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Abstract
Biomass is a renewable source and potentially sustainable fossil fuel replacement due to its availability, lower processing cost,
high conversion, and lower life cycle carbon emissions. Pyrolysis can be used to convert biomass into bio-oil, but the quality of
bio-oil is usually poor exhibiting high viscosity, thermal instability, and corrosiveness. This review article is focused on the
application of catalytic pyrolysis towards obtaining high-quality bio-oil and advanced techniques for bio-oil characterisation.
Structural arrangement (i.e., mesoporous, microporous), number of acid sites (Lewis and Brønsted acid sites), and amount of
metal loading play a key role on deoxygenation reactions and selective production of aromatic hydrocarbons. Hierarchical
zeolites doped with noble metals favour hydrogenation of C▬O or C〓O and reduce coke deposition in the production of
polycyclic aromatics. Overall reaction mechanisms, aromatic yield and selectivity, the effect of Si/Al ratio, and process chal-
lenges of metal loaded zeolites are summarized. The advantages and disadvantages of different types of advanced analytical
techniques for bio-oil characterisation are also discussed. The results showed that two-dimensional gas chromatography (2D GC)
technique can identify 70% of chromatograph from bio-oil analysis. However, there is need to combine analytical techniques to
accurately quantify bio-oil components.
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1 Introduction

Biomass is widely used as a renewable source for substitution
of fossil fuel and a precursor for the production of chemicals
[1]. For example, the conversion of lignocellulosic biomass
(i.e., sugarcane, corn) into bioethanol has been extensively
investigated [2, 3]. Biomass is a carbon-rich biological mate-
rial widely used due to its availability, lower processing cost,
and higher conversion [4]. In the course of biomass conver-
sion, there is no overall increase in carbon footprint, making
biomass a potential sustainable renewable energy source, and
having a critical role in environmental mitigation and energy
supply. Biomass can be grouped into four subgroups: (1) ag-
ricultural and forestry residues, (2) municipal and industrial
solid waste, (3) herbaceous crops: Napier grass and weeds,

and (4) aquatic and marine biomass [5]. Biomass is converted
into bioenergy and chemicals via biological and thermochem-
ical processes [6]. The thermochemical processes are carried
out at high temperatures, between 300 and 1400°C [7, 8].
Amongst the thermochemical processes, pyrolysis is widely
used, with biomass conversion by high heat energy (207–434
kJ/kg) in the absence of oxygen [9, 10].

Pyrolysis enhances the energy density of biomass with the
flexibility to be carried out at a small scale or remote location
setups [11]. Pyrolysis is a flexible and attractive process to
converting biomass into bio-oil, chemicals, and heating ener-
gy. Slow pyrolysis is usually performed in batch mode for
long periods of residence time (5–30 min) at low temperatures
and heating rates [12]. The decomposition of biomass gives
rise to three main products: biogas, bio-oil, and biochar. Bio-
oil is the main product of pyrolysis, with a higher heating
value than the raw material, which can be converted into dif-
ferent chemicals [13]. Catalysts have been used to improve the
efficiency of pyrolysis process and to upgrade the bio-oil qual-
ity [14].

Catalytic pyrolysis operates in in-situ and ex-situ modes
[15]. In the in-situ catalytic pyrolysis process, the biomass
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and catalyst are mixed before the pyrolysis process. In the case
of the ex-situ catalytic pyrolysis process, the biomass is sepa-
rated from the catalyst, and pyrolytic vapour from the pyroly-
sis process reacts with the catalyst in a secondary reactor [15].
Nevertheless, there are not many comparative studies in the
literature to understand the catalytic mechanisms and kinetic
pathways of in-situ and ex-situ catalytic pyrolysis. The most
important catalyst groups used in catalytic pyrolysis are zeo-
lites, mesoporous catalysts, and biomass-derived catalysts.

Zeolites with distinctive pore structure and acidity (Lewis
and Brønsted acid sites), are used in bio-oil upgrading [16,
17]. The zeolites predominantly used in pyrolysis are ZSM-
5, Beta-zeolites, and Y-zeolites [18–20]. ZSM-5 has demon-
strated excellent efficiency in deoxygenation reactions for ar-
omatic compounds, producing bio-oil with low oxygen con-
tent and high calorific value [21]. Metals have been loaded
into zeolites to enhance bio-oil quality due to their high resis-
tance to coke deposition and high acidity [22]. However, mass
transfer limitations, catalyst deactivation over coke deposi-
tion, and sintering should be optimized for zeolite catalytic
pyrolysis. Mesoporous catalysts, with a pore size range of
20–30 Å, are used in catalytic pyrolysis due to their unique
porosity and high surface area (900–1100 m2/g) [23, 24].
Mesoporous silica catalysts, such as SBA-15, MCM-41, and
MUS-S, are widely used in catalytic pyrolysis of biomass due
to their supramolecular structure, and their propensity to syn-
thesize different crystalline structures [25]. Biochar produced
during biomass pyrolysis is also utilized as biomass-derived
catalyst for bio-oil upgrading [26].

In this review article, the impact of biomass composition
on the quality and yield of bio-oil produced via pyrolysis has
been discussed. Different types of pyrolysis, product distribu-
tion, and key factors on the process performance are also
discussed in the subsequent sections. In the review article
more stress has being laid on bio-oil physicochemical proper-
ties and its upgrading by catalytic pyrolysis. The reaction
mechanisms and application of heterogeneous catalysts to
produce high quality bio-oil are explained in detail. In the last
section, advanced analytical techniques used for bio-oil char-
acterisation are also reviewed. The main objectives of this
review article are to (1) summarise the basic features of cata-
lytic pyrolysis to produce high quality bio-oil, (2) recommend
different types of catalysts for specific products/chemicals
production, and (3) summarise bio-oil advanced characterisa-
tion techniques.

2 Biomass composition

Biomass comprises hemicellulose, cellulose, lignin, and a
small number of other extractives [27]. Agricultural and for-
estry residues have a high energy content, which mainly con-
sists of cellulose [28]. However, herbaceous plants are

generally continuous, with loosely bonded fibres, which con-
tains a small lignin percentage that connects the cellulose fi-
bres [29]. Lignin has a higher resistance to heat and chemical
degradation than cellulose and hemicellulose [27].

As shown in Fig. 1, different biomass feedstocks comprise
different amounts of hemicellulose, cellulose, and lignin. The
total amount of lignin and cellulose is one of the determinant
factors for subsequent energy and chemical conversion pro-
cessing. Numerous herbaceous crop families, such as elephant
grass, Bermuda grass, esparto grass, alfalfa-full flower, con-
tain 10–25% hemicellulose, 20–40% cellulose and 10–30%
lignin [29, 37, 38]. Typical switch grasses contain 32% cellu-
lose, 19.2% hemicellulose, and 15–30% lignin [30].
Generally, biomass with lower lignin content and higher
cellulose/hemicellulose content is desired for activated carbon
production [39]. High lignin content gives the lowest aromatic
yield and the highest coke yield while high hemicellulose
content contributes to low coke yield and high noncondens-
able gas production [40].

The elemental composition of different biomass groups,
pyrolysis conditions, bio-oil yield and composition obtain-
ed by conventional pyrolysis are summarized in Table 1.
Herbaceous crop biomass has an overall elemental compo-
sition of 41–49% carbon, 44–47% oxygen, with bio-yield
in the range of 44–60%. The energy per unit mass in-
creases with decreasing oxygen content in the feedstock.
For example, agricultural residues have a high oxygen per-
centage (38–47%), which reduces the calorific value of the
bio-oil [61]. Municipal and industrial wastes are primary
sources of nitrogenous compounds, having a nitrogen con-
tent of 3–8% [62].

The quality and yield of bio-oil produced by thermo-
chemical conversion is strongly affected by the elemental
composition of biomass. The bio-oil constituents typically
depend on the carbon and hydrogen content of biomass. As
shown in Table 1, spruce wood contains a high carbon and
hydrogen content, 49.11% and 6.14 %, respectively, which
enhance the bio-oil phenolic content [47]. The hydrogen
amount seems to increase the heating value and aromatic
compounds of bio-oil, but slightly varies over biomass
types. Amongst the agricultural residues, oak showed the
highest aromatic content due to its high hydrogen content
(7.16%).

Similarly, municipal and industrial wastes have a high con-
version into bio-oil with a yield in the range of 30.1–65%. The
coffee husk showed higher conversion into phenolic and aro-
matic compounds due to high carbon to hydrogen ratio (7.33)
[57]. The average C, O, and H percentages of the aquatic and
marine biomass are 41.62, 5.90, and 44.26%, respectively.
The variation in the elemental composition of biomass results
in a high variation in the bio-oil yield and composition. The
high carbon to hydrogen ratio (8.2) of P. indicus results in a
high aromatic yield in the bio-oil [58]. In contrast,
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Nannochloropsis showed a lower aromatic yield due to lower
carbon to hydrogen ratio of 6.3, but the pyrolysis conditions
were different which makes this comparison difficult.
Understanding the degree of biomass composition variation
helps to design an effective thermochemical process for bio-
mass conversion [63]. The bio-oil properties such as viscosity,
pH, and chemical composition depend on the feedstock bio-
mass type, pyrolysis conditions and reactor design. The effect
of pyrolysis process parameters on bio-oil quality is discussed
in detail in Section 3.2.2.

3 Biomass processing methods

3.1 General overview

Biomass consists of various precursors to produce green
chemicals and fuels [64]. In general, biomass conversion
is undertaken by two types of processes: biological and
thermochemical processes [65]. Thermochemical methods
are preferred over the biological processes due to the short
reaction times and high degradation efficiency [66–69].

The product distribution and bio-oil quality from thermo-
chemical processes depend on the residence time, heating rate,
temperature, degree of oxidation, the feedstock particle size,
and moisture content. The thermochemical processes can be
classified into three primary processes: pyrolysis, gasification,
and liquefaction [65]. The main products of pyrolysis and
gasification are biogas, bio-oil, and biochar, whereas bio-
crude and sugars are the main products of the liquefaction
process. The intermediate products obtained from

thermochemical processes such as sugars, bio-crude, and bio-
gas can be further converted into bioenergy and chemicals via
catalytic pyrolysis, steam reforming, fermentation, water–gas
shift reaction, and hydro-processing [70, 71].

Liquefaction is an alternative thermochemical process, pri-
marily designed for producing liquid fuel from biomass [72].
The process is carried out in an aqueous medium at a pressure
of between 5 and 20 MPa, and temperatures between 250 and
370°C. These are subcritical conditions in which complex
biomass structures decompose by hydrolysis and
repolymerize into smaller molecules such as levoglucosan,
hydroxyacetaldehyde, hydroxyacetone, pyruvic aldehyde,
glyceraldehyde, and furfural [73].

Gasification is a thermochemical process to converting bio-
mass into gaseous fuel with the presence of a gasifying agent
[74]. The gasification process is carried out at high tempera-
tures, between 500 and 1400°C, and at a range of pressures,
from atmospheric pressure to 33 bar [7]. The gaseous products
during gasification are CO2, H2, CH4, CO, and N2 [71].
Biomass moisture content varies between 30 and 60% while
gasification process requires biomass with a moisture content
between 10 and 15%. Therefore, drying biomass is a funda-
mental pretreatment process to meet the moisture content
criteria for gasification, which significantly increases the over-
all processing costs [75]. Complex operation, high energy
costs because of low moisture content requirement for the
biomass and relatively high processing temperature make gas-
ification process unsuitable for biomass conversion [76]. On
the other hand, pyrolysis is a versatile process to efficiently
convert biomass into bio-oil, which is suitable for all types of
biomass [77].

Fig. 1 Composition of different
biomass [30–36]
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3.2 Pyrolysis

Pyrolysis is a thermochemical degradation of biomass by high
heat energy (207–434 kJ/kg) in the absence of oxygen [9, 10].
The pyrolysis process is ascribed as the sum of three main
routes: char formation, depolymerization, and fragmentation
[78]. The char formation pathway results in producing solid
residue with a high amount of polycyclic aromatic hydrocar-
bons [79]. The primary steps in this path are the production
and incorporation of benzene rings in a polycyclic structure
[80, 81]. Depolymerization consists of degradation of poly-
meric structures and at low temperatures the degraded mono-
mers condense into a liquid fraction [82]. Fragmentation re-
sults in incondensable gas formation and a variety of organic
compounds that are condensable at ambient temperature [80,
83].

3.2.1 Types of pyrolysis processes

Based on processing pyrolysis parameters, the conversion of
biomass is divided into three classes: slow, fast, and flash.
Operation conditions for various types of pyrolysis are
summarised in Table 2. Slow pyrolysis is mainly applicable
for charcoal production and chemicals like acetic acid, furfu-
ral, and phenols. Most slow pyrolysis literature is primarily
focused on biochar production and its applications [89, 90].
Of the slow processes, carbonization, with a low heating rate
of 0.1–0.4°C/s, is a widely applicable process carried out
without condensation of the pyrolysis products [91].
Carbonization is a biomass conversion technique for charcoal
production and performed when biochar is the desired prod-
uct. The ideal feedstock moisture content for slow pyrolysis is
between 15 and 20% [92].

Flash pyrolysis produces high bio-oil yield (70%) and low
gas and tar amounts in comparison with slow pyrolysis [93].
Flash pyrolysis takes place at high temperatures (650–
1000°C) and requires short residence time (max. 2 s).
During the process, the feedstock is heated rapidly to be va-
porized and then condensed into bio-oil [94, 95]. On the other
hand, fast pyrolysis takes place at moderately low temperature
(500–800°C) and short residence vapour time (5 s) [96].
During fast pyrolysis, approximately 60–75% of the biomass
is converted into bio-oil [97]. However, fast pyrolysis

temperatures higher than 650°C favour biogas production
[65]. Fast pyrolysis is a flexible and desired process to trans-
form biomass into a liquid that is easily stored and transported
for biofuel and chemical production [98, 99].

Vacuum pyrolysis is the decomposition of biomass in a
pyrolysis reactor under vacuum to reduce vapours residence
time [34]. Vacuum pyrolysis is characterised by a slow
heating rate and takes place at temperature between 350 and
520°C resulting in low bio-oil yield (35–50 wt.%) [100].
Hydropyrolysis is the decomposition of biomass in the pres-
ence of hydrogen gas [101]. During hydropyrolysis hydrogen
gas is reduced to form hydrogen radical, which reacts with
pyrolytic vapour [99, 102]. The amount of aromatic hydrocar-
bons produced via catalytic pyrolysis is much lower than via
catalytic hydropyrolysis [88].

3.2.2 Pyrolysis process parameters

The pyrolysis processing parameters affect the composition
and yield of the desirable products. The main processing pa-
rameters include the heating rate, temperature, gas flow rate,
reactor design, and particle size [103]. Any of the three pyrol-
ysis products, such as bio-oil, biogas, or biochar can be im-
proved by optimizing pyrolysis conditions [104–108]. The
impact of operational conditions on the quality and yield of
the pyrolysis products is summarized in the next paragraphs.

Temperature plays a predominant role in the degradation of
high molecular weight components of biomass into smaller
molecular fragments. Partial degradation of the biomass struc-
ture at the molecular level occurs at a temperature below
300°C that produces heavy residual tar. In contrast, large mo-
lecular weight biomass degradation occurs at a temperature
higher than 550°C, enhancing the composition of bio-oil
[109]. Some studies suggest that the temperature to achieve
the highest bio-oil yield is 450–550°C. However, optimum
processing temperature to maximise bio-oil yield depends on
biomass composition and pyrolysis conditions such as heating
rate and gas flow rate [105, 110, 111]. Ji-lu et al. [112] con-
ducted rice husk pyrolysis in a fluidized bed at a temperature
between 420 and 540°C, and obtained a maximum bio-oil
yield of 56 wt.% at 465°C. This study demonstrated that a
further increase of the pyrolysis temperature decreased bio-
oil yield to 45 wt.%.

Table 2 Operation conditions for bio-oil production via pyrolysis

Pyrolysis type Residence time Heating rate (°C/s) Temperature (°C) Bio-oil yield (wt.%) Ref.

Slow 5–30 min < 0.8 600 30–40 [84]

Fast < 5 s > 104 600–800 50–60 [85]

Flash < 2 s 103–104 650–1000 65–70 [85, 86]

Vacuum 5–35 s 10–20 350–520 35–50 [87]

Hydropyrolysis < 10 s 10–50 <500 70 [88]
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Biomass particle size affects mass and heat transfer rates
during pyrolysis, which have an impact on bio-oil yield. The
bio-oil yield is usually higher for biomass particles with a size
lower than 2 mm [113]. Small biomass particles enhance the
biomass decomposition rate due to a better and faster mass
and heat transfer rates [114].The fast decomposition of small
particles favours high bio-oil yields, however the larger parti-
cles cause slow decomposition and favour the production of
char [115]. Biomass particles lower than 0.6 mm reduce bio-
oil yield due to quick decomposition and participation in sec-
ondary reactions leading to an increase in biogas yield [116].
The mass and heat transfer rates are also depending on the
types of reactors used in the pyrolysis process.

Many reactor types such as, fixed bed, fluidized bed, rota-
tive, vacuum, plasma, and microwave have been used for
pyrolysis. Fluidized bed reactor (bubbling) is frequently used
to achieve high heating transfer rates (uniform temperature
distribution) resulting in a high bio-oil yield of 70–75%
[84]. However, it requires small biomass particles and is dif-
ficult to remove the biochar. Microwave reactor is another
option that is mainly used due to high heating rates, high
temperatures and short residence times resulting in a bio-oil
yield of 60–70% [117]. However, the high processing costs,
high power consumption and the need to use microwave ab-
sorbers limit its application [118]. Several researchers used
plasma reactor for biomass pyrolysis, but despite of its high
operating costs, high energy and small biomass particles re-
quirements, the bio-oil yield was still low between 30 and
40% [119].

Pyrolysis process produces a significant amount of vapour
during biomass conversion, which can promote side reactions,
giving rise to thermal cracking, repolymerization, and
recondensation into biochar, resulting in a reduction of bio-
oil production [95, 103]. Nitrogen gas is preferably used to
remove vapours from the pyrolysis reactor because is chemi-
cally stable, inexpensive, and abundant. Increasing the nitro-
gen gas flow rate reduces the residence time of vapour in the
pyrolysis reactor [115]. Choi.et.al. [120] showed that an in-
crease in nitrogen flow rate increased the noncondensable gas
percentage, from 22.2 to 31.9%. The increased nitrogen flow
rate enhanced the vigorous bubbling motion and improved
both mixing and heat transfer rates. For example, Mohamed.
A.R. et al. [121] showed that an increase of nitrogen gas flow
rate from 150 ml/min to 500 ml/min, in empty fruit bunch
pyrolysis fluidized the bed reactor decreased bio-oil yield
from 45.7 to 37.8%. However, the noncondensable gas per-
centage increased from 28.4 to 35.1%.

Heating rate is also another key pyrolysis variable that in-
fluences the extent of degradation during pyrolysis. The abun-
dance of volatile matter during the degradation process in-
creases with an increase of the heating rate due to the endo-
thermic decomposition of feedstock [122]. An increase of the
heating rate also impacts on the optimal pyrolysis temperature

for bio-oil production. For example, Debdoubi et al. [123]
conducted pyrolysis of esparto by varying the pyrolysis tem-
peratures from 400 to 700°C and using different heating rates
of 50°C/min, 150°C/min, and 250°C/min. The researchers
found the optimum heating rate for 57% of bio-oil yield was
150°C/min at 500°C. However, higher bio-oil yield was
achieved for a heating rate of 250°C/min at 550°C. In general,
a comprehensive ANOVA analysis of all parameters is neces-
sary to optimize the pyrolysis process to obtain high bio-oil
quality and yield.

3.3 Bio-oil from pyrolysis: composition and properties

Bio-oil is a dark brown colour liquid that can be used for
power generation or extraction of various chemicals. Huber
et al. [124] stated that typical pyrolysis bio-oil contains acids
(propionic and acetic), alcohols (ethanol, methanol and ethyl-
ene glycol), phenols, aldehydes (acetaldehyde, formaldehyde
and ethanediol), ketones, aromatics and furans, regardless of
the type of feedstock. Table 1 presents the major chemical
groups present in bio-oil for different biomass feedstock proc-
essed via pyrolysis.

Biomass with higher lignin content gives a higher bio-oil
yield. Coffee husk pyrolysis at higher temperatures produces
bio-oil with low molecular weight compounds of ketones,
acids, and aromatic hydrocarbons [125]. Bio-oil obtained
from herbaceous crops, for example Para grass and Arundo
donax, contains a high amount of phenolic and highmolecular
weight aromatic compounds, making this feedstock desirable
for phenol extraction. However, bio-oil produced from the
pyrolysis process exhibits high viscosity, is corrosive, and
thermally unstable. These properties make bio-oil undesirable
for the synthesis of fuel and chemicals [126].

Different physicochemical properties of bio-oil produced
via biomass pyrolysis and typical crude oil properties are sum-
marized in Table 3. The concentration of elemental oxygen
and moisture content in bio-oil are much higher than in crude
oil and explain the low heating value of bio-oil. Several stud-
ies have reported that the quality of bio-oil is affected by
physicochemical properties, such as pH, elemental

Table 3 Physical characteristics of bio-oil and crude oil [127–130]

Physical property Bio-oil Crude oil

Moisture content (wt %) 15–30 0.1

Ash (wt %) 0–0.2 0.1

C (wt %) 54–58 83–87

O (wt %) 35–40 <1

H (wt %) 5.5–7.0 11–14

N (wt %) 0–0.2 0.1

S (wt %) 0.05 4

HHV (MJ/Kg) 17–20 40–44

2600 Biomass Conv. Bioref. (2023) 13:2595–2614



composition, oxygen content, char, suspended solid, and ash
content [123, 131, 132].

Kinematic viscosity of bio-oil ranges from 35 to 100 cP,
which depends on the types of biomass and pyrolysis process-
ing parameters. Bio-oil viscosity tends to increase over time
during storage due to further chemical reactions between the
bio-oil components [29]. Boucher et al. [133] reported the
effect of adding a stabilizing agent (alcohol) on the viscosity
of bio-oil. When bio-oil was stored in 10% methanol, the
viscosity only increased from 20 to 22 cP over four months
at 20°C. Similarly, 20% of ethanol showed a marginal incre-
ment, from 13 cP to 15 cP, on the viscosity of bio-oil at 40°C
[134]. High viscosity of bio-oil causes incomplete combustion
and poor atomisation during applications; however, adding
organic solvents could enhance physicochemical properties
and storage stability of bio-oil [135].

The presence of acetic and formic acids in the bio-oil in-
creases acidity (pH <3). Reactive oxygenated compounds in
bio-oil causes a change in viscosity, which alters thermal and
storage stability [136]. Thereby these acids make the bio-oil
corrosive and unsuitable for handling storage vessels and
equipment [137]. Ash content in bio-oil arises from the differ-
ent inorganic compounds such as sodium, magnesium, and
potassium (predominantly) in the feedstock. Thangalazhy-
Gopakumar et al. [138] reported that bio-oil synthesis from
wood biomass showed 0.09 to 0.2% ash content. Moisture
content in bio-oil results from dehydration reactions during
pyrolysis and moisture in the feedstock [55]. In general, bio-
oil can have 15–30% moisture content depending on the type
of biomass [139]. Heo et al. [55] reported bio-oil with mois-
ture content ranging from 40 to 60% obtained by pyrolysis of
sawdust with 9.1% moisture content The rise in bio-oil mois-
ture content is due to esterification reactions taking place be-
tween bio-oil constituents.

The complexity of bio-oil composition limits its applica-
tion as an alternative energy source. The separation of bio-oil
fractions has been employed to improve the calorific value
and recover valuable chemicals from bio-oil. Several methods
such as solvent extraction, distillation, centrifugation, and col-
umn chromatography have been employed to recover and
separate of bio-oil fractions [140, 141]. Amongst the bio-oil
fractions, phenolic compounds are most suitable for various
applications including pharmaceuticals, resin manufacturing,
fine chemicals, and food processing [142]. Solvent extraction
of phenolic compounds from bio-oil is mainly performed by
hexane, chloroform dichloromethane, and toluene [141].
However, the requirement of large volumes of solvent makes
the solvent extraction undesirable.

Direct application of bio-oil without upgrading is giving
undesired results due to high oxygen content, high viscosity,
thermal instability, and low calorific value. Bio-oil can be
upgraded via different techniques such as hydrotreating, steam
reforming, emulsification, and catalytic pyrolysis [143, 144].

Amongst bio-oil upgrading techniques, catalytic pyrolysis can
lower decomposition temperature and requires low energy
and hydrogen cracking throughout [145, 146]. Catalytic py-
rolysis enhances the quality of bio-oil by removing oxygenat-
ed compounds in the form of CO, CO2, and H2O [147].
Catalytic pyrolysis is a potential process for high quality
bio-oil production.

4 Biomass catalytic pyrolysis and reaction
mechanism

4.1 Catalytic pyrolysis

Catalysts play a critical role in promoting process efficiency,
targeting specific reactions and reducing processing tempera-
ture and time. Catalysts affect chemical composition and dis-
tribution of pyrolysis products. Catalytic pyrolysis has shown
potential for converting oxygenated compounds in bio-oil
mixture and consequently enhancing bio-oil quality.
Catalysts have been used in the bio-oil upgrading process
through various approaches [148, 149]. The process configu-
ration of catalytic pyrolysis are grouped into in-situ and ex-
situ modes, based on how pyrolytic vapour contacts with cat-
alyst [150].

In-situ catalytic pyrolysis consists of mixing catalyst with
biomass directly in the pyrolysis reactor [151]. For ex-situ,
catalytic reaction occurs in a secondary independent reactor
instead of the pyrolysis reactor [152]. Nevertheless, it is pos-
sible to convert oxygenated compounds effectively into hy-
drocarbons by either mode. However, during the in-situ pro-
cess, the pyrolytic vapours could not react with substantial
quantities of catalyst, which requires a higher biomass to cat-
alyst ratio (i.e., 2:1) for adequate reaction [153]. Also, the
optimum pyrolysis temperature is insufficient for in-situ
upgrading, requiring a separate ex-situ reactor. Char formed
during the in-situ catalytic pyrolysis can also lead to deactiva-
tion of the catalyst due to pores blockage [154]. The secondary
reactor in ex-situ mode gives an advantage over in-situ mode
such as, easy recovery of biochar without catalyst contamina-
tion and versatile temperature controls [155].

Synthesis of catalyst can be tailored to the final product
requirements. Understanding the reaction mechanisms in the
catalytic pyrolysis of bio-oil upgrading is fundamental. The
mechanisms of catalyst pyrolysis depend on the reaction path-
ways of the catalytic system and specific compositions of
biomass. The complexity of biomass matrix, inadequate mass
transfer phenomena, and immobilisation of catalysts chal-
lenge the understanding of the catalyst pyrolysis mechanisms
[156].

The major reaction pathways during catalytic pyrolysis are
deoxygenation, ketonization, cracking, aldol condensation,
a n d a r o m a t i z a t i o n ( E q s . 1 – 5 ) [ 1 5 7 , 1 5 8 ] .
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Hydrodeoxygenation (HDO) is a promising route to enhance
the quality of bio-oil by removing oxygenated compounds in
the form of CO, CO2, and H2O in the presence of H2 and
catalyst [147]. The primary renewable fuel products from
HDO include gasoline and diesel hydrocarbons. Various cat-
alysts have been used during HDO including, noble metals,
metal oxides, microporous (zeolites), and mesoporous.

Hydrodeoxygenation : R−OHþ H2→R−Hþ H2O ð1Þ
Hydrocracking : R1−CH2CH2−R2 þ H2→R1−CH3

þ R2−CH3 ð2Þ
Ketonization : R1−CO−OHþ R2−CO−OH→R1COR2

þ CO2þ H2O ð3Þ
Aldol condensation : R1−CO−R2→R1−C2H2−CO−R2

þ H2O ð4Þ
Decarboxylation : R−CO−OH→R−Hþ CO2 ð5Þ

HDO has significant benefits, such as high effectiveness on
removing oxygen atoms, low reaction temperatures, and pre-
serves the number of carbons in the products [159]. Various
types o f reac t ions a re t ak ing p lace dur ing the
hydrodeoxygenation process, including hydrogenation, decar-
boxylation, hydrogenolysis, dehydration, and hydrocracking
[160]. Apart from phenolic molecules, aromatic compounds
like guaiacols and syringol are also hydrogenated into a wide
range of products, including cycloketones, cycloalcohols,
arenes, methanol, and cycloalkanes [161, 162].

Conversion of phenols via HDO, as shown in Fig. 2, can be
carried out through three different reaction paths: the first is
the removal of oxygen by the cleavage of the C=O bond from
the aromatic compound. Then cyclohexane and cyclohexene
are formed after forming benzene in the presence of hydrogen.
The second path is hydrogenation of phenol into
cyclohexanol, followed by the removal of oxygen to produce
cyclohexene and cyclohexane. The third path is the combina-
tion of both hydrodeoxygenation and hydrogenation to con-
vert phenol compounds into cyclohexanone, which is imme-
diately followed by hydrogenation to form cyclohexene,

cyclohexanol, and cyclohexane [164, 165]. Eventually, all
three paths lead to cyclohexane formation, which can also
isomerize into methyl cyclopentane. The selection of one of
the three paths to convert phenol into methyl cyclopentane
depends on different parameters of catalysts such as metal
composition, surface properties, reaction temperature, and re-
quired intermediate products.

4.2 Bio-oil quality: catalytic reactions andmechanisms

Zeolite catalysts have received much attention due to its rela-
tively low cost, availability, and its potential to yield high
quality bio-oil. Amongst zeolite catalysts, ZSM-5 (exhibiting
high acidity and pore size) demonstrated excellent efficiency
for bio-oil upgrading, producing less viscous, less acid, and
high energy value bio-oil [166]. ZSM-5 also increased the
concentration of aromatic hydrocarbons, organics, and gas-
eous compounds in bio-oil caused by aromatization,
decarbonization, and cracking reactions [167, 168]. Zhang
et al. [169] utilized ZSM-5 for ex-situ mode catalytic pyrolysis
of corncobs using a fluidized bed reactor. The bio-oil obtained
from the reactor showed a reduction of oxygenated com-
pounds by 25% with a high heating value (HHV) of 34.6
MJ/kg, which is similar to heavy fuel oil and diesel values.

Many transitionmetals, such as cobalt, nickel, iron, cerium,
and gallium, have been used to fine-tune ZSM-5 acidity to
enhance bio-oil yields and decrease coke formation on cata-
lysts [168, 170, 171]. Zeolite supports are frequently used to
support metal-based catalysts because of the need to have
metals and acidic sites to support the H2 and O-containing
compounds activations. Zeolite supports with high Lewis
and Brønsted acid site density favour high dehydration reac-
tion. Kumar et.al. [172] prepared metal-based catalysts over
zeolite support catalysts (Cu/zeolite, Ni/zeolite, and Cu–Ni/
zeolite) to investigate their synergy effect on the deoxygen-
ation reaction of pinewood. The authors found Cu–Ni/zeolite
catalyst produced 34% of aliphatic hydrocarbons; however,
monometallic combination favoured the production of aro-
matic hydrocarbons, Cu/zeolite: Ni/zeolite (1:1) generated
18.87% of aromatic hydrocarbons. Also, Cu/zeolite: Ni/
zeolite (1:3) significantly reduced in comparison to
noncatalytic pyrolysis, with 1.81% of acids, 6.42% of phe-
nols, and 0.4% of ketones in the oxygenated compounds of
bio-oil. Table 4 describes the key findings from modification
of zeolites using transition metals and pyrolysis conditions.
Selectivity and yield of catalysts depend on the catalyst to
feedstock ratio, types, and percentage of metals. For example,
incorporation of metals in the zeolite framework increases the
production and composition of polycyclic aromatics while
decreases bio-oil yield.

Metal catalyst activates hydrogenation of C▬O or C〓O to
produce polycyclic aromatic hydrocarbons. Noble metal cata-
lysts show better hydrogenation performance due to itsFig. 2 Reaction mechanisms for phenols, adapted from [163]
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stability and selectivity [176]. Metal electronic configuration
and band structure also contribute to high hydrogenation per-
formance. The binding capacity of substrate to metal catalyst
surface depends on the availability of d orbital in spd hybrid
bonding orbit. Therefore the higher d orbital percentage of
noble metal the stronger interaction between substrate and
catalyst [177]. The overall reaction pathways, advantages,
and disadvantages of the use of metal-based catalysts in bio-
oil production are summarized in Table 5.

Metal oxides are also viable for deoxygenation of the py-
rolysis vapour to form aromatic hydrocarbons. Metal oxides
are widely used in biomass pyrolysis because of their higher
degree of active sites during reaction [186]. Additionally, they
are highly temperature-stable and resistant against relatively
nonpolar compounds under different pH conditions [112,
187]. Kaewpengkrow et al. [188] upgraded fast pyrolysis va-
pours from Jatropha curcas waste residue produced at 600°C
using metal oxide/activated carbon catalysts prepared by wet
impregnation. These metal oxide/activated carbon catalysts
promoted aromatics formation and produced 86.56% hydro-
carbon yield, considerably higher than 11.32% yield without
catalysts.

The small size of micropores in the zeolite structure hinders
the mass transfer of reactant and formation of polycyclic aro-
matic hydrocarbons [189]. Therefore to overcome this prob-
lem, hierarchically structured zeolites have been developed
[190]. Hierarchical zeolites are vastly utilized in biomass ca-
talysis because of their high surface area, better mass transfer,
high selectivity, and yield [157]. As shown in Table 6 hierar-
chically structured zeolites can be achieved by creating zeolite

materials with multiple porosity levels, i.e., mesoporous and
microporous structures. Mesoporosity on zeolite materials is
obtained by alkaline treatment (to remove Si atom) and acid
treatment (to remove Al atom). The dealumination process
increases the Si/Al ratio and enhances the formation of
mesoporosity in the zeolite framework [196, 197].
Desilication of zeolites provides a well-controlled mesopo-
rous formation with an optimal Si/Al ratio between 25 and
50 [195].

A wide variety of mesoporous silica has also been used for
bio-oil upgrading such as MCM-41 (Mesoporous molecular
sieve) and SBA (Santa Barbara Amorphous). MCM-14 ex-
hibits a high surface area (1000 m2/g), narrow pore size dis-
tribution (20–30 Å), and a hexagonal arrangement [198].
However, due to weak acidity compared to aluminosilicate,
MCM-14 is only applicable to a narrow range of processes.
Acidic properties of mesoporous silica were enhanced by
loading metals into the silica structure [23, 24]. Aluminium
is the principal metal-doped into the structure of mesoporous
silica to enhance catalytic cracking [199]. For instance, by
optimizing the Al/Si ratio, the new mesoporous alumina–
silica catalyst is created with high acid properties and high
surface area. Similarly, different metals including Co, Sn,
and Zr are used to prepare high-performing mesoporous silica
catalysts [200].

Jeon et.al. [201] studied the application of mesoporous Pt
and Al within SBA-15 support catalysts for catalytic pyrolysis
of cellulose, hemicellulose, and lignin. AlSBA-15 and Pt/
AlSBA-15 showed better catalytic performance than SBA-
15 and Pt/SBA-15. In particular, Pt/AlSBA-15 showed a high

Table 4 Analysis of the impact of metal-ZSM-5 catalysts and pyrolysis condition on bio-oil production

Catalyst Pyrolysis condition Key finding Ref.

Fe/ZSM-5 Feedstock: sawdust
Catalyst/feedstock ratio =

1:3
Pyrolysis temperature =

400–800°C

Fe/ZSM-5 produces more monocyclic aromatic hydrocarbons than ZSM-5.
The increase of Fe loading increased hydrocarbon content but reduced the bio-oil yield.

[173]

Ga-, Zn-, Co-,
Ni/ZSM-5

Feedstock: Yunnan pine
Catalyst/feedstock ratio =

1:2.
Pyrolysis temperature =

450°C

M-ZSM-5 content reduces bio-oil yields and enhances the noncondensable gas amount.
Zn/ZSM-5 contributes to the formation of single-ring aromatics, such as xylenes and toluene.
Ga/ZSM-5 produced the maximum oil yields and the lowest amount of coke.
However, Ni/ZSM-5 produced more polycyclic aromatic hydrocarbons while Co/ZSM-5
demonstrated high selectivity for indene production.

[174]

Co- and
Ni/ZSM-5

Feedstock: Beechwood
Catalyst/feedstock ratio =

3:2.85.
Pyrolysis temperature =

500°C

Reducedmetallic Ni and Co formed during pyrolysis, which favoured hydrogen transfer reactions.
The bio-oil was rich in phenols and aromatic compounds. NiO/ZSM-5 was more reactive than
Co3O4/ZSM-5 in increasing the gaseous products and reducing the organic phase.

[171]

Zn-,Co,-Ni-,
Fe/ZSM-5

Feedstock: Wheat straw
and polystyrene

Catalyst/feedstock ratio =
1:1

Pyrolysis temperature =
500–650°C

Maximum bio-oil yield obtained by Co-ZSM-5(39.0%) followed by Zn-ZSM-5 (38.2%),
Fe-ZSM-5 (37.7%), and Ni-ZSM-5 (36.1%). Fe-ZSM-5 showed much better performance with
monocyclic aromatic hydrocarbons (83.3%) and oxygenated compounds (0.5%).

[175]

*All catalysts were prepared by the wet impregnation method
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yield (65 wt.%) for aromatics and furans. The presence of both
acid sites and Pt are responsible for the conversion of
levoglucosan into aromatics and furans during catalytic
upgrading. Pd/SBA-15 revealed a better selectivity for the
production of phenol from lignin-derived oligomers [202].
As shown in Fig. 3, the lignin depolymerized into monomeric
phenols that were further converted to phenols without the
side chain and unsaturated C▬C bond [203, 204]. The incor-
poration of acidity or alkalinity in the structure of mesoporous
silica is likewise a promising methodology to duplicate its
applications in catalysis [205]. The pore volume of mesopo-
rous silica gives sufficient space to accommodate these spe-
cies [206]. Table 7 presents a concise conclusion for the ad-
vantages and disadvantages of using mesoporous catalysts for
bio-oil synthesis.

Biomass waste (sawdust) was also used to produce a
highly efficient magnetic solid-acid catalyst through a fast
pyrolysis–sulphonation process [213]. First, the Fe3+ ions
were adsorbed into the biomass waste to achieve Fe-loaded
biomass, then pyrolysis to produce biochar. Finally, solid-
acid magnetic porous catalyst was prepared via sulfonation
method from the biochar. The fast pyrolysis method in-
duced reduction of Fe3+ to Fe3O4 and incorporated magne-
tism into the material, which was kept after sulfonation.
The catalyst exhibits a surface area of 296.4 m2/g and acid-
ity of 2.57 mmol/g. The catalyst had notable catalytic ac-
tivity, including dehydration, esterification, and hydrolysis
for distinct acid catalytic reactions. A furfural yield of 6%
in dimethyl sulfoxide (DMSO) was obtained at 150°C with
a xylose conversion of 96%. The sulfonated catalyst was
less active, producing only 45% furfural under the same
conditions, due to its lower acidity of 1.26 mmol/g than the
iron catalyst. The catalyst was also extremely efficient in
producing 94% glucose and fructose [213].

5 Advanced analytical techniques for bio-oil
characterisation

Evaluating bio-oil chemical and physical characteristics is
a significant process to decide future applications as well
as upgrading techniques to improve the composition. Bio-
oil physical characteristics, such as viscosity, pH, ash con-
tent, moisture content, cetane index, refractive index,
heating values, and elemental composition, can be per-
formed accurately by the existing standards procedure.
However, qualitative and quantitative analysis of chemical
properties remains challenging. The complexity and num-
ber of compounds in bio-oil require multiple analytical
methods for its chemical characterisation. Therefore, the
spectroscopic and chromatographic techniques are imple-
mented and interpreted as complementary. Nuclear mag-
netic resonance (NMR), thermogravimetric analysisTa
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(TGA), gel permeation chromatography (GPC), gas chro-
matography (GC), and Fourier-transform infrared spectros-
copy (FTIR) have been used to elucidate the chemical
characteristics of bio-oils at distinct levels [214].
Amongst the analytical technique, NMR spectroscopy
and GC are the most comprehensive techniques to charac-
terise bio-oil components. The next section will discuss the
application of NMR, GC, and TGA for bio-oil chemical
analysis.

5.1 Gas chromatography

Gas chromatography (GC) is a widely used separation
method to identify thermally stable volatile compounds.
The flame ionisation detector (FID) and thermal conduc-
tivity detector (TCD) have been used for GC detector be-
cause of highly sensitive, rapid response, and a wide range
of linear dynamics. GC-FID can be used for bio-oil com-
position characterisation such as phenols, aldehydes, alco-
ho ls organic ac ids , sugars , and ketones [215] .
Additionally, GC-FID has been used to estimate the con-
cen t ra t ions o f compounds in b iochar f rom the
noncondensate stream during pyrolysis [216]. A conven-
tional 1-D GC is usually used to separate bio-oil in a non-
polar or a weak-polar column depending on the boiling
point or vapour pressure [217–219].

5.1.1 Conventional gas chromatography (1-D GC)

Conventional 1-D GC techniques employed in bio-oil charac-
terisation are based on bio-oil compounds boiling point and
volatility [220, 221]. Also, the type of detector, polarity dif-
ference between the molecules and their interaction with col-
umn material are an important consideration. Types of solvent
used during sample preparation should not affect the early
eluting of bio-oil fractions. However, most solvents except
acetone hinder separation, such as chloroform, tetrahydrofu-
ran, and ethyl acetate elute along with low molecular weight
fraction of bio-oil [222]. Co-elutions of solvent and bio-oil
fractions hinder absolute quantification while using FID and
TCD. Therefore, combining GCwithmass spectrometry (GC-
MS) will help to accurately identify peaks, which are not
detected by FID such as alkanes, C5–C15 hydrocarbon, 2-
methoxy and phenols [223].

1-D GC mostly uses nonpolar or slightly polar column for
boil-oil characterisation, which oversight polar fraction [218,
219]. Therefore, it requires additional GC columns to quantify
both nonpolar and polar compounds. 1-D GC identifies a
small portion of high molecular weight or nonvolatile polar
fractions of bio-oil due to the low volatility nature of the com-
pounds [224, 225]. Derivatization enhances the detectability
of nonvolatile polar fractions by converting into volatile low
polarity derivatives using derivatization reagents [226].
Silylation and N-methyl N-(trimethylsilyl) trifluoroacetamide

Table 6 Properties of hierarchical zeolites used on catalytic pyrolysis

Biomass Zeolite Si/Al
ratio

Metal
loading %

Mesoscale
template

SBET
(m2/g)

Vtotal

(cm3/g)
Vmicro

(cm3/g)
Vmeso

(cm3/g)
Aromatic
conversion %

Ref.

Beechwood ZSM-5 25.5 - - 406 0.222 0.164 0.164 23.7 [191]
ZSM-5 25.5 - 0.1M NaOH 400 0.222 0.158 0.158 26.9

ZSM-5 21.6 - 0.4M NaOH 285 0.293 0.126 0.167 28.6

Waste cardboard HZSM-5 50 - - 332 0.153 0.132 0.021 24.43 [192]
HZSM-5 - 0.3M NaOH 308 0.188 0.127 0.061 28.48

HZSM-5 - 0.7M NaOH 274 0.193 0.120 0.073 30.54

Pinewood ZSM-5 15 - - 438 0.29 0.16 0.13 13.1 [193]
ZSM-5 25 - - 421 0.27 0.15 0.12 17.4

ZSM-5 40 - - 481 0.28 0.18 0.1 14.8

ZSM-5-04M 15 - 0.4 NaOH 418 0.42 0.15 0.27 15

ZSM-5-0.2M 25 - 0.2 NaOH 480 0.52 0.13 0.39 20.5

ZSM-5-0.2M 40 - 0.2 NaOH 506 0.66 0.11 0.50 22.3

Palm kernel shell
(PKS)

HZSM-5 56 - - 325 0.21 0.104 0.101 49.8a [194]
Meso-HZSM-5 40.3 - NaOH 321 0.25 0.098 0.152 32.6a

Ga(1)/meso-HZSM-5 40.8 0.95 NaOH 317 0.23 0.083 0.132 35.8a

Ga(5)/meso-HZSM-5 40.5 4.55 NaOH 300 0.21 0.079 0.127 39.2a

Oak wood H-ZSM-5 384 0.237 0.117 0.12 [195]
Co/H-ZSM-5 4.3 377 0.225 0.114 0.111

Ds-HZSM-5 NaOH 405 0.253 0.115 0.138

Co/Ds-HZSM-5 4.1 397 0.243 0.116 0.127

a Bio-oil yield %
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are amongst the most used derivation agents for quantification
of hydroxyl and carboxyl groups compounds [227, 228].

5.1.2 Two-dimensional gas chromatography (2-D GC)

2-D GC (GC × GC) analytical technique employs two inde-
pendent columns with different polarity for GC separation,
superior peak detection and resolution [229]. Bio-oil analysis
conducted by 2-DGC identified 70% of chromatograph; how-
ever, 1-D GC only identified about 47% [222]. Quantification
of bio-oil components with 2-D GC depends on the type of
columns and the modulator. Typically, the first column is
nonpolar or slightly polar, while the second column is polar
[230]. Bio-oil fractions are separated by their volatility in the
first column, while the second column separates via hydrogen-
bonding, π–π interactions, and steric effects [231]. The chro-
matographic resolution of 2-D GC technique can be improved
by increasing resolution in the first column and optimizing
split-flow [232]. Analysing all bio-oil fractions using a single
analytical is almost impossible, therefore there is a need to
combine GC with other technique such as NMR to better
understand the chemical and molecular weight properties of
bio-oil samples. Gas chromatography is an effective technique

to analysis volatile components in bio-oil; however, analysing
higher molecular weight molecules of bio-oil is still a
challenge.

5.2 Nuclear magnetic resonance (NMR) spectroscopy

NMR spectroscopy provides structural information of high
molecular weight compounds in bio-oil. NMR is a powerful
technique to analyse bio-oil functional groups such as aromat-
ic, carbonyl, olefin, aliphatic, and methoxy/hydroxyl from the
integration of appropriate chemical shift regions [233, 234].
The advantages of NMR over other spectroscopy are its sim-
plicity, short analysis time, and ability to acquire information
about the bio-oil composition from a single spectrum [235].
Hydrogen (1H) and carbon (13C) NMR techniques are widely
used to analyse the hydrogen-carbon framework of bio-oil.
Accuracy and repeatability of NMR analysis depend on sol-
vent, baseline compensation, selection of chemical-shift re-
gions, and longitudinal relaxation [236]. Polar solvents are
mainly used for analysis of bio-oil components such as furan,
ketones, phenols, and organic acids [235]. During sample
preparation dried bio-oil is dissolved in polar deuterated sol-
vents such as dimethylsulfoxide (DMSO-d6), deuterated

Table 7 Main advantages and disadvantages of using mesoporous catalysts for bio-oil production

Catalyst Advantages Disadvantages Ref.

SBA-15 High thermal and hydrothermal stability. Limited mesoporous formation. [202,
207]

Pt/SBA-15 High yields for aromatic and furans compounds synthesis. Lower dispersion of Pt inside SBA-15. [208,
209]

MCM-41 Better mass transfer for large molecules. Low catalytic degradation. Low thermal stability and
acidity.

[205]

Al/MCM-41 Higher Al content leads to high aromatic compound yields.
Conversion of poly-aromatic hydrocarbon (PAHs) into phenol.

High coke formation. [210]

Al/MCM-48 High selectivity towards phenol production and higher stability than
Al/MCM-41.

Low acid strength. [211]

MSU-S Strong acid sites and high selectivity towards high fraction and
polyaromatic hydrocarbon.

High coke formation and a low organic phase. No
production of alcohol, acids, and carbonyl compounds.

[212]

Fig. 3 Reaction mechanism of lignin depolymerization for phenolic monomers production
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dichloromethane (DCM-d2), deuterium oxide (D2O), and eth-
anol-d2. The hydrogen bond strength of polar solvent affects
NMR analysis of bio-oil, solvents such as ethanol, dichloro-
methane, and water, exhibit strong hydrogen bonding, but
DMSO-d6 exhibits much less hydrogen proton shifts. Also,
solvent signals such as CDCl3 (

13C NMR 77.00 ppm and 1H
NMR 7.25 ppm) overlap with aromatic group chemical shift
region and interfere with quantification of bio-oil fractions.
Therefore, the use of DMSO-d6 as solvent allows the collec-
tion of chemical structure information from both 13C and 1H
NMR [218]. In the following section, the application of 1H
and 13C NMR for bio-oil analysis with chemical shift assign-
ments will be discussed.

5.2.1 1H NMR

1HNMR is the most extensively and convenient spectrometric
technique used to quantify the oxygenated compounds in bio-
oil [237]. The abundance of hydrogen atoms (major isotope
1H) in an organic compound makes 1H NMR spectroscopy
analysis sensitive to identifying bio-oil constituents. This tech-
nique is characterised by fast analysis and high sensitivity
[238]. Table 8 summarizes the major chemical shifts of bio-
oil components and the hydrogen percentage of bio-oil obtain-
ed from noncatalytic and ZSM-5 catalytic pyrolysis of pine-
wood. Bio-oil produced with ZSM-5 catalyst contained more
hydrogen from ethers (3.0–4.2 ppm) than the noncatalyst py-
rolysis bio-oil. The chemical shift range of 9.5–11.0 ppm is
assigned to aldehydes and phenols while carboxylic acid pro-
ton is assigned to the range of 11.0–12.5 ppm. The spectral
overlap of aldehydes and phenols in the region from 9.5 to
11.0 ppm made the quantification of phenols difficult because
of low resolution and chemical shift overlaps of 1H NMR.
Therefore, it is required to use several characterisation tech-
niques simultaneously to obtain a full insight into bio-oil

composition. However, the chemical shift of the hydrogen
atom on alkanes and aromatic groups shows clear signals
making 1H NMR spectroscopy suitable for the analysis of
aromatic ring rich bio-oil.

1H NMR spectroscopy can also explain the effect of bio-
mass types in the overall chemical composition of bio-oil.
Mullen et al. [234] used 1H NMR to characterise bio-oil from
different energy crops and categorised bio-oil composition
based on the hydrogen atom percentage. 1H NMR is an essen-
tial and sensitive technique for determining hydrogen distri-
butions in bio-oil; however, chemical shift ranges are not well-
known because of several overlaps. Therefore, to obtain dis-
tinguished chemical shift range, the 1H NMR spectrum should
complement additional NMR techniques such as 13C NMR
spectroscopy.

5.2.2 13C NMR

13C NMR provides a quantitative analysis of carbon atoms in
the different functional groups, which can be used as comple-
mentary information for bio-oil characterisation [240]. The
low natural abundance of 13C atommakes 13C NMR spectros-
copy less sensitive, therefore it provides a better signal to
noise ratio by accumulating large numbers of transient
[241]. The 13C NMR chemical shift of carbon atom from
various compounds in bio-oil is summarized in Table 9. The
region between 1 and 60 ppm corresponds to alkyl hydrocar-
bons, which enhance the energy content of bio-oil [232]. The
region between 50 and 65 ppm provides information about
hydroxyl or methoxy functional groups in bio-oil while the
region from 65 to 105 ppm explains carbohydrate
(levoglucosan) in bio-oil. 13C NMR spectra between 150
and 215 ppm resonates with the presence of acid, ketones,
esters, and aldehydes. 13C NMR spectroscopy techniques pro-
vide valuable qualitative analysis; however, spectra overlap

Table 8 1H NMR chemical shifts for common compounds presented in bio-oil and hydrogen percentage obtained from pinewood pyrolysis [214, 218,
234, 239]

Bio-oil component Chemical shift (ppm) Hydrogen percentage

Conventional pyrolysis Catalytic pyrolysis

Aliphatic hydrocarbon, alkane CH2, CHβ 0.5–1.6 25.49 21.22

Acetic acid CH3, CHα 1.8–3.0 28.61 32.64

Alcohol, ethers ,water 3.0–4.2 13.74 14.85

Aliphatic▬OH, 4.2–6.0 7.86 7.56

Aromatics▬H, HC〓C▬ 6.4–7.6 18.18 20.05

Formic acid, HCOOH 8.10 - -

Glycolaldehyde 9.55 - -

Aldehydes, phenols, ▬CHO, aromatic▬OH 9.5–11.0 5.86 3.57

Carboxylic acid, COOH 11.0–12.5 0.25 0.11

H, type of proton
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occurs due to bio-oil complexity, limiting its application.
Therefore, it is required to correlate both 13C NMR and 1H
NMR spectra information to obtain a better insight into the
overlapping regions.

5.3 Thermal analysis

Thermal proper t ies of bio-oi l are s tudied using
thermogravimetry (TGA) and its derivatives (DTG). TGA
measures weight losses based on the volatility of molar frac-
tions against the temperature or time at a specific heating rate.
Thermal degradation takes place in three stages: the first stage
corresponds to carbon dioxide, carbon monoxide, and water
removal from the feedstock at a temperature less than 200°C;
the primary degradation occurs in the second stage at a tem-
perature between 460°C and 680°C; and the final stage of
decomposition occurs at slow reaction rate at a temperature
higher than 680°C [243].

TGA analysis helps on the characterisation of evaporation,
combustion, and thermal degradation of bio-oil. Also, TGA
analysis of biomass generates information about carbon, wa-
ter, ash, cellulose, hemicellulose, and lignin content that can
be used to enhance the quality and composition of bio-oil. The
percentage of weight loss in a region during the thermal anal-
ysis of biomass provides information about the reactivity; for
example, biomass containing high lignin content showed low
reactivity resulting in high biochar production. TGA data is
also used to optimize bio-oil yield by analysing the ash con-
tent in different biomass, where higher ash content corre-
sponds to lower bio-oil yield [244]. TGA has further been
used to determine the amount of coke deposited in porous
catalysts such as zeolites. The formation of coke on internal
and external surfaces of catalysts causes catalyst deactivation
and reduces catalyst activity for bio-oil upgrading [245].

TGA analysis has frequently been used to determine chem-
ical kinetic parameters such as a preexponential factor (A) and
activation energy (E) using different modelling methods
[246]. Modelling of chemical kinetics uses TGA analysis con-
ducted via nonisothermal and isothermal with multiple and

single heating rates [247, 248]. However, more than one reac-
tion pathway is considered to study kinetic parameters of ther-
mal decomposition of biomass [249, 250].

6 Conclusions

Biomass is a renewable source and potential fossil fuel re-
placement due to its availability, lower processing cost, higher
conversion, and lower carbon emissions. Pyrolysis is an at-
tractive and flexible process of converting biomass into bio-
oil, which can be utilized for the production of energy and
chemicals. However, bio-oil obtained from biomass pyrolysis
process is not suitable for fossil fuel substitution due to the
high amount of oxygenate compounds (i.e., phenols, ketones,
aromatic hydrocarbons, sugars, alcohols). Therefore, there is a
need to upgrade bio-oil properties by converting the oxygen-
ated compounds into aromatic hydrocarbons. Catalysts have
been used to upgrade bio-oil properties, but not all the desired
properties of a fuel have been achieved yet. According to our
literature review, most catalytic upgrading of bio-oil has been
carried out via a monocatalytic system (acid or base catalysts),
which is unable to address all oxygenated compounds avail-
able in the bio-oil. Also, catalyst deactivation over coke depo-
sition and sintering promote lower catalytic activity. Future
research should focus on synthesising robust bifunctional cat-
alysts to address both acidic and alkaline bio-oil fractions.

In addition, hierarchical zeolites have been used to enhance
the bio-oil quality. The sequential dealumination–desilication
process is used to create additional mesoporosity in the zeolite
framework. However, the optimum amount of mesoporosity
for high bio-oil quality is still unknown, so we recommend
that future research should be focused on studying the effect of
both mesoporosity and loading of metal oxides on bio-oil
quality and yield. Analysing chemical composition of bio-oil
is fundamental for the optimisation of the pyrolysis process
and its application as alternative energy source. NMR spec-
troscopy and GC techniques are mainly used to obtain struc-
tural and molecular weight information. To obtain a compre-
hensive understanding of bio-oil molecular fractions, combin-
ing both analytical techniques is required. Further work
should be carried out to better understand the impact of pyrol-
ysis processing parameters on bio-oil composition using sta-
tistical techniques.
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