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Abstract
A quick fed-batch saccharification (QFBs) strategy of pretreated wheat straw at high solid loadings (HSL) was developed to
achieve high sugar concentrations and increase lignocellulosic ethanol productivities in the fermentation stage. Pretreatment time,
number of feedings, and the time between them were evaluated using a Box-Behnken design. A surface response model was
employed to maximize sugars released at 20% (w/w) HSL. Total sugar concentrations after 60 h with 20% (w/w), 25% (w/w),
and 30% (w/w) HSL were 128.5 g/l, 142.4 g/l, and 163.5 g/l, respectively. These were 14.6–42% higher than their batch
saccharification counterparts. The QFBs was implemented as part of sequential (SHF) and simultaneous saccharification-
fermentation (SSF) strategies as well as the presaccharification stage of a semi-simultaneous saccharification-fermentation
(SSSF) strategy. In the latter strategy, the highest ethanol concentration achieved was 31.7 g/l. The ethanol volumetric produc-
tivity was 2.2- and 3-fold their SHF and SSF counterparts.

Keywords High solid loading saccharification . Fed-batch saccharification . Semi-simultaneous saccharification-fermentation .
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1 Introduction

Biochemical conversion of lignocellulosic biomass to biofuels
and bioproducts is gaining importance as a circular economy
alternative to phase out fossil materials. Stages such as pre-
treatment, enzymatic saccharification, fermentation, and puri-
fication are essential in biochemical-platform biorefineries
[1]. The enzymatic saccharification, in particular, provides
the monomeric sugars to the fermentation stage required to
produce either bioproducts or biofuels. The efficiency and
effectiveness of enzymatic saccharification are strongly de-
pendent on the biomass type, pretreatment technology, and
hydrolysis conditions (e.g., solid and enzyme loadings, tem-
perature, pH) [2]. High sugar yields in saccharification are

usually attained with lignocellulosic biomass low solid load-
ing (4%, w/w). However, to obtain sugar concentrations that
achieve cost-competitive conditions in the separation stages
(e.g., >8% w/w for lignocellulosic ethanol at the separation
input stream), the saccharification stage requires initial high
solid loadings (HSL) (≥ 20% w/w) [3]. The use of HSL in
lignocellulosic biomass processing also reduces water and
time consumption, thus improving the economics and reduc-
ing the environmental impact of biorefining processes [4, 5].

The commercial-scale deployment of enzymatic sacchari-
fication at HSL exhibits challenging issues such as poor mass
and energy transfer efficiencies, high concentration of inhibi-
tors, and poor flowability in transport and mixing [6, 7]. These
phenomena may cause lower sugar yields than at laboratory
scale. Available free water at HSL is scarce due to the biomass
hydrophilic properties generating localized enzyme accumu-
lation ending up in inhibition [8] and promoting unproductive
binding of cellulases to lignin [9]. Fed-batch strategies for
lignocellulosic have been successfully tested [10], improving
free water availability during the incremental loading of bio-
mass and enzymes, speeding up the substrate liquefaction.
Consequently, biomass flowability increases, ensuring a fast
distribution of enzymes and products, thus achieving higher
final sugar concentrations than those obtained in batch
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saccharification. Factors such as the pretreatment method to
which the biomasses is submitted, prewashing, number of
feedings (NF), the time between feedings (FT), initial SL
(6–20%, w/w), and lignocellulosic biomass concentration in-
crements (3–10%, w/w) have been considered in previous
studies [11].

This work proposes a quick fed-batch saccharification
(QFBs) strategy without prewash using wheat straw (WS).
The QFBs strategy achieves high monomeric sugar con-
centrations at 20% (w/w) HSL, thus increasing lignocellu-
losic ethanol productivity. Factors such as NF, short FT,
and pretreatment residence time (RT) were taken into con-
sideration. The pretreatment employed in this work is car-
ried out in a pilot-scale continuous tubular reactor (CTR)
submitting the WS to autohydrolysis followed by a steam
explosion (Ah-Se) stage, with lower production of inhibi-
tors (furfural, acetic acid, 2,3-hydroxymethylfurfural
(HMF)) than other technologies [12]. The pretreated WS
exhibits high cellulose digestibility and hemicellulose sol-
ubilization [13, 14]. The proposed QFBs performance is
compared against its batch counterpart. Higher solid load-
ings (25-30%, w/w) were also tested taking into consider-
ation the increase in inhibitor concentrations due to larger
HSL. This QFBs was tested as part of different
saccharification-glucose-fermentation strategies such as
SHF, SSF, and SSSF, achieving significant improvements
in ethanol production and productivity.

2 Materials and methods

2.1 Wheat straw characterization

Wheat straw (WS) was provided by Champiñones el
Encinal S.A. de C.V. (Jalisco, Mexico) from the 2016 har-
vest of La Barca region (Jalisco, Mexico). This biomass
was milled with an agricultural 2-blade and 6-hammer mill
(Molinos Azteca, Mexico) and sieved with a 1.27-cm
mesh. The WS sugar composition was measured using
NREL “Analytical Procedures for the Determination of
Structural Carbohydrates in Biomass” [15], resulting in
41.7 ± 2.2 (%) and 25.2 ± 2.3 (%) of cellulose and hemi-
cellulose (dry basis), respectively. Water content was mea-
sured with an MS-70 moisture analyzer (A&D, Japan).
Water content in WS was 62.58 ± 0.6 (16 min of RT),
55.6 ± 0.9 (34 min of RT), and 61.8 ± 2.1 (54 min of
RT) after pretreatment. Carbohydrates, inhibitory com-
pounds, and ethanol produced were measured by a
Waters Alliance e2695 high-performance liquid chromato-
graph (HPLC) (Waters Corp., USA), equipped with UV
and IR detectors and an Aminex HPX-87H column (Bio-
Rad, USA) using H2SO4 (5 mM) as mobile phase with 0.6
ml/min flow rate and an oven temperature of 60 °C.

2.2 Thermochemical pretreatment and inhibitors
production

MilledWS was hydrated using tap water with a 3-kg water/kg
WS ratio for 4 h before pretreatment in a semi-pilot continu-
ous tubular reactor (CTR) with sequential Ah-Se stages at
1034 kPa and 180 °C [16]. WS was pretreated using three
residence times (RT) (16, 34, and 52 min) determined in pre-
vious studies guaranteeing high biomass digestibility in the
saccharification stage [12, 13]. Liquors and pretreated WS
were collected after pretreatment and stored (−4 °C) at sterile
conditions.

2.3 Box-Behnken design of QFBs at HSL with WS

A Box-Behnken design (BBD), shown in Table 1, was used
for evaluating three factors with central point triplicates: RT
(16, 34, and 54 min pretreatment time), FT (2, 3, and 4 h) and
NF with proportional dry mass increments throughout feed-
ings (2 [15%, 20% (w/w)], 4 [11.2%, 15%, 17.8%, 20%
(w/w)], and 6 [9.7%, 12.6%, 15%, 17%, 18.6%, 20%
(w/w)]). During the fed-batch mode, the WS was added ac-
cording to NF and FT configuration. The chosen response
variables were Glc yield, Xyl yield, and total sugar concentra-
tion. These were measured 36 h after the start of saccharifica-
tion when the total solid content was reached for all
configurations.

2.4 Quick fed-batch and batch saccharifications at HSL

Commercia l enzyme cockta i l s Htec2 and Ctec2
(Novozymes®, Denmark) were used in saccharification ex-
periments. The enzyme load is expressed in filter paper units
(FPU) per gram of glucan available in the raw WS (FPU/
gGlu) and measured according to NREL “Analytical
Procedures for Measurement of Cellulase Activity” [17].
The enzyme cocktail mixture of Htec2-Ctec2 was dossed at
40 FPU/gGlu (10 FPUHtec2 + 30 FPUCtec2).

Saccharification experiments were carried out in 250-ml
serological flasks with 100 g of total reaction mass incubated
in a Minitron® incubator (Infors HT, Switzerland) at 50 °C
and 250 rpm. All QFBs began at 6% (w/w) solid loading.
Citrate buffer (50 mM, pH 5) was used as reaction media.
The enzyme cocktail mixture (Htec2-Ctec2) was added with
each WS addition to keep the concentration at 40 FPU/gGlu
(i.e., 16.7 FPU/gWS) on the fed-batch mode. Glucose (Glc)
and xylose (Xyl) concentrations were determined in aliquots
by HPLC analysis. All reactions were performed in triplicate.

2.5 Saccharification-fermentation strategies at HSL

The commercial yeast Saccharomyces cerevisiae strain
Ethanol-Red® (Lesaffre, France) was used in the glucose
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fermentation experiments. Dried yeast was activated by incu-
bation for 2 h in a minimal fermentation broth (3 g/l KH2PO4,
9.3 g/l (NH4)2SO4, 2.25 g/l MgSO4

.7H2O, 20 g/l glucose) at
35 °C and 200 rpm. Cells were counted and inoculated at 9 ×
106 cell/ml into the WS saccharified slurries.

Fermentation stages were conducted in 250-ml serological
flasks incubated at 35 °C and 200 rpm in a Minitron® incu-
bator (Infors HT, Switzerland) and supplemented with salts (3
g/l KH2PO4, 9.3 g/l (NH4)2SO4, 2.25 g/l MgSO4

.7H2O). SHF
was carried out with 72 h saccharified WS slurry adjusted to
pH (5) with NaOH (1 M). SSF was initiated with yeast inoc-
ulation and 6% (w/w) of pretreated WS, enriched with citrate
buffer (50 mM, pH 5). PretreatedWS was loaded under QBFs
conditions to achieve 20% (w/w) HSL. For the SSSF strategy,
a 24 h prehydrolysis was carried out first according to the
QFBs proposed in this work, followed by the slurry supple-
mentation as described above. All experiments were per-
formed in duplicate.

2.6 Calculation of saccharification and fermentation
yields and productivities

The total sugar concentration (g/l) comes from the sum of Glc
and Xyl concentration quantified for HPLC analysis. Yields
were calculated based on the available sugars in the raw WS.
The ethanol yield (YE) was calculated using Eq. 1. Ethanol

productivity in the saccharification and fermentation stage
was calculated by Eq. 2.

YE ¼ 0:9 EtOH½ �t
0:51 Glc½ �T

� 100 ð1Þ

QESF
¼ EtOH½ �t

tT
ð2Þ

where [EtOH]t is ethanol concentration (g/l), [Glc]T is total
glucose (g/l) concentration based on raw WS composition,
and tT is the total processing time considering the saccharifi-
cation and fermentation stage. Values 0.9 and 0.51 are mass
correction factors of cellulose depolymerization and fermen-
tation stoichiometry, respectively [18, 19].

2.7 Statistical analysis and surface response model
calculations

All experimental results are expressed as standard error means
(SEM). Statistical significance was calculated by a variance
analysis (ANOVA) followed by a Dunnett comparison test
using Prism (GraphPad Software, Inc.®, La Jolla, CA,
USA). Values with p < 0.05 were considered significant.
Response surface models were calculated with Minitab 18
software (Minitab® LLC, USA). A Fisher’s F-test was run
for experiment and model significance. Response surfaces

Table 1 Experimental repetitions of enzymatic saccharification of WS
at 20% (w/w) HSL using the proposed QFB strategy. Factors used in
Box-Behnken design (BBD) were pretreatment residence time (RT),

number of feedings (NF) and feeding time (FT). Results at 36 h of reac-
tion time. Experiments performed by duplicate. *: Optimal factor values
based on maximal sugar release calculated using surface response models

Exp. ID Factors Response variables

RT (min) NF FT (h) Glc (%) Xyl (%) Sugars (g/l)

Box-Behnken design experimental set R-1 16 2 3 53.5 ± 0.8 64.4 ± 1.1 96.1 ± 1.5

R-2 54 2 3 49.0 ± 0.5 48.5 ± 1.2 82.9 ± 1.3

R-3 16 6 3 62.7 ± 1.8 64.0 ± 1.3 108.5 ± 2.8

R-4 54 6 3 61.8 ± 0.3 42.6 ± 0.9 95.9 ± 0.3

R-5 16 4 2 65.4 ± 1.9 66.2 ± 1.2 114.3 ± 2.3

R-6 54 4 2 58.4 ± 1.2 41.2 ± 0.4 92.01 ± 1.1

R-7 16 4 4 65.5 ± 1.2 68.9 ± 0.1 115.9 ± 1.0

R-8 54 4 4 54.7 ± 4.4 39.4 ± 3 86.2 ± 6.5

R-9 34 2 2 48.7 ± 1.0 53.7 ± 0.8 87.2 ± 1.5

R-10 34 6 2 57.0 ± 0.2 53.3 ± 0.1 99.1 ± 0.2

R-11 34 2 4 49.5 ±1.2 57.1 ± 0.3 90.2 ± 1.1

R-12 34 6 4 55.9 ± 1.2 54.7 ± 0.4 98.2 ± 1.3

R-13 34 4 3 55.4 ± 1.1 52.6 ± 0.7 97.0 ± 2.6

R-14 34 4 3 57.5 ± 1.0 54.5 ± 1.1 100.3 ± 0.6

R-15 34 4 3 56.3 ± 2.1 53.7 ± 1.9 97.6 ± 3.2

Maximization condition R-16* 16 5 2.5 61.4 ± 2.9 64.4 ± 5.1 108.2 ± 6.6
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were drawn with Matlab® R2018b software (Mathworks, Inc.
USA).

3 Results and discussion

3.1 Evaluation of the QFBs at 20% (w/w) HSL

Experimental results of saccharification at 20% (w/w) HSL of
pretreated WS with the proposed QFBs strategy are compiled
in Table 1. In the BBD, 36 h time mark was chosen to analyze
the sugars released with the QFBs. Results at 48 and 72 h were

also analyzed (data not shown). However, small contributions
to the total sugar production from NF and FT in BBD at 72 h
suggest that a kinetic effect of QFBs reduced at large sacchar-
ification times. Experiments R-3, R-5, R-7, and R-14 achieved
concentrations above 100 g/l in sugars after 36 h of total re-
action time, with R7 being the highest (115.9 g/l). In contrast,
the lowest total sugar concentration was 82.9 g/l (R-2), 28.5%
lower than the highest concentration achieved (R-7). Short RT
(16 min), 4 feedings (NF), and 3 h FT factors were overrep-
resented in the experiments with high total sugar concentra-
tion. Regarding glucose yield, experiments R-3, R-4, R-5, and
R-7 achieved values higher than 61% of the theoretical yield

a cb

Fig. 1 3-D response surface plots showing the effect of factors RT, NF,
and FT on total sugar concentration (a) and glucose (b) and xylose (c)
yields employing the proposed QFBs at 20% (w/w) HSL with WS. Red

dots indicate the experimental results. Light-gray dots and green dots
indicate the adjusted maximal experimental condition
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based on the glucose provided by the raw WS. Regarding
xylose yields, experiments R-1, R-3, R-5, and R-7 reached
values higher than 64% of the theoretical yield. In these ex-
periments, 16 min RT was the only overrepresented value.
These results indicate that 16 min RT improves sugar concen-
trations in saccharification. In contrast, large RT values result-
ed in lower total sugar concentrations [12, 13]. Previous works
demonstrated that Ah-Se pretreatment removes hemicellulose
fraction, releasing xylose, and xylooligosaccharides as a func-
tion of RT in CTR [13, 14]. This hemicellulose solubilization
could make the Htec2 cocktail unnecessary, as previous

reports indicate [20, 21]. However, better results in total
sugars released by QFBs were obtained if high xylose content
did not appear before saccharification (data not shown). The
cellulose fraction inWS is usually slightly changed by AH-Se
pretreatment. Small component modifications were reported
at very large RT (54 min), conducting to low glucose produc-
tion in saccharification at very low solid loading (1%, w/w)
[13].

The experimental results produced second-order polynomi-
al models, shown in Eqs. 3 to 5, correlating the response
variables (i.e., Glc yield, Xyl yield, and total sugar concentra-
tion) with the experimental factors. Table 2 shows the regres-
sion coefficients (R2) values and results obtained from the
ANOVA. Good R2 values were obtained for the three re-
sponse variable models (0.93, 0.96, and 0.92 for Glc yield,
Xyl yield, and total sugar concentration models, respectively).

Glc %ð Þ ¼ 50:86−0:92� RT þ 10:05� NF þ 0:34

� FT þ 0:01188� RT 2−0:984� NF2

þ 0:313� FT2 þ 0:0237� RT

� NF−0:0500� RT � FT−0:237� NF

� FT ð3Þ
Xyl %ð Þ ¼ 66:2−0:330� RT−0:60� NF þ 3:33� FT

þ 0:00069� RT2 þ 0:256� NF2 þ 0:075

� FT2−0:0362� RT � NF−0:0592� RT

� FT−0:250� NF � FT ð4Þ
Total sugars g=lð Þ ¼ 85:9−0:815� RT þ 15:03� NF

þ 0:22� FT þ 0:00828

� RT2−1:359� NF2 þ 0:81

� FT 2 þ 0:0039� RT

� NF−0:0974� RT � FT−0:487

� NF � FT ð5Þ

Factors values producing the maximal response (i.e., glu-
cose, xylose yields and total sugar concentration) values are
shown in row “Maximization conditions” of Table 2.
Response surfaces corresponding to Eqs. 1 to 5 are shown in
Fig. 1, confirming that the QFBs produced the highest con-
centration of total sugars as well as glucose and xylose yields
usingWS pretreated with 16min RT andNF equal or less than
5. Experimental points and calculated values of factors for
maximal sugar concentrations and yields are shown as red
dots and blue dots, respectively. They also illustrate the im-
portance of RT and NF factors and their quadratic

2 F
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Fig. 2 Total sugars produced at 36 h and 72 h reaction time by QFBs at
different FT with WS pretreated for 16 min (RT) and 5 NF to achieve
20% (w/w) HSL
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QFBs factor values were 5 NF and 2.5 h FT
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counterparts on maximizing total sugar release achieved by
the QFBs. The FT factor showed a marginal contribution to
both sugars (glucose and xylose) production.

The ANOVA results shown in Table 2 showed that RT
is the only statistically significant factor (p < 0.001) com-
mon to the three models, confirming the relevant role of
the Ah-Se technology and its pretreatment conditions on
the release of the hemicellulose fraction [14]. NF and its
quadratic factor are also statistically significant in total
sugar concentration and glucose yield models. Neither FT
nor its quadratic factors were statistically significant in any
model.

Since FT was not statistically significant, further experi-
ments were carried out to corroborate that shorter FT could
render similar values in the response variables to the maximal
values calculated by the models. Feeding times periods of 2 h,
2.5 h, 4 h, and 6 h were tested together with 16 min and 5
feedings as RT and NF values, respectively (Fig. 2). Results at
36 h of saccharification indicate that glucose and xylose re-
leased were similar under the FT conditions tested. In com-
parison, at 72 h, the xylose content remains equivalent; mean-
while, glucose releases decrease on the FT increments. As
being previously reported, not only large FT results in low
sugar production from by-product inhibition, but also, other
factors such as NF (solid increments) and enzyme dosage
contribute to this behavior [11, 22, 23]. A large FT (6 h)
showed the lowest glucose release at 72 h withWS. This result
confirms that the inhibitory effect is stronger with large FT,
replicating similar behavior to previous reports [22, 23]. The
total sugar produced at 35 and 72 h of saccharification time
with FT conditions tested was not statistically significant.
Interestingly, 2.5 h in FT (130.6 g/l) outperformed total sugar
production at 36 h (108.2 g/l) by 17.2%.

3.2 Comparison with batch mode

The QFBs with 16 min RT, 5 NF, and 2.5 h FT at 20% (w/w)
HSL was compared with its batch counterpart in 60 h exper-
iments. The QFBs reached its target HSL after 12.5 h, as
shown in Fig. 3. After 0.5–1.25 h, WS flowability improved.
Visual evidence is including as supplementary material using
the aforementioned QFBs conditions in a 1.5-l bioreactor
showing the change in flowability. In comparison, the corre-
sponding batch saccharification required 16–18 h to achieve
similar flowability conditions. The total sugar concentration
after 60 h for the batch saccharification was 105.7 g/l, while
QFBs reached 128.5 g/l. The sugar concentration in QFBs
was 21.6% higher than its batch saccharification counterpart
as shown in Fig. 3. This contribution to total sugar production
comes from glucose release improvements. In contrast, a mar-
ginal contribution is originated from xylose release with the
QFBs. This result confirms that RT pretreatment was the
strongest factor tested contributing to hemicellulose depoly-
merization. Meanwhile, fed-batch conditions (NF and FT)
were non-significant to xylose improvements. Future studies
will be required to understand the enzyme dosage contribution
and use of the Htec2 cocktail in QFBs.

3.3 Quick fed-batch saccharification withWS at higher
solid loadings

The effect on sugar production by the QFBs with higher solid
loadings (25% and 30% w/w) using WS was tested with
16 min RT, 2.5 h FT, and extending the NF as shown in
Fig. 4. The total sugar concentrations attained at 25% and
30% (w/w) HSL were 142.4 g/l and 163.5 g/l at 48 h after
the last feeding, respectively. For 25% (w/w) HSL, total sugar
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concentration was 15% higher than its counterpart saccharifi-
cation in batch mode (123.8 g/l). The batch mode ES withWS
at 30% (w/w) did not progress through 98 h of reaction time.
This result emphasizes the benefit of water availability using
QFBs.

3.4 Comparison with other fed-batch strategies

Table 3 presents HSL fed-batch enzymatic saccharification
strategies published in the scientific literature. The saccharifi-
cation results are closely linked to the cellulose content in the
biomass and the dose and type of enzymes used. However,
multiple factors intervene in the efficiency of saccharification,
such as pretreatment, water availability, type and origin of
biomass, inhibition of enzymes, reaction scale, and type of
reactor, among others. In the studies presented in the table,
the enzyme dose ranged from 8.8 to 40 FPU/g of cellulose,
showing that the enzyme dose is not a trivial parameter, and
must be determinate according to the characteristics of the
pretreated biomass and the operational conditions in the sac-
charification process. For example, twelve out of thirteen
works included in the table employ a prewashing stage to
remove chemicals, catalysts, and inhibitors [10, 22–33]. The

prewash also removes glycans, thus modifying LB composi-
tion, which can improve the saccharification yield. Most fed-
batch strategies reported periods over 18–48 h to achieve the
target HSL. The QFBs R-16, in contrast, took shorter times to
reach its target HSL, achieving the highest sugar productions
for 20, 25 and 30% (w/w) HSL with WS. In conclusion, the
different methodologies proposed to reach HSL present some
advantages such as not carrying out a prewashing stage of the
pretreated biomass, shorter saccharification times, reaching
higher solid loads (more than 20%), or lower doses of en-
zymes. However, to determine if these advantages positively
impact the cost of lignocellulosic ethanol production, it is
necessary to validate the strategies at a pilot level and carry
out sustainability analyses.

3.5 Semi-simultaneous saccharification-fermentation
of WS at HSL

The uses of SSF and SSSF are efficient ways to produce
lignocellulosic ethanol. These strategies reduce inhibition
caused by mono- and oligosaccharide accumulation in the
system, as well as yeast stress caused by high sugar concen-
tration at HSL [34]. In particular, SSSF uses a prehydrolysis
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stage to initiate the saccharification-fermentation task, thus
reducing the fermentation time. This prehydrolysis stage pro-
motes the lignocellulosic biomass liquefaction improving
mixing in the system [35]. As a result, ethanol productivity
in the SSSF is usually higher than the SSF [36, 37].

Therefore, the proposed QFBs with R-16 maximizing fac-
tor values at 20% (w/w) HSL was included as the
presaccharification stage in an SSSF. Other strategies such
as SHF and SSF were also tested, using the QFBs in the
corresponding saccharification stage. The fermentation was
carried out as described in Sect. 2.5. Table 4 shows the results
of the SSF, SHF, and SSSF experiments. The fermentation
kinetics are shown in Fig. 5. High ethanol production and
glucose depletion were achieved at 24 h in SHF (Fig. 5a). In
contrast, the SSSF reached similar conditions in 18 h (Fig. 5b),
depleting the carbon source in the fermentation broth. SHF
and SSSF achieved similar results in ethanol titration (32.7
g/l and 31.7 g/l, respectively) and yield (%) (51.4 and 50.2,
respectively). However, the SHF processing time (96 h) was
more than twice of SSSF time (42 h), thus affecting the etha-
nol productivity (QESF

). Table 4 shows that ethanol concen-

tration, yield, and productivity are strongly dependant on the
SL and fermentation strategy. The highest productivity (0.75
g/lh) was achieved in the SSSF strategy being 2.2- and 3-fold
higher than those of SHF and SSF, respectively.

Inhibitor concentrations impact negatively in downstream
bioprocessing. The Ah-Se pretreatment used in this work pro-
duces small amounts of inhibitors compared to other pretreat-
ment technologies (see supplementary material) .
Nevertheless, inhibitor concentration (3.24 ± 0.03 g/l of acetic
acid, 1.51 ± 0.58 g/l of furfural and 37.1–10.3mg/l of HMF) at
20% (w/w) HSL delayed the fermentation onset for 4–6 h as
can be seen in Fig. 5. The S. cerevisiaemetabolism transforms
furfural into furfuryl alcohol, affecting cell growth as a side
effect [45]. The fermentative capacity of S. cerevisiae was
restored once the furfural concentrations were reduced. The
furfural consumption rate was higher than that of HMF.

Table 4 includes the results of those fed-batch strategies
already published that were tested in saccharification-
fermentation strategies. The QFBs strategy proposed in this
work produced ethanol yields of around 50% below the best
yields reported at equivalent solid loadings (79.1% in [41]).
However, productivity was one of the highest reported in HSL
conditions. Similar productivity (0.77 g/lh) was previously
reported with delignified CS at low SL (8%, w/w) [38].

4 Conclusions

The QFBs strategy proposed in this work gives rise to high
sugar concentrations with WS using saccharification fed-
batch strategies. The fed-batch factors (NF and FT) promote

free water availability (flowability) in the enzymatic sacchar-
ification, thus improving the glucose release. The use of QFBs
as part of the SSSF strategy demonstrated a significant in-
crease in ethanol productivity compared to SHF and SSF strat-
egies without the need for a prewash stage.

Supplementary Information The online version contains supplementary
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