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Abstract
The presence of dyes in the aqueous system is a worldwide concern. Among the different available water treatment methods,
adsorption one has attracted substantial consideration due to its unmatched advantages like selectivity, low cost, applicability
verities of contaminants, high efficiency, ease and simplicity of operation, reusability of the adsorbents, etc. The utilization of
these advantages depends on the appropriate choice of the adsorbent. The surplus availability and simple preparationmight be the
primary requirements of a promising adsorbent. In this context, tea waste materials pose themselves as potential candidates for
their employment as adsorbents. In this review article, the use of unmodified raw tea waste materials as adsorbents for the
remediation of water and wastewater containing dyes as pollutants has been thoroughly discussed. The review includes the
characterization of tea waste-based adsorbents and their utilization for dye removal. The isotherm, kinetics, and thermodynamics
accompanying the process of dye removal have also been discussed.
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1 Introduction

Water, a most valuable asset for human endurance, is
confronting extraordinary worries. Water contamination has
become one of the most genuine worldwide issues. The fresh-
water is a fundamental necessity for humans and wildlife.
Nonetheless, this circumstance is still spreading; a lot of
wastewater is created and discharged to the natural freshwater
bodies. Among various kinds of wastewaters, dye-
contaminated wastewater merits critical consideration.
During the last few decades, with the consistent advancement
of the printing and coloring industrialization process, many
dying chemicals are discharged into the environment, partic-
ularly water systems. Synthetic organic dyes are chemicals
that are widely used in different fields to color everyday us-
able items like textiles, leather, toys, paper, rubber, printing
inks, food products, building, transport vehicles, etc. While
coloring a product, a considerable volume of water is

consumed, and ultimately, freshwater is converted to dye-
contaminated water. For example, about 200 L of water is
consumed to color 1 kg fabrics, and thereby over 1.5 million
liters of water per day are spent for an average-sized mill [1].
The presence of color contaminations in the aqueous system
carries an enormous hazard to humans and other living organ-
isms. For example, the color can have an unfriendly effect on
both amphibian life forms and individuals because colors can
decrease sunlight transmission. Additionally, the dye-laden
water also contains toxic materials. Some dye molecules are
mutagenic and cancer-causing. They cause disease of the kid-
ney, liver, conceptive framework, brain, and central nervous
system [1–3]. As dyes’ consumption can neither be stopped
nor declined, the treatment of dye-contaminated water has
become a challenging and emergent task.

The polluted wastewater containing contaminants like
dyes, heavy metals, pesticides, antibiotics, etc. has been treat-
ed by employing various developed techniques. Some notable
ones are advanced oxidation process [4–8], ion exchange
[9–11], electrocoagulation [12–14], electrodialysis [15–17],
electroflotation [18–20], ozonation [21–24], photochemical
oxidation [25], coagulation/flocculation [26, 27],
nanofiltration/ultrafiltration [28–33], reverse osmosis
[34–37], MnO2 oxidation [38–40], biological method (aero-
bic/anaerobic) [22, 41–43], chemical precipitation [44–47],
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etc. Each of these methods might be advantageous for one
aspect, while it may be unfavorable on other aspects.
However, most of these techniques are conventional and not
universally applicable due to some limits in terms of cost,
feasibility, efficiency, operational difficulty, and/or other un-
controlled factors. Among the available methods, adsorption
is usually favored due to its effectiveness, simplicity, sustain-
ability, insensitivity towards toxic materials, smooth opera-
tion, and low cost [48–50]. However, the selection of an ap-
propriate adsorbent was always an exciting responsibility. The
choice is based on several factors like availability, cost, the
need for modification, mechanical stability, regenerability,
non-toxicity, economic feasibility, adsorption potential, etc.
In this context, it has been established that commercial adsor-
bents (e.g., activated carbon and silica gel) are very useful, but
their high cost and regeneration problem sometimes become
undesirable [51]. Thus a compromise can be often made be-
tween cost and adsorption capacity.

In this background, the utilization of domestic and agricul-
tural wastes as adsorbents became an easy option. Many ad-
sorbents from biomass wastes have been developed and
exploited as an efficient adsorbent for the confiscation of
different contaminants from water and wastewater [52, 53].
These wastes have either been exploited as such are after
appropriate modification. For example, almond shell
[54–56], Azolla [57], banana peel [58–61], biomass fly ash
[62], cabbage waste [63], chitosan [64–72], Citrus limetta
peel [2, 73, 74], Citrus limonum leaves [75], corn cob
[76–79], Cucumis sativus peel [80, 81], elephant grass [82],
leaves [83, 84], Bengal gram seed husk [85], Luffa aegyptica
peel/seed [86, 87], orange peel [88–91], peanut hull [92–96],
pomelo peel [97, 98], Prunus dulcis leaves [99, 100], Punica
granatum waste [101, 102], rice husk [103–107], sawdust
[108–118], sugar cane bagasse [119–122], lotus seed [123],
walnut shell [124, 125], etc. have been effectively used to
make adsorbents for the removal of varieties of contaminants.
The enormous use of these wastes as adsorbents is mainly
due to their easy and cheap or priceless availability. Most of
these biomasses and other materials are thrown as waste and
additionally create a disposal problem. The same problem
also exists for spent tea leaves or rejected tea wastes. After
water, tea is the most widely consumed beverage globally,
and its production and consumption are increasing continu-
ously [126]. It is known for its good aroma, and its beverage
is prepared from cured leaves of the Camellia sinensis plant.
After making the beverage, the spent leaves become a waste
like other biomasses. Due to this waste’s surplus availability,
spent tea leaves have attracted attention for their utilization as
adsorbent. Since this waste is abundant and readily available,
its transformation to an adsorbent is economically feasible,
along with the additional advantage of waste handling. The
scope of the present article is highlighted in the following
flow chart (Fig. 1).

In addition to raw tea waste, its chemical and magnetic
modification forms, along with its activated carbon, have been
extensively used to treat dye polluted water. To modify, the
raw tea wastes are subjected to chemical and/or thermal treat-
ment. After the modification, the adsorbents tend to have a
higher number of active binding sites, better ion exchange
characteristics, and inclusion of new functional groups that
favor pollutant removal. However, given the execution as an
available adsorbent on a commercial basis for the treatment of
polluted water, the modified forms would be undesirable be-
cause of higher cost and need for expensive apparatuses,
chemicals, and skilled staff. Because of the above facts, the
present article has been planned with the prime objective of
reviewing the available studies on the utilization of raw tea
waste as an adsorbent for the confiscation of dyes from water
and wastewater. In the present article, an abbreviation, ART,
will be used throughout for all those adsorbents that were
made without any chemical or magnetic modification from
raw tea wastes irrespective of their source. However, the
source of the tea-based waste materials will also be described
in the text wherever available.

2 Characterization of ART

The analytical characterizations of material play an essential
role before its applications as adsorbent. The characterizations
assist in relating the adsorbent properties with its claim on the
adsorptive removal of different contaminants. The most com-
mon analytical methods used for the characterizations of ad-
sorbents are point of zero charge (pHpzc); Fourier-transform
infrared spectroscopy (FTIR); scanning electron microscopy
(SEM); energy-dispersive X-ray (EDX); transmission electron
microscopy (TEM); nuclear magnetic resonance (NMR); dif-
ferential thermal analysis (DTA); thermogravimetric analysis

Fig. 1 Flow chart: utilization of tea waste as adsorbent for the treatment
of polluted water
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(TGA); differential scanning calorimetry (DSC); Brunauer,
Emmett, and Teller analysis (BET); X-ray diffraction
(XRD); atomic absorption spectroscopy (AAS); and spectro-
photometry. Each of the above methods gives specific infor-
mation, and the combination of these techniques helps to
judge the suitability of materials for their potential application
as adsorbent. The judicious use of a variety of a few of these
techniques provides detailed surface and bulk information ac-
companying the materials’ suitability as adsorbent. The instru-
mental analyses throw light on the structural, morphological,
optical, and/or physicochemical features, which govern the
adsorption capability and help elucidate the mechanisms in-
volved in the process [127].

The pHpzh of an adsorbent in a solution is the pH at which
the surface’s net charges become zero. The adsorbent is neu-
tral at this value, while it becomes positively charged at lower
pH values and negatively charged at higher pH. Thus pHpzh
plays a significant role in deciding the medium pH during the
adsorption of dyes. Indeed, the role of medium pH on dye
adsorption can be best judged in the light of pHpzc. For ex-
ample, at lower pH, the adsorption of methylene blue by
household tea waste with pHpzh of 4.3 ± 0.2 was very low
due to repulsion between the cationic dye and positively
charged surface as the adsorbent became positively charged
through protonation of amine and carboxyl groups [128].
However, at higher pH (> pHpzc), the surface was suggested
to be deprotonated. It acquired a negative charge due to the
adsorption of OH− and the carboxyl groups, and ultimately the
adsorption of cationic dye was highly favored.

SEM gives information on surface morphologies, includ-
ing the presence of pores, cavities, and channels. EDX
coupled with SEMmay be used to correlate the morphological
characteristics of a material with its chemical composition and
also to get a mapping of the elemental concentration profiles
and perform quantitative analysis [127]. Many researchers
have reported the use of SEM for surface characterizations
of ART. It is a useful technique in judging the change in the
surface morphology of ART after the adsorption. For instance,
SEM images of ART, before and after the adsorption of acid
blue 25 (an anionic dye), illustrated in Fig. 2, indicated that the
waste tea residue was porous and irregular while it had com-
paratively fewer cavities after adsorption, which suggested the
successful penetration of the dye into the pores [129]. The
researchers also performed the EDX analyses on unadsorbed
and adsorbed tea residue and reported the increase in weight
% of carbon (from 65.93 to 69.11%) and inclusion of N
(3.36%) and S (0.62%) after adsorption, which indicated the
effective adsorption of dye.

FTIR is the most commonly used technique in getting in-
formation on the active sites and the presence of functional
groups. It gives important information on the presence of
functional groups that can be utilized for the abstraction of
toxic dyes. The FTIR of tea waste shown in Fig. 3 and the

presence of –OH, –CH, C=C, and C=O, secondary amine, N–
H bending, –CH3 bending, C–O stretching, –SO3 stretching,
and P=O, C–O, C=O groups were suggested [130]. Based on
shifting of peaks (3416 to 3406 cm−1, 1651 to 1644 cm−1,
1530 to 1537 cm−1, 1371 to 1385 cm−1, 1320 to 1331 cm−1,
1237 to 1244 cm−1) after adsorption, the authors suggested the
involvement of –OH, –C=C, or C=O, amine groups, and –CH
towards the interactions with MB.

The XRD studies give information on the crystalline and
amorphous nature of the adsorbents. The XRD examinations
of black tea samples were carried out, and the pattern showed
a broad peak at 20.2° (2θ), and the absence of any sharp peak
indicated the presence of significant species in the form of
amorphous texture [131]. Being involved in surface phenom-
ena, knowledge of surface properties of adsorbent is essential.

Fig. 2 SEM images of (a) unadsorbed ART and (b) acid blue 25 adsorbed
ART (figure is taken from [129] with permission from the publisher
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To investigate the phases, the XRD studies on tea wastes and
its modified forms have been carried out by many researchers
[132–136]. The BET method has been commonly used to
examine the surface area. Literature indicated that a number
of investigators had determined the surface area tea waste–
based adsorbent. The BET surface area of biomass waste is
strongly dependent on its source, method of adsorbent prepa-
ration, and other laboratory and environmental conditions.
The BET surface area of tea waste materials was reported to
be ranging from 0.222 to 68.82 m2/g [129–131, 137–141]. As
expected, like other biomasses, the surface area of tea wastes
is very low, particularly when compared with other commer-
cial adsorbents like activated carbon. However, the low sur-
face area does not necessarily imply poor adsorption potential
of any adsorbent [142]. The thermoanalytical techniques like
DTA/TGA/DTG/DSC are used to examine the thermal stabil-
ity of the material. AAS and spectrophotometry are used to
determine the concentration of metals and dyes, respectively.
The utilization of these and other techniques for the character-
ization of tea waste–based adsorbents is included in Table 1.

3 Adsorption, isotherm, and kinetic studies

In this section, the utilization of ART for the removal of dif-
ferent dyes will be discussed. Since, to develop a suitable
adsorbate-adsorbent system, accurate knowledge of adsorp-
tion equilibrium and kinetics is essential, the literature on iso-
therm and kinetics is also included in this section.

ART was generally prepared by washing the tea waste
many times with tap, deionized, or distilled water to eliminate
dust, dirt, and other visible or invisible impurities. These sam-
ples were dried, ground to a powdered form, and then sieved

to get particles of desirable size. The dry mass of the tea leaves
carries hydroxyl, carboxylate, phenolic, and oxyl groups
[146]. The presence of carboxylic protons, hydroxyl protons,
and lactone protons in ART is accountable for its ion-
exchange nature, which provides its scope to be used as an
adsorbent [147]. The spent tea leaves without any chemical or
physical treatment were utilized for the effective sequestration
of the cationic methylene blue [126]. The authors reported a
high monolayer adsorption capacity of 300.052 mg/g at 303
K. The author stated that adsorption capacity was increased
with an increase in initial dye concentration, and equilibrium
adsorption capacity (qe) rose from 8.0299 to 102.1376 mg/g
with the increase in initial dye concentration from 30 to 390
mg/L (Fig. 4). The initial dye concentration was suggested to
provide the driving force to overcome all mass transfer resis-
tances of the dye between the aqueous and solid phases, which
resulted in the enhancement in adsorption at a higher initial
dye concentration. Based on thorough analysis, the researcher
concluded that the data fitted the Langmuir model better than
Freundlich and Temkin isotherms and adsorption of methy-
lene blue on ART occurred as a homogeneous monolayer
surface coverage. Further, the kinetic results were best obeyed
by the pseudo-second-order (PSO) model.

In another work, the removal of this cationic dye by house-
hold tea waste was also studied by carrying the batch experi-
ments in changing laboratory parameters like initial dye con-
centration, contact time, adsorbent dose, and medium pH
[128]. The adsorption by ART was reported to be dependent
on initial dye concentrations, contact time, medium pH, and
adsorbent dose. Further, the isotherm results followed the
Langmuir model, confirming the monolayer adsorption with
the capacity of 85.16 mg/g, and the PSO model best repre-
sented the kinetics of the process. Employing the intensive

Fig. 3 FTIR spectra of ART
before and after adsorption
methylene blue dye—figure is
reproduced from [130] as distrib-
uted by Creative Commons
Attribution License
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Table 1 Characterization of ART used for removal of dyes

Dye Original source
of tea waste

Characterization
techniques used

Results Reference

Methylene blue Spent tea bags from
collected from tea stall

SEM Adsorbent had a rough surface morphology
having pores of different sizes. The
dye-loaded surface was covered with
dye molecules

[126]

Methylene blue Household tea waste pHpzc, FTIR pHpzc = 4.3 ± 0.2
FTIR: Involvement of bonded –OH, aliphatic

C–H group, C=O stretching mode
conjugated with the NH2, C–O stretching
of ether group, –SO3 stretching

[128]

Methylene blue Rejected tea obtained
from tea plantation

FTIR, SEM, BET FTIR: Involvement of bonded –OH, C=O
stretching, aromatic nitro compound,
and –C–C– group

Adsorbent had a rough surface morphology
with some pores. The dye-loaded surface
was covered with dye molecules

BET: Surface area = 4.2 m2/g, total pore
volume = 0.0045 cm3/g, average pore
diameter = 4.3 nm

[137]

Methylene blue Tea waste obtained from
a tea factory

FTIR, SEM, XPS,
solid state 13C-NMR,
BET

FTIR: Involvement of bonded –OH,
–C=C or –C=O, –CH, amine groups
in interaction with MB

SEM: Adsorbent had a heterogeneous
porous surface

BET: Surface area = 0.913 m2/g, pore
volume = 0.007 cm3/g, average pore
diameter = 2.611 nm

13C-NMR: Carbon and oxygen functional
groups might be played key role during
the interaction with dye

[130]

Methylene blue Black tea pHpzc, FTIR, XRD, BET pHpzc = 5.55 ± 0.21
FTIR: Details are not available
XRD: Major species present in adsorbent

were of amorphous texture
BET: Surface area = 0.738 m2/g

[131]

Reactive green 19,
reactive violet 5

Black tea from
commercial tea bags

FTIR, TG/DTA FTIR: Involvement of bonded –OH, aliphatic
C–H, C=O or C=C, and C–O stretching of
ether groups

TG/DTA: Loss of hygroscopic water (65 °C),
degradation of cellulose (300 °C) and lignin
(450 °C) occurred

[143]

Congo red Tea waste from tea plant FTIR, SEM, BET FTIR: Involvement of bonded –OH, aliphatic
C–H, –C=N or –C=O stretching, –C–C–,
amine groups

SEM: Adsorbent surface had highly
heterogeneous pores

BET: Surface area = 4.6 m2/g, pore
volume = 0.0052 cm3/g, average pore
diameter = 4.7 nm

[138]

Acid blue 25,
acid green 25

Waste tea residue of
tea shops

FTIR, zeta potential,
SEM/EDX, BET, DLS

FTIR: Based on shifting of the peak from
3311.78 to 3296.35 cm−1

(acid blue 25)/3290.56 cm−1 (acid green 25)
belonging to the strong stretching band of
the O–H or N–H group, authors suggested
the involvement of hydrogen bonding in
adsorption

Zeta potential: Isoelectric point at pH = 5.64
SEM: The image before adsorption has the

porous and irregular structure of ART,
whereas comparatively fewer cavities were
observed in image after adsorption, which
revealed penetration of the dye into the

[129, 144]
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analysis of the adsorption/desorption experiments, the authors
suggested that the adsorption was reversible and obeyed an
ion-exchange mechanism. The unmodified form of the spent
tea leaves (black tea) obtained from commercial tea bags was
used for the adsorption study of azo dyes and observed to have
very poor removal efficiency (< 10 %) [143]. However, on
thermal activation of the adsorbent, considerable enhance-
ment in the removal efficiency was observed, and it reaches
nearly 100%. Since thermal treatment was also associated
with significant weight loss, the authors suggested compro-
mised heating of the adsorbent at 300 °C for 1 h when 98.8%
and 72.8% of removal efficiencies were, respectively,
achieved for reactive green 19 and reactive violet 5. In a

similar work, the spent tea leaves of commercial tea bags were
also used to remove other azo dyes, viz., reactive blue 19,
reactive red 120, reactive violet 5, and reactive green 19 from
wastewater [148]. The waste material obtained from the tea
plantation, i.e., rejected tea, was also used to prepare adsor-
bent and tested to remove methylene blue [137]. The effect of
initial dye concentration, contact time, temperature, adsorbent
dose, and solution pH on the adsorption methylene blue by
this adsorbent was thoroughly studied and reported that the
adsorption capacity increases with the increase of temperature.
Further, the equilibrium adsorption rises from 18.6 to 134 mg/
g, with an increase in the initial dye concentration from 50 to
500mg/L, which was suggested to be an enhancement inmass

Table 1 (continued)

Dye Original source
of tea waste

Characterization
techniques used

Results Reference

pores and hence changed in morphology
after adsorption

BET: Decrease in surface area from
68.82 m2/g (before adsorption) to 23.47 m2/g
(after adsorption) affirmed the penetration
of dye leading to blockage of pores

Acid green 25 Waste tea residue of tea shops

Astrazon blue
FGRL (AB)

Households discharged tea dust FTIR, SEM, BET FTIR: Involvement of bonded O–H and
aliphatic C-H groups, symmetric bending
of CH3, secondary amine group,
C–O stretching of ether group,
and –CN– stretching

SEM: The adsorbent consisted of fibers
with open stomata and no considerable
difference was observed in the surface
morphology after the adsorption of dye

BET: Surface area = 0.871 m2/g

[139]

Crystal violet Tea dust from tea factory pHpzc, FTIR, SEM, BET pHpzc = 4.2
FTIR: Involvement of stretching frequency

of bonded O–H group and C–H bond of
methyl and methylene groups, carbonyl
group, secondary amine group, C–O
and –SO3 stretching

SEM: The adsorbent contained fibers with
pores and rough surfaces

BET: Surface area = 59.9 m2/g, pore
volume = 0.031 cm3/g, average pore
diameter = 5.33 nm

[140]

Acid orange 7,
basic yellow2

Tea waste from local Shop pHpzc, FTIR, SEM pHpzc = 5.15
FTIR: Involvement of O–H group, > C=O,

secondary amino groups, C–O, C–H
stretchings

SEM: Rough and porous surface texture

[145]

Astrazon red 6B Spent tea leaves and tea bags FTIR, SEM, BET, FTIR: Involvement of bonded O–H,
aliphatic C–H, carboxyl C=O, amide, -CH3,
C–O ether, –SO3, –CN groups, etc.

SEM: TL had rough surface morphology
with pores of different sizes offering
suitability for dye adsorption. TB fibers
were swollen after the dye adsorption

BET: Surface area = 0.222 m2/g (TL)

[141]
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transfer driving force at higher initial dye concentration
resulting from the higher dye adsorption.

In a significant work, the adsorption ability of ART was
examined by using an anionic dye (Congo red) by conducting
the batch experiments under the changing laboratory condi-
tions like initial dye concentration, adsorbent dose, contact
time, solution pH, and temperature and the data were analyzed
in the light of different isotherm (Langmuir, Freundlich, and
Temkin and kinetic (PFO, PSO, IPD) models [138]. Based on
the observation of a slight decrease of adsorption at lower pH,
the authors suggested the adsorption mechanism to occur by
the factors involving ion exchange, hydrogen bonding, π–π
stacking interaction, or chelation. In another notable work
[130], the color removal of methylene blue dye by tea waste
was suggested to be accomplished by different mechanisms,
such as hydrogen bonds, electrostatic interaction, functional
group complexation, and π–π binding and ion exchange as
shown in Fig. 5.

In a very recent work, adsorption of acid blue 25 (anionic
dye) onto ART was investigated by performing both batch and
continuous experiments, and the experimental results were stat-
ed to be best obeyed by Redlich-Peterson (R-P) isotherm and
PFO kinetic models [129]. The removal of dye was suggested to
be ensured by physisorption and had good reusability of ART
up to three repetitive cycles. Based on the continuous studies
conducted in a packed bed, the authors also suggested the com-
mercial applicability of this waste-based adsorbent. The removal
of methylene blue has also been reported by tea wastes, and the
results were followed by second-order kinetics and Langmuir
isotherm with maximum adsorption capacity (qm) of 104.9,
173.4, and 210.8 mg/g at 15, 25, and 40 °C, respectively [149].

Some researchers reported that the adsorption of dyes by
ART also obey Freundlich isotherm. For example, the adsorp-
tion of Astrazon blue FGRL dye by an adsorbent made from
households’ discharged tea dust was well signified by the
Freundlich equation indicating the adsorption-complexation
reactions that occurred during the adsorption [139]. The ap-
plicability of the used black tea for the treatment of water
containing Rhodamine-B was examined by carrying out the
experimental studies in the batch method, and the data were
interpreted in light of simple first and second order along with
PSO kinetic equations [150]. This adsorption was well obeyed
by PSO kinetics and Langmuir model with the qm of 53.2 mg/
g at the acidic pH of 2. The spent black tea collected from the
cafeteria was employed to remove Congo red from water and
influences of different laboratory parameters such as time,
temperature, adsorbent dose, pH, and dye concentration on
adsorption were studied [151]. A maximum dye removal of
> 80% was reported to be obtained within 5 min at adsorbate
concentration of 5 mg/L, adsorbent dose of 0.1 g, and medium
pH of 6 at room temperature. The investigational data were
suggested to be conformed to Langmuir and Freundlich
isotherms.

Fig. 5 Mechanism for removing
methylene blue dye by tea
waste—figure is reproduced from
[130] as distributed by Creative
Commons Attribution License

Fig. 4 Effect of contact time and initial dye concentration on the
adsorption capacity ART for the confiscation of methylene blue—
figure is taken from [126] with permission from the publisher
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In another significant work, the adsorbent made from tea
waste collected from tea factory was analyzed by FTIR, SEM,
BET, XPS, and solid-state13C-NMR and exploited for the con-
fiscation methylene blue from water [130]. Based on the thor-
ough analyses of the experimental data in the light of different
isotherm (Langmuir, Freundlich, Temkin, Dubinin-
Radushkevich) and kinetic (PFO, PSO, Elovich, two-
compartment) models, the authors suggested that the adsorption
might be consisted of two stages: a fast adsorption stage and a
slow adsorption stage. The former stage was completed within
5 min with the removal rate of 90%. The adsorption was well
followed by PSO kinetics and Langmuir isotherm with a qm of
113.1461 mg/g. The interaction mechanism between adsorbent
and adsorbate was suggested to be associated with the electro-
static attraction, ion exchange, hydrogen bond, π–π binding.
Thus the presence of the organic groups in tea waste played a
significant role in the adsorption of dye. In another work, black
tea waste powder was utilized as an effective adsorbent for
methylene blue and different experimental factors like contact
time, initial dye concentration, solution pH, temperature, and
adsorbent dosage thoroughly studied, and the data were exam-
ined in light of different kinetics (PFO, PSO, intraparticle diffu-
sion, Boyd, and Elovich) and isotherm (Langmuir, Freundlich,
Dubinin-Radushkevich, and Temkin) models [131]. Based on
the multiple regeneration/adsorption studies, the authors report-
ed that adsorbent remained efficiently more than 75% after five
cycles using NaOH as a regenerative reagent and thus be used
for many times.

The application of spent green tea leaves collected from tea
processing company was demonstrated for the decolorization
of raw textile wastewater samples with a true color of 868
ADMI (American DyeManufacturers’ Institute values) which
demonstrated and reported that the true color removal efficien-
cy of the raw textile wastewater was high in acidic solution
and at high temperature, suggesting the endothermicity of the
process [152]. A low value of 13.9 kJ/mol of activation energy
specified that the process was controlled by diffusion with the
physisorption mechanism. It was also reported that green tea
waste adsorbent showed outstanding performance in color
removal with the qm of 775 ADMI/g at 26 °C, which was
higher than that of the commercial powder-activated carbon
(526 ADMI/g).

In a relatively recent work, the adsorption of crystal violet
using tea dust was studied thoroughly under the different lab-
oratory experimental conditions in batch mode [140]. The
adsorption of the dye was reported to be fast during the initial
20 min, and then, it continued slowly up to 100 min and lastly
attained saturation. The adsorption capacity was observed to
be increased with initial dye concentrations (50 to 200 mg/L)
at any time. This was suggested to be due to the predominance
of mass transfer driving force at higher initial dye concentra-
tion. The adsorption data had a better correlation with PSO
than PFO, while the unified approach modeled the isotherm

and kinetics successfully well and suggested to be beneficial
for the adsorption of crystal violet onto ART. The data were
well fitted with both Freundlich and Langmuir model equa-
tions with the qm value of 175.4 mg/g.

In a notable work, the adsorption of both acidic (acid or-
ange 7) and basic (basic yellow 2) dyes was studied by both
batch and column modes [145]. The batch studies indicated
that the removal of both dyes was reliant on pH, initial dye
concentration, contact time, adsorbent dose, and temperature,
and the equilibrium was reached in 4 and 3 h for acid orange 7
and basic yellow 2, respectively. The authors reported that
lower pH (with an optimum value of 2) was more favorable
for acid orange 7 because of the protonation of phenolic and
carboxylic groups. However, maximum removal of basic yel-
low 2 was observed at pH 6, which was suggested to be the
fact that at this pH, the amino, carboxylic, and phenolic groups
are not ionized and therefore the adsorption of cationic basic
yellow 2 was executed by the van der Waals interactions with
the electron-rich adsorbent.

Astrazon red 6B, a basic dye, was removed in batch exper-
iments using two different adsorbents made from spent tea
leaves and tea bags and proposed to be competent and inex-
pensive adsorbents [141]. The adsorption behavior of both
adsorbents was analyzed and reported that the Langmuir mod-
el best followed the adsorption equilibrium of Astrazon red 6B
dye onto the latter adsorbent. In contrast, that with former was
followedwell by the Freundlich isotherm. Further, the kinetics
accompanying both the adsorbents were the same and well
represented by PSO.

Spent tea leaves were used to examine their effectiveness in
decontamination of wastewater containing crystal violet by
studying the effect of different laboratory variables like adsor-
bent dose, solution pH, and temperature, and agitation time
has been investigated [153]. The dye uptake was reported to
be increased with temperature and medium pH. The PSO best
represented the kinetics of adsorption, and rate constants were
8.5 × 10−3, 22.2 × 10−3, and 42.0 × 10−3 g/mg min for the
initial adsorbate concentrations of 10, 20, and 30 mg/L, re-
spectively. In another work, waste green tea biomass was used
to study the adsorption of malachite green [154]. In this work,
the experimental data were thoroughly analyzed in light of
different isotherms (Langmuir, Freundlich, Dubinin-
Radushkevich, and Temkin) and kinetic (PFO, PSO,
intraparticle film diffusion, Elovich) models and best fittings
of data were stated to be obeyed by Dubinin-Radushkevich
isotherm and PSO kinetic models. The removal was suggested
to be chemisorption with the Langmuir maximum monolayer
coverage of 14.08 mg/g. The experimental conditions and
isotherm and kinetic models accompanying the adsorption of
different dyes by ART have been summarized in Table 2.

The confiscation of methyl orange from contaminated water
by green tea waste of tea plant was studied by conducting batch
experiments under the changing conditions of initial dye
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concentration, adsorption time, temperature, and ART dose
[155]. The experimental parameters were optimized by the re-
sponse surface methodology based on Box-Behnken design.
The optimal conditions corresponding to the maximal removal
of MO (58.2%) were reported to be 9.75 mg/L (initial dye con-
centration), 63.8 min (contact time), and 3.90 g/L (adsorbent
dose). The three-dimensional response surface plots reported
the effects of parameter interaction for dye removal by the spent
tea adsorbent. The experimental data modeling was also per-
formed in the continuous fixed-bed adsorption of Congo red
by tea waste [156]. The investigators studied the influence of
different factors like the adsorbent mass, dye concentration, flow
rate, and initial pH. They used three models, namely, Adams-
Bohart, Thomas, and Yoon-Nelson, to predict the adsorption
breakthrough curves of dye onto tea waste adsorbent. They ob-
served that the Adams-Bohart model reasonably predicted the
early parts of the adsorption with the correlation coefficient of
about 0.9 while the Yoon-Nelson Thomas models better
projected the breakthrough curves at all the investigational fac-
tors. They also applied the bed depth service time model at
various bed depths and suggested the fitness of this model for
the best explanation of the column data.

4 Thermodynamic studies

Since, to develop a suitable adsorbate-adsorbent system, ac-
curate knowledge of thermodynamic is essential. The adsorp-
tion process should be thermodynamically spontaneous either
in terms of exothermicity or entropy enhancement or by both.
Moreover, the absorption should also be kinetically supported
even in a very low contact time of adsorbent with an adsor-
bate. On the scale of thermodynamics, all the adsorbent pro-
cesses are characterized by three parameters, namely, changes
in Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy
(ΔS°). These parameters play a significant role in understand-
ing the nature of adsorption as they give useful information on
the feasibility and exothermicity or endothermicity of the pro-
cess. Additionally,ΔS° highlights the nature of randomness at

the solid-liquid interface. These three parameters are interre-
lated as:

ΔGo ¼ ΔHo−TΔSo

The parameter ΔG° is related to equilibrium constant (Kc)
and given as:

ΔGo ¼ −RTlnKc

where R (8.314 J/K mol) and T represent the universal gas
constant and thermodynamic temperature in Kelvin, respective-
ly. From the above equations, the following linear equations can
be generated to calculate the values ofΔS° andΔH° very easily
from the intercept and slope of ln Kc versus 1/T plot.

lnKc ¼ −
ΔH°
RT

þ ΔS°
R

The thermodynamic behavior of adsorption of dyes by
ART is summarized in Table 3. The thermodynamic parame-
ters accompanying adsorption, in most cases, suggested the
spontaneous and endothermic nature of the process with an
increase in randomness at the solid-liquid interface. This table
further indicates that the magnitude and sign of thermodynam-
ic constants are reliant on the nature of dyes and ART. For
example, the removal of methylene blue was reported to be
exothermic with a decrease in randomness at the solid-liquid
interface by a research group [131] while an opposite behav-
ior, i.e., endothermicity along with enhancement in random-
ness (disorder) at the solid-liquid interface, was reported by
another research group [149]. However, in both the above
cases, the process was thermodynamically feasible.

5 Conclusions and scope for future work

Water contamination by toxic dyes has become a severe issue
due to tremendous hazardous and dangerous impacts on
humans and other living organisms. This review article focus-
es on the progress related to the confiscation of dyes from

Table 3 Thermodynamic
parameters accompanying the
adsorption of different dyes by
ART

Dye Thermodynamic parameters Temperature
range (K)

Reference

ΔG° (Sign) ΔH° (kJ/mol) ΔS° (J/K mol)

Congo red Negative 19.9619 80.1 303–323 [138]

Acid blue 25 Negative 17.59 230 288–318 [129]

Acid green 25 Negative 9.43 153 288–318 [144]

Astrazon blue FGRL (AB) Positive 19.61 − 82.48 293–323 [139]

Methylene blue Negative − 18.50 − 18.90 288–323 [131]

Methylene blue Negative 11.356 20.563 288–318 [149]

Acid orange 7 Negative 78.2312 336.1 293–333 [145]
Basic yellow 2 Negative 7.332 91.9 293–333
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water and wastewater employing the adsorbents made from
spent or rejected tea available as waste in huge amount world-
wide. Such adsorbents offer ample opportunities for re-
searchers to utilize them to treat toxic and polluted water.
The effect of various experimental factors like the concentra-
tion of dye solution, adsorbent dose, adsorbate-adsorbent con-
tact time, medium pH, and the temperature on the removal of
dyes by ART as reported by different research groups has
been thoroughly surveyed and discussed. In most of the pub-
lished studies, excellent or satisfactory adsorption was obtain-
ed by using tea-based adsorbents. However, the extent of ad-
sorption is strongly dependent on the nature of dyes, source of
tea waste, and laboratory conditions. The reported studies
were also commonly focused on the characterization of adsor-
bents and analyses of adsorption data in the light of equilibri-
um, kinetics, and thermodynamics accompanying the adsorp-
tion. The PSO kinetic and Langmuir models fitted dye remov-
al data nicely in the majority of reported work.

Based on the in-depth analyses of literature on the topic, it
has been proposed that there is a need for more research on the
treatment of dye-contaminated wastewater. The suggestions
for future work can be recommended as below:

1) Since spent or rejected tea leaves are widely available as
waste in huge quantities, it is advisable to properly utilize
them inmaking new biodegradable, inexpensive, efficient
adsorbents on a large scale.

2) The coverage of the studymust bewidened, i.e., more and
more dyes should be included in the study.

3) Since the maximum adsorption capacity was reported to
be from very low (0.0045 mg/g) to a moderately high
(300.052 mg/g), the different batch parameters should
be properly optimized for the further improvement of ad-
sorption capacity.

4) To the best knowledge of the author, all the studies have
been carried out on synthetic dye solutions. Therefore
there is an urgent need to focus the work on real effluent
samples of different industries.

5) Since the combination of pollutants is found in industrial
effluents, there is a need for research focusing on the
competitive adsorption of dyes from mixtures.

6) With few exceptions, studies are generally carried out in
batch mode, which does not have scope for industrial
applications. Thus additional investigation on the adsorp-
tive use of ART should be planned in continuous systems.
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