolysis of lignin and increase the char yield.
The reaction temperature was the key factor on generation of
phenolic products. High temperatures favored lignin conver-
sion but were not beneficial for the creation of phenolic mono-
mers. Effect of temperature on the selectivity to vanillin was
evident, with the highest proportion at 180 °C (45.59%, rela-
tive content). Additionally, increasing temperature favored se-
lectivity of lignin to G-type alkylphenols. Formic acid and
catalyst play an excellent synergistic role in the depolymeri-
zation of lignin, with the highest content of phenolic products
(6.16 wt%). FTIR analysis of original alkali lignin and
unreacted lignin showed that lignin was efficiently converted
into phenolics via hydrogenolysis.
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