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Abstract
Algae is considered as a promising third-generation biofuel feedstock. Macroalgae is an efficient source of biomass for
biohydrogen production. Biohydrogen (H2) is believed as a sustainable and clean energy carrier with high-energy yield. The
pretreatment is essential to enhance the hydrolytic process during dark fermentation. During pretreatment, some inhibitory
substances are formed and are controlled by detoxification techniques. This review briefly covers the marine macroalgal species,
pretreatment methods for biohydrogen production, and inhibitory components formed during the pretreatment. Lastly, this
review suggests the techno economic assessment about life cycle, energy, and economic feasibility in biohydrogen production
from macroalgae.
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1 Introduction

Algae, a diverse species mainly present in the aquatic region, can
perform photosynthesis in the absence of roots, stems, and
leaves. According to the size, they are divided into two:
microalgae (unicellular) and macroalgae (multicellular) [1].
Algae accumulate carbon dioxide (CO2) rapidly with high

productive capacity and generate carbohydrates, proteins, and
lipids [2]. Over 50 years, it is proposed to generate biofuels
through algae. It is estimated that globally 30.1 million tons of
macroalgae is produced in 2016; among them, artificial cultiva-
tions produce 95%, and the remaining 5% are produced natural-
ly. Figure 1 shows the schematic outline of this review.
Macroalgae, also known as seaweeds, are found to be significant
organisms in the marine ecosystem where they utilize the carbon
dioxide and store carbon [3]. Many researchers reported that
macroalgae are an effective substrate for biobased fuel produc-
tion, such as biohydrogen, methane, ethanol, and biodiesel [4–6].
Macroalgae is cultivated onshore and offshore. Factors such as
climate, temperature, water salinity condition, etc. are considered
for commercial macroalgal cultivation. Offshore macroalgal cul-
tivation is cost-effective while onshore cultivation costs more in
terms of processing [7]. But, cost factors in processes such as
initial investment, operation, biofuel processing, and mainte-
nance are more than the market cost in offshore farming [8] as
macroalgae contain much water. Hence, more is needed for the
dehydration method. Algal-based biofuel is considered as a 3rd-
generation biofuel. Its development is emphasized to focus on the
problem of effects related to the production of food crops and its
resource distribution. The importance of algae as potential biofu-
el feedstock was enhanced significantly in recent years. Mainly,
the sugar components of macroalgae are realized as a suitable
substance for bioethanol production [4]. Also, oil extracted from
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algae is feasibly used for biodiesel production. Microalgae re-
ceive greater emphasis on biodiesel production as they have a
higher growth rate and lipid stock capacity [9]. Higher efficiency
of biofuel production from algae is proposed to provide better
fuel security for fuel demands.

Biohydrogen is considered a sustainable and clean energy
carrier with high-energy yield and is thus a main source of
future fuel. Research and development concerning
biohydrogen is rapidly increasing in recent years. From the
bibliometric analysis, it is possible to assess the scientific ac-
tivities, research impact, and sources achieved by providing
information based on the type of research and its results.
Figure 2 shows the number of articles published for
biohydrogen production and relevant research development
in most productive journals (2010–present). In anaerobic fer-
mentation, hydrolysis is a slow process, which affects the
biohydrogen production [10]. Hydrogen-producing microbes
generate hydrolytic enzymes that are low in concentration
when compared with pure cultures. Thus, pretreatment is re-
quired to fasten the hydrolysis and subsequent biohydrogen
yield [11]. Generally, an effective pretreatment can improve
the breakdown of complex components (carbohydrates) into
simpler ones (sugars), preventing the carbohydrate degrada-
tion and inhibitor formation with the subsequent fermentation

processes. However, pretreatment is one of the most vital but
expensive processes in converting biomass to fermentable
sugars. The pretreatment cost is assessed as 33% of the total
equipment cost in lignocellulosic biomass conversion.
Biohydrogen production is affected by recalcitrant/inhibitory
compound formation during the pretreatment, which affects
the process performance and results in lower hydrogen yields.
This inhibitor formation is limited by detoxification tech-
niques such as adding chemical additives, liquid–liquid ex-
traction, liquid–solid extraction, biological treatment, and
heating [12]. The algal pretreatment is easier and less expen-
sive compared to lignocellulosic biomass as algae has no re-
calcitrant component, i.e., lignin. Macroalgae have a potential
to be a valuable feedstock for biorefinery. Depending on the
type and species of seaweed, it is possible to extract fatty
acids, oils, antioxidants, high-value biological components,
and other substances. The macroalgal biorefinery context pre-
sents a conceptual model for the high-value-added product
such as biofuels. The role of the macroalgal biorefinery con-
cept is analyzed in this review. The purpose of the study is to
give a clear view about the biohydrogen production from the
macroalgae and its circular economy. This review briefly
comprehends the marine macroalgal species, pretreatment
methods for biohydrogen production, and inhibitory

Fig. 1 Schematic outline of the review
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components formed during the pretreatment. Various detoxi-
fication methods, biohydrogen production pathways, and eco-
nomic and energy analysis during biohydrogen production are
also discussed.

2 Anaerobic fermentation—biohydrogen
generation

Generally, anaerobic digestion (AD) involves four metabolic
steps under the oxygen-free environment: (1) hydrolysis, (2)
acidogenesis, (3) acetogenesis, and (4) methanogenesis. In the

conventional AD process, hydrogen is not detected as it is
directly consumed by methanogens to produce methane
(CH4) and carbon dioxide (CO2). Hydrolysis, fermentation
(acidogenesis), and acetogenesis are the important steps of
anaerobic fermentation for hydrogen production. All three
steps involved the degradation of biopolymers and conversion
to volatile fatty acids (VFAs), followed by hydrogen produc-
tion (H2). Clostridium, Enterobacter, and Bacillus are the
main microbial species or cultures that produce hydrogen
from the carbohydrate-rich substrate [13]. Glucose is hydro-
lysed into acetic acid with the end product H2 shown in the
following equation [1]:

Fig. 2 a Number of articles published and b comparison of research and review articles published related to biohydrogen in most productive journals
during the period (2010–2020)
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C6H12O6 þ 2H2O→2CH3COOHþ 2CO2 þ 4H2 ð1Þ

Hydrolysis is a rate-limiting step as it requires a longer
duration for the substrate hydrolyzation. In the hydrolysis pro-
cess, complex substances such as carbohydrates, proteins, and
fats are broken down into simpler substances by the fermen-
tative microorganism [14]. Due to the complexity of the struc-
tures, biological conversion requires more time, and the pro-
cess is not effective. Thus, pretreatment is required to disinte-
grate the cell structures and weaken the structure, which
makes the substrate easily available for hydrolysis.
Acidogenesis (acid-forming) is the second step in which hy-
drolyzed organic substances get degraded and produce H2,
CO2, and VFA by fermentative anaerobic microbes.
Acetogenesis is the third step in fermentation in which the
biological reaction converts the VFA into H2, CO2 with acetic
acid as the end product. In this step, acetogens are the main
fermentative microbes.

2.1 Biohydrogen production pathways

Hydrogen generation through biological processes garners im-
portance, as it has the least impact on the environment [15].
Production of hydrogen through anaerobic fermentation of bio-
mass is renewable, and sustainable energy production is con-
sidered a green energy source. Carbohydrates are significant
constituents where monomers are derived and used in
biohydrogen production. Mannitol (C6H14O6), a carbohydrate
monomer, is a potential element for biohydrogen production
from macroalgae [4]. Mannitol, a simple sugar component of
macroalgae, is easily soluble in water, although it is hard to
ferment in anaerobic conditions. It creates complications during
biofuel production; thus, pretreatment is required to enhance the
hydrolysis. Firstly, mannitol is converted into C6H13O9P (fruc-
tose-6-phosphate) with reduced NADH (nicotinamide adenine
dinucleotide) production [4]. Then, C6H13O9P is converted into
C3H7O6P (glyceraldehyde-3-phosphate), which is further con-
verted into C3H4O3 (pyruvate) with acetic acid, ethanol, and
butyric acid as end products. In this pathway, hydrogen is pro-
duced through ferredoxin and NADH reduced forms, with the
hydrogenase as the catalyst. The methanogenesis step could
consume hydrogen during fermentation. However, this can be
controlled by heating the inoculum and through operating fac-
tors such as low pH, high volatile fatty acid concentration, and
organic loading. Rafa et al. [16] reported the mechanism of
anaerobic fermentation of glucose for hydrogen production. In
this process, glucose is converted into C3H4O3 with NADH as
an intermediate product. Next, C3H4O3 is converted into acetyl
coenzyme A (acetyl-CoA) and carbon dioxide by pyruvate:

ferredoxin oxidoreductase under anaerobic condition. Then it
is oxidized by [FeFe]-hydrogenases and yields hydrogen.
Alternatively, pyruvate breaks down into formate and acetyl
coenzyme A through pyruvate formate lyase. Then formate is
converted into H2 and CO2 with [NiFe]-hydrogenases or
[FeFe]-hydrogenases. In fermentation, acetyl coenzyme A is
converted into several organic products such as acetone, buta-
nol, butyric acid, and ethanol with the simultaneous NADH
oxidation. Figure 3 shows the metabolic pathway of
biohydrogen production using different substrates.

3 Macroalgal biomass as third-generation
feedstock

First-generation biofuels depend on food crops such as sugar
crops, cereals, and oilseeds, which has led to a series of issues
related to food prices, CO2 emission, and land usage [17]
during mass production. Non-food-based biomasses like ba-
gasse, straw, forest residues, and organic waste are the main
sources for second-generation biofuel production, affected by
technological barriers, collection of feedstock, and cost effects
[18]. Biofuels generated from algae are known as third-
generation biofuels, which are considered a promising alter-
nate that overcomes the issues related to the production of
biofuels in the first and second generations [19]. Algae (mi-
cro- and macro-) are considered a third-generation biofuel
feedstock. Algae have several advantages like rapid growth
rate, being superior in CO2 fixation, less land requirement, and
absence of lignin [18, 20].

3.1 Macroalgal species and types

According to the thallus color, macroalgae are classified into
green, red, and brown. In green algal classifications, over 4500
species are present, including 3050 freshwater algal species
(Chlorophyceae and Trebouxiophyceae) and 1500 seawater al-
gae (Ulvophyceae, Dasycladophyceae, Bryopsidophyceae, and
Siphoncladophyceae). In red algal classifications,
Rhodophyceae is the main class that includes two sub-classes:
Bangiophycidae and Florideophycidae. The appearance of red
color is due to the presence of pigments such as chlorophyll a,
phycoerythrin, and phycocyanin [4]. Among the 6000 red algal
species found, most of them exist in tropical regions. The brown
algae constitute over 2000 species, among which Phaeophyceae
is the main class. Its color is due to the presence of chlorophyll a
and c, b-carotene, and other xanthophylls [21]. Eight hundred
seventy-one macroalgal species are estimated in the Indian ma-
rine environment. Ulva, Chaetomorpha, Bryopsis, and
Grateloupia are mostly found in the southern region of the
Tamil Nadu coastal line [22].

�Fig. 3 Different metabolic pathways for biohydrogen production by
using a mannitol, b glucose, and c galactose as substrate
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3.2 Collection and characterization of macroalgal
species

Generally, algae contain various components such as carbo-
hydrates, proteins, ash content, and lipids in various forms.
For example, red algae contain carbohydrates in the form of
heterosides floridoside [α-D-galactopyranosyl-(1–2)-
glycerol] [23]. Further, agar, carrageenan, and glucans are
the forms of carbohydrates present in red algae. Some algal
species contain other forms of carbohydrates such as manni-
tol, sorbitol, and floridoside. In brown algal species, com-
pounds such as alginate, mannitol, glucose chains, and lami-
narin are present. Green algae contain polymerized glucose,
sucrose, and polysaccharides [24]. Green macroalgae, namely
Ulvacae and Cladophoracae species, are emphasized due to
their easy availability and harvesting [25].

3.3 Assessment of diversity

Macroalgae are found 180 m deep in shallow coastal water
areas, found on rocks and coral structures. In India,
macroalgae are widely spread along with coastal areas; most
of the tropical types include 271 and 1153 genus and species,
respectively. Over 20,000 ha of marine algae is spread along
the coastline of Tamil Nadu. Sahayaraj et al. [26] studied the
macroalgal diversity in the southern part of Tamil Nadu. In
their study, 57 taxa are identified, among which are 25 taxa in
rhodophyta and 18 and 14 taxa belong to chlorophyta and
ochrophyta, respectively. Idinthakarai coastal region covers
48 algal species, and is the best site for marine macroalgal
collection.

3.4 Analysis of composition

Macroalgae have high water content, minerals, high carbohy-
drate, protein, and lipids. The absence of lignin [27] and their
compositions are summarized in Table 1. Macroalgal species
consist of fatty acids, which are saturated (29.92–68.93%),

monounsaturated (17.88–39.23%), and polyunsaturated
(6.0–17.57%) [28]. Twenty tonnes per hectare of biomass
from marine macroalgae is produced yearly. The fucoidan,
fucoxanthin, laminarin, mannitol, high-M alginate, and anti-
oxidants are the bioactive components present in marine
macroalgae [4].

4 Processing of macroalgal biomass

Processing operations of macroalgae are grouped into five
main sections: (i) harvesting, (iii) washing and cleaning, (iii)
dewatering and drying, (iv) milling, or size reduction, and (v)
preservation and storage.

4.1 Harvesting

Harvesting of macroalgae is a significant process in coastal
community development for years by providing feed, fuels,
and byproducts [29]. Eleven countries in the world are har-
vesting 1660 tonnes of green macroalgae annually fromwhich
Ulva spp. are widely harvested in the Korean region [30].
There are generally two techniques in macroalgae harvesting,
handheld harvesting and mechanical harvesting. In handheld
harvesting, macroalgae are harvested by handpicking. In some
cases, a sickle-like tool such as Nejiri or Irish hook is used for
harvesting [31]. Mechanical harvesting is performed by using
a customized boat, dredge, and mesh conveyor. Mechanical
harvesting causes adverse effects on marine ecosystems.
Substantially, large-scale harvesting reduces the macroalgal
species growth and influences the marine diversity.

4.2 Washing and cleaning

The washing of macroalgae is performed to remove impurities
such as epiphytes and extraneous matters by clean water. The
cleaning process takes 10 to 30 min at ambient temperatures,
preferably 10 to 30 °C. In some cases, macroalgae are exposed
to the bleaching process using agents such as Clorox solution,
to clean and sterilize macroalgae [32]. Later, macroalgae is
hydrated, and the impurities are removed.

4.3 Dewatering and drying

Dewatering is the process of removing water from marine
macroalgae through mechanical methods such as pressing
and centrifugation. Removing the water content from algal
biomass destroys the algae by microbes [32]. In the
dewatering process, less energy is used to remove water than
evaporation, and it seems better for minimizing the moisture
content before drying. The ratio of dry biomass and moisture
content is a significant factor for further biofuel processing.
Drying is the process of removing the moisture content of

Table 1 Components present in macroalgal species and their
compositions

Components Macroalgal compositions
(% dry weight)

Carbohydrates Green macroalgae, 25–50%
Red macroalgae, 20–60%
Brown macroalgae, 30–50%

Proteins Green macroalgae, 10–30%
Red macroalgae, 10–45%
Brown macroalgae, 5–15%

Water content 70–90%

Lipids 1–5%
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macroalgae and helps the biomass for subsequent treatment
steps. The drying process is mostly carried out in sunlight or a
hot air oven [6]. Sunlight drying is a widely used method for
drying macroalgae. This method is economical as it requires
natural weather and no other energy source for drying. Driers
using coal fire are used for drying; however, this method is
uneconomic for biofuel. The drying process will increase the
shelf-life of algae by 20–30% and reduce transportation costs
[33]. For sustainable fuel production, air drying is another
method to increase the dry biomass content.

4.4 Milling (size reduction)

Milling is the process performed after drying the size reduc-
tion of macroalgae. It is then exposed to sieving. Smaller
particles tend to have higher reaction efficiency during anaer-
obic fermentation for biofuel production [6]. Milling is com-
monly used to increase the surface area to volume ratio to
enhance the hydrolysis in the anaerobic digestion. A signifi-
cant rise in methane yield is exhibited due to the size reduction
of macroalgae before anaerobic digestion. Tedesco et al. [34]
studied the particle size reduction of macroalgae Laminaria
spp. through beating pretreatment, and achieved an improve-
ment of 53% in methane production.

4.5 Preservation and storage

Macroalgal storage is essential due to the high water content.
If macroalgae is not properly stored, then it is ruined quickly.
Once the size of macroalgae is reduced, it is stored at appro-
priate temperature. Brown algae is stored at ambient temper-
ature. It has more resistance than other algal species to decom-
position. But macroalgal periodic growth needs preservation
and storage, which is useful in continuous bioenergy recovery.
An alternate preservation method is ensiling (wet storage
step), which is extensively used to store animal feed. The
ensilage method is used to create low-pH conditions, which
inhibits the microbial action, and stops the loss of carbohy-
drate [35]. In the ensiling process, less amount of dry matter is
lost than dry storage. In the ensiling method, general methods
such as trenches, clamp or heap silage, bunkers, and silos are
used to attain the essential oxygen-free condition.

5 Pretreatment methods for biohydrogen
production

Bioenergy generation from marine macroalgal biomass in-
volves the biochemical methods for biohydrogen generation
from algae, bioethanol production by fermentation of carbo-
hydrates, biodiesel production from algal oil or lipids by ex-
traction and transesterification, and biomethane production
from algal biomass by anaerobic digestion. For degrading

the algal feedstock for bio-fuel production, pretreatment is
required to improve material accessibility. The primary goal
of pretreatment is to weaken the biomass refractory structure.
The refractory structure of algal biomass obstructs the sugar
yield during hydrolysis. Factors such as crystalline structure
and matrix polysaccharides are of recalcitrant nature, which
acts as an obstacle for the hydrolysis process. The pretreat-
ment method is proposed to increase the surface area and
reduce cellulose crystallinity. The pretreatment increases sol-
ubilization by depolymerizing the complex structures and
breaking down the bond of molecules. Various pretreatment
methods such as physical, mechanical, chemical, biological,
and their combination are available for biomass disintegration,
and enhance the solubilization [36, 37], and subsequent biogas
generation [38].

5.1 Physical pretreatment

Physical pretreatment methods typically reduce the particle
size and increase the surface area, thus improving the efficien-
cy of other possible downstream pretreatments [39]. Thermal
pretreatment is a technique which breaks the cell structure and
enhances the biomass solubilization. Temperature increases
the internal pressure, which disintegrates the biomass structure
and releases the organics. The temperature increases beyond a
certain limit and affects treatment efficiency. Jung et al. [40]
reported the thermal treatment of Laminaria japonica, which
resulted in high hydrogen yield (109.6 mL H2/g COD) at the
temperature of 170 °C. Hydrothermal pretreatment is conduct-
ed to treat four macroalgal species (Alaria esculenta,
Bifurcaria bifurcate, Fucus serratus, and Laminaria digitata)
at 500 °C, 1 h [41]. The results showed that a high hydrogen
yield of 16ml H2/g of macroalgae was achieved for Bifurcaria
bifurcate. The operational conditions, such as extensive pre-
treatment time and elevated temperature, are the major disad-
vantages in thermal treatment, which resulted in the formation
of inhibitors and consumed more energy [42]. Microwave
treatment is a treatment method for enhanced biomass hydro-
lysis by thermal and non-thermal effects. The thermal effect is
caused by the generation of heat by microwave energy. The
athermal effect, also known as the non-thermal effect, is
caused by microwave dipole alignment, resulting in heat pro-
duction and rupture of cell walls. Yeneneh et al. [43] reported
the advantages of the microwave such as thermal and athermal
effects, heat breaching effects, rapid heating, non-contact
heating, and less space requirement. Microwave pretreatment
for treating macroalgae Laminaria japonica is conducted at
different temperature conditions, 100–180 °C, 30 min, and
obtained 15.8 mL/g TS hydrogen yield from 160 °C [44].
They stated that 1.9-fold high yield ofmicrowave-treated sam-
ples is compared with the control. The microwave pretreat-
ment is effective in enhancing hydrogen production from
macroalgae. The main drawback is consumption of more
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energy, so it can be reduced by using the combined treatment
methods.

5.2 Mechanical pretreatment

Mechanical pretreatment effectively disrupts the biomass and
improves the organic release, thus increasing the biogas pro-
duction. Mechanical methods depend upon milling, grinding,
and chipping, which are used to diminish the size, improve the
surface area, and decrease crystallinity. Disperser homogeni-
zation is a commonly used mechanical treatment for biomass
solubilization [45, 46]. Kumar et al. [47] achieved a maximum
solubilization of 10.7% and H2 production of 45.5 mL by
treating macroalgal biomass through a disperser.
Ultrasonication is another effective mechanical pretreatment
method. Its mechanism depends on physical and chemical
effects [48]. In this treatment, shear forces, pressure, and tem-
perature generate highly active hydroxyl radicals in the medi-
um, which results in the disruption of substrates.
Ultrasonication treats waste activated sludge (WAS) that im-
proves COD solubilization and hydrogen production [49].
The ultrasonication pretreatment of algal biomass caused a
25% improvement in hydrogen production [50].

5.3 Chemical pretreatment

Chemical pretreatment is performed by using the alkalis,
acids, and surfactants. It is cost-effective and easy to operate.
Biomass is treated through dilute or mild acid to recover sugar
and improves hydrolysis in hydrogen fermentation [51].
Sivagurunathan et al. [52] compared the dilute acid pretreat-
ments (HCl, HNO3, H3PO4, and H2SO4) and found that
H2SO4 enhances the rate of sugar recovery and hydrogen yield
over other acids. Dilute acid pretreatment improves the hydro-
gen production from red algaeG. amansi, and the temperature
plays a significant role in hydrogen production [53]. The
mechanism of alkaline pretreatment are the dissolution and
saponification, which leads to degradation of crystallinity of
cell membrane. The Ca(OH)2, NaOH, and NH4OH are com-
monly used for alkali pretreatment. Liu and Wang [54]
achieved 15 mL/g of H2 yield from Laminaria japonica using
alkaline treatment (1.0 mol/L NaOH). Hydrogen peroxide
(H2O2) produces nascent oxygen [O] that ruptures the glyco-
sidic linkage between carbohydrate molecules. Roy et al. [55]
studied the H2O2 pretreatment of algal biomass, and achieved
an H2 yield of about 63 dm3/kg VS. Surfactants are the com-
pounds which have both hydrophilic and hydrophobic prop-
erties. They reduce the surface tension, which improves the
hydrolysis [56]. Researchers used surfactants to improve the
substrate solubilization and biogas generation by combining
them with other pretreatment methods [57–59]. The chemical
surfactants are toxic when they enter the environment.
Biosurfactants such as rhamnolipid are eco-friendly,

detoxified, and biodegradable [60]. They are used to enhance
hydrophobic activity and control the microbial bond with the
substances. For example, rhamnolipid is combined with
ultrasonication to improve hydrogen production from anaero-
bic sludge [61].

5.4 Biological pretreatment

Biological treatments are commonly used for treating algal
biomass. They achieved effective solubilization with mini-
mum energy requirement. Amylase, cellulase, lysozyme, glu-
cosidase, and bromelain are some of the enzymes used in
biological treatment. Moreover, the treatment efficiency is
affected by the type of enzymes used, treatment time, dosage,
and type of substrate. Cellulase is the most used enzyme.
Srivastava et al. [62] used cellulase for treating rice straw
and obtained 2.58 L/L hydrolysate hydrogen yield. The disin-
tegration of biomass using fungi also improves hydrogen pro-
duction. Zhao et al. [63] carried out fungal pretreatment using
Phanerochaete chrysosporium, and achieved enhanced H2

generation of 80.3 mL/g from cornstalk.

5.5 Combined pretreatment

For effective disintegration and better hydrogen yield, various
combinations of different pretreatments are used. The cost-
benefits, less energy requirement, and rapid processing are
the key advantages of hybrid pretreatment methods.
Surfactant-assisted mechanical pretreatment enhances hydro-
gen production from macroalgae. Kumar et al. [47] reported
that Tween 80, a non-ionic surfactant, improved the biopoly-
mer releases, and hydrogen production. They also stated that
combined pretreatment enhanced the biomass solubilization
by 15% over mechanical pretreatment only (10.7%).
Biosurfactant is used to enhance the ultrasonication treatment
for energy-efficient hydrogen production from sewage sludge
[61]. Banu et al. [64] performed an experiment on treating
seagrass through surfactant-combined mechanical pretreat-
ment. They achieved energy feasible hydrogen production.
The combined microwave-acid pretreatment was studied to
treat L. japonica and obtained maximum H2 production of
28 mL/g TS at 140 °C with 1% H2SO4 for 15 min [65].
After pretreatment, significant variations or alteration in
macroalgal structural compositions are identified due to the
pretreatment effect. Using Fourier transform infra-red (FTIR)
spectroscopy and X-ray diffraction (XRD), Lee et al. [66]
studied the structural variations of Saccharina japonica after
pretreatment. Macroalgal biomass of L. digitata is pretreated
by hydrothermal, hydrothermal dilute acid, and enzymes [67].
They reported a comparison of composition variations before
and after treatment of algal biomass. The presence of mannitol
components was 0.129 g/g VS in non-pretreated substrate;
however, 0.149, 0.147, and 0.136 g/g VS were observed after
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hydrothermal, hydrothermal dilute acid, and enzyme pretreat-
ment, respectively. Table 2 summarized the various pretreat-
ment methods for biohydrogen generation from marine
macroalgal species

6 Formation of inhibitors
during pretreatment

During hydrogen production, the complex carbohydrates
present in macroalgae break into simple sugars enhanced by
the pretreatment. Also, the inhibitory substances, namely fur-
fural, levulinic acid, 5 (hydroxymethyl)furfural (5-HMF) [11],
and formic acid [74, 75], are formed. Carbohydrates are de-
graded into co-products such as acetic acid, carboxylic acid,
formic acid, and levulinic acid. Aldehydes and 5-HMF display
low toxicity, but depending upon the pretreatment and sub-
strate type, their concentrations may vary and inhibit hydro-
gen production [76]. Formation of furan aldehydes decreases
the sugar yields; therefore, their formation is reduced in pre-
treatment. During the fermentation, organic acids produced
due to the substrate character is reduced by neutralizing the
pretreated substrate before fermentation. The formation of in-
hibitory substances mainly depends on the temperature and
time of the pretreatment [77]. The inhibitor effects are influ-
enced by the fermentation environment, the toxicity of the
compound, and microbe characteristics. Mirsiaghi and
Reardon [78] revealed that inhibitory compounds produced
during pretreatment decrease the H2 yield and process
efficiency.

6.1 5-(Hydroxymethyl) furfural (5-HMF)

During pretreatment, glucose present in biomass is degraded
and forms toxic elements, such as 5-HMF (5-hydroxymethyl
furfural). Srikanth et al. [79] stated that the 5-HMF concentra-
tion increases with temperature and pretreatment time. The
pretreated substrate contains levulinic and formic acids from
5-HMF through polysaccharide degradation by the acid-
thermal pretreatment. The produced acid concentration varies
on substrate characterization and pretreatment conditions.
Furfural is an inhibitory compound, which affects the micro-
bial metabolism. Furfural is obtained while treating xylose
and glucose under severe conditions such as above 170 °C;
the concentration of furfural increases with a decrease in glu-
cose concentration. Beyond 180 °C, hydrogen yield is reduced
because the sugar is converted into furfural.

6.2 Levulinic acid

Cao et al. [80] performed the microwave-acid pretreatment
on Gracilaria lemaneiformis at three different tempera-
tures. During the treatment, galactose and glucose are

dehydrated and form 5-HMF, which is rehydrated to
levulinic and formic acid. During hydrolysis, the end
product yield decreases while levulinic and formic acid
concentrations increase. The 5-HMF formation ends after
10 min of reaction. The findings revealed that 5-HMF is
hydrated and increases the formation of formic and
levulinic acid on increasing the pretreatment temperature.

6.3 Tannic acid

Red algal species G. amansii is used for butanol production
through fermentation. The low production is achieved by the
production of inhibitor such as tannins. Besides, pretreatment
decomposes the reducing sugars into non-utilizable and recal-
citrant compounds such as 5-HMF and other phenolic com-
pounds. In this experiment, G. amansii produces more inhib-
itory compounds than the other hydrolyzed macroalgae.
Furthermore, other less toxic inhibitory substances such as
terpenic and tannic acids are found during the fermentation
process [81].

6.4 Terpenic acid

Macroalgae produce antimicrobial elements, such as phenols
and terpenes [82]. Jonsson et al. [81] reported terpenic acid
production during fermentation of macroalgal biomass.
Laurencia is a red seaweed genus containing secondary me-
tabolites, especially terpenes that prevent the growth ofmarine
bacteria. Phenols, terpenes, acetogenins, indoles, fatty acids,
and volatile halogenated hydrocarbons are some of the com-
pounds extracted from Sargassum vulgare [83].

6.5 Aldehyde

Similar to carboxylic acid, aldehydes contribute to microbial
inhibition during hydrogen production [84]. Furan aldehydes
produced from carbohydrate are less toxic, but high in con-
centration, which is present in the pretreated substrate, while
aromatic aldehydes from lignin have high toxicity, although
the concentrations are low.

6.6 Metallic ions from reactor vessels

The vessel’s corrosive reaction produces heavy metal ions
such as Cu, Ni, and Fe. These generated ions are also toxic
and may slow down the microbe’s metabolism during fermen-
tation [23]. The inhibitor formed during fermentation and acid
dissociation leads to pH reduction, which decreases the bio-
catalyst activity.
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7 Detoxifications of pretreated macroalgal
biomass

Detoxification or biomass conditioning is the better way to
limit the inhibition during the fermentation. Biological, phys-
ical, and chemical pretreatments are used for detoxification.
The choice of detoxification methods depends on the hydro-
lysates, which are to be treated, and microorganisms are used
during fermentation. Detoxification techniques are namely
chemical additive treatment, biological treatment, liquid–
liquid extraction, liquid–solid extraction and heating, and va-
porization. Though detoxification techniques achieve efficient
removal of toxicity, it is essential to consider the sugar reduc-
tion, cost-effectiveness, and scum generation, which makes
this step economically unattractive.

7.1 Chemical additives (alkalis and reducing agents)

Various detoxification agents such as solid and liquid calcium
hydroxide (Ca(OH)2) and solid calcium oxide (CaO) are ef-
fectively used during hydrogen production [85]. Cao et al.
[80] reported that liquid Ca(OH)2 removed less than 30 mg/
L of sulfate concentration and simultaneously improved over
30% of H2 yield when compared with solid Ca(OH)2 and
CaO. Detoxification with activated carbon (AC) also reduces
the inhibition effect during hydrogen production. Less hydro-
gen is produced from red-algal biomass by treating with sul-
furic acid, while H2 yield is improved by a combined Ca(OH)2
and AC detoxification method [68]. Park et al. [68] reported
that less hydrogen is produced from Gelidium amansii using
2% dilute H2SO4 at 150 °C temperature for 15min. It is due to
the 5-HMF formation, but further maximum H2 yield of 53.5
mLH2/g TS is observed after AC detoxification. The reducing
agents such as the sulfur oxyanions sulfite and dithionite im-
prove the fermentation and saccharification [76].

7.2 Biological treatment (enzymes and microbes)

Biological detoxification used bacteria, yeast, and fungi,
which are used as biosorbents and improve the process per-
formance. Microbes are capable of detoxifying 5-HMF and
furfural, and increase the biofuel yield. Yang et al. [86] used
bacterial strain Burkholderia cepacia H-2 to perform detoxi-
fication of 5-HMF into 2,5-furan-dicarboxylic acid (FDCA),
which was beneficial in high biofuel yield production. El
harchi et al. [87] used yeast Pachysolen tannophilus for bio-
logical detoxification to treat green algae and Ulva rigida for
fermentation.

7.3 Liquid–liquid extraction

Liquid–liquid extraction is a promising detoxification tech-
nique that removes inhibitory compounds without anyT
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carbohydrate loss. Roque et al. [88] reported that detoxifica-
tion strategies involve two processes, liquid–liquid extraction
and vacuum evaporation, which is followed by liquid–liquid
extraction. Evaporation followed by liquid–liquid extraction
process exhibited better removal results of inhibitory elements
(formic acid, 100%; phenolics, 88.2%; HMF, 100%; and fur-
fural, 100%) than liquid–liquid extraction (formic acid, 100%;
phenolics, 64.2%; HMF, 99.8%; and furfural 96.8%).

7.4 Liquid–solid extraction

Liquid–solid extraction techniques include ion exchange and
activated carbon treatment. Orozco et al. [89] reported that
70% of improved H2 production and 86% of 5-HMF is re-
moved by using liquid–solid extraction (AC) compared with
the untreated sample. Park et al. [68] detected less H2 produc-
tion from Gelidium amansii by H2SO4 treatment, whereas
further AC detoxification exhibited the improvement in H2

production. The requirement of a separate process is the major
disadvantage of the detoxification technique, which affects the
cost-effectiveness of the method. Furthermore, research is re-
quired to develop detoxification methods in a cost-effective
manner. Table 3 represents the detoxification techniques used
to control the process inhibition. Metals like ferrous iron
(Fe2+) perform a substantial role in H2 production [98], which
acts in hydrogen-producing metabolism (hydrogenase). Zhao
et al. [99] stated that electrons produced during metabolism
are combined with H2 ions, promote the reaction, and produce
H2 in the metabolic pathway. Researchers reported the en-
hancement of H2 production by ferrous ion addition.
Hydrogen yield increased and reported about 217.4 mL H2/g
glucose at 200 mg/L ferrous ion concentration [100]. Dhar
et al. [101] obtained a maximum H2 production potential of
214mL by adding 50mg/L ferrous ion. Yang andWang [102]
achieved 64.7mL/gH2 yield from the grass substrate with 400
mg/L zero-valent iron.

8 Macroalgal biorefinery and circular
bioeconomy

Macroalgal biorefineries are considered as a sustainable sub-
stitute for hydrocarbon-based sources. Therefore, the profit-
ability and feasibility of macroalgal biorefinery was evaluated
via life cycle analysis methods [103]. As a whole, the cultiva-
tion of macroalgae has been subsidized to ecological renova-
tion and climatic mitigation. On the other hand, the design of
sustainable macroalgal biorefinery needs optimization of fac-
tors such as the input of energy and supplies utilized for cul-
tivation, macroalgal yield and characteristics, energy utilized
for drying of macroalgae, and materials used for macroalgal
treatments. The cost analysis of the aforementioned steps
highpoint the requirement of decrement in cultivation prices.

Besides, integration of processes, such as bioenergy with
valuable co-products in a biorefinery approach, is essential.
Table 4 represents the different macroalgal biorefineries and
their product yield. Figure 4 shows the schematic representa-
tion of the macroalgal biorefinery.

8.1 Co-product formation in biorefineries

The macroalgal biorefinery is still focusing on mono-product
recovery, whereas the residues from the treatment process are
considered waste. Most of the research reports are concentrat-
ing mainly on mono-product recovery. The biofuel and mul-
tiple product recoveries in an integrated biorefinery process do
not show considerable adverse impacts on productivity.
Besides, the utilization of chemicals in an integrated
biorefinery is decreased to approximately 30–40%, and reduc-
ing the costs of the overall macroalgal treatment process
[113]. Therefore, extraction of salt, glycoprotein, polysaccha-
ride (example, ulvan), and cellulose via sequential integrated
process is endorsed for the complete utilization of the
biorefinery. Prabhu et al. [114] have reported that the liquid
portion separated via the pretreatment process can be further
treated to obtain starch without alteration in its structure. The
separated solid fraction can be further treated for extracting
pigments and lipids. Lipids can be further utilized for ethanol
production [111]. Further acidic processing of residues by
thermo-acidic treatment (temp 85 °C and 0.05 M dilute hy-
drochloric acid) resulted in the extraction of sulfated polysac-
charides. Then the residual matter can be extracted using al-
kaline (1 N NaOH) treatment. Even though the extraction of
proteins using alkali is a faster and extensively employed
method, it showed less productivity, i.e., 15% of total protein
[115]. However, the productivity can be increased further
using extreme alkaline dosage. Lastly, the residual matter rich
in cellulose content can be subjected to anaerobic digestion for
biogas production or can be subjected to microbe-mediated
fermentation to generate value-added products. On the other
hand, the extracted cellulose can be utilized as a feedstock for
multiple product recovery [116].

8.2 Utilization of dark fermentation effluents

A significant amount of organic effluents that could not be
converted into hydrogen remains within the digester after the
dark fermentation process. This effluent can be utilized and
valorize further for biofuel production and multiple product
recovery to make the entire process economically profitable.
The residual organics from the dark fermentation process can
be separated into a liquid fraction (rich in acetate, butyrate,
propionate, lactic acid, and ethanol) and a solid fraction (rich
in solid materials refractory to biological processes). Cooney
et al. [117] suggested that only 10–20% of energy can be
recovered from dark fermentative biohydrogen of organic
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biomass without the pretreatment process. Therefore, side
streams valorization in a biorefinery concept must be greatly
taken into account. The dark fermentation process can be in-
tegrated with anaerobic digestion via biorefinery approaches,
or the remaining liquid portion rich in volatile fatty acids can
be valorized to produce biopolymers.

8.3 Two-stage integrated anaerobic digestion and
dark fermentation

The hydrolysis and acidogenesis (dark fermentation) phases
are separated from acetogenesis andmethanogenesis phases in
two-stage fermentation. In the first phase (dark fermentation),
biopolymers, including polysaccharides, glycoproteins, and
bio-lipids, are transformed into volatile fatty acids and hydro-
gen. The volatile fatty acids (chiefly acetic and butyric acids)
and the residual organic matter are subsequently transformed
into methane in the methanogenesis phase. Jung et al. [108]
investigated the two-stage integrated dark fermentation with
anaerobic digestion treating the macroalgal biomass,
Laminaria japonica. The authors reported that 7.1% of the
total organics was transformed into hydrogen. Next to dark
fermentation, the remaining organics obtained via treated ef-
fluents from both liquid (35.1% of total chemical oxygen de-
mand) and solid (38.7% of total chemical oxygen demand) are
subsequently transformed into methane.

8.4 Dark fermentation integration with biopolymer
production or algal growth

Organic-rich effluents having more volatile fatty acid content
obtained from dark fermentation can be transformed into fea-
sible and profitable value-added biopolymers such as
bioplastic (polyhydroxyalkanoates) or utilized as a medium
for growth of algal biomass [118]. Yan et al. [118] integrated
biohydrogen and biopolymer generation from algal biomass
(Taihu blue). Polyhydroxyalkanoates are polyester clusters
that are readily biodegraded and gaining consideration as a
possible alternative to petrochemical plastics besides other
uses such as pharma and fermentative industrial applications
[119]. Polyhydroxyalkanoates were produced from effluents
of dark fermentative digester treating Taihu blue algae using
Bacillus cereus sp. At flow rates of 30, 60, and 120 L/h, the
biopolymer yields of 1.46, 1.83, and 2.26 g/L were achieved.

9 Life cycle assessment

Life cycle assessment (LCA) is used to calculate a feasible
way of biofuel production from source to end product. LCA
covers the entire processes such as harvesting, treatment
methods, end product, and co-product recovery. During arti-
ficial algal cultivation, hydrodynamic effect, surface area toT
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volume ratio, light penetration, and CO2 transfer have to be
considered [120]. Pilicka et al. [121] stated that 300 kg/year of
CO2 is absorbed during the growing process of Ulva sp and
also concluded that in comparison with sludge, macroalgal
biomass gives 30 times better net environmental performance
during biogas production. The LCA of macroalgae begins at
the macroalgae harvesting and ends in the final product
(biogas) which includes treatment and co-product recovery
with cost of initial investment, energy cost, and operation cost.
Cost analysis of hydrogen production covers parameters such
as capital cost, operating cost, power cost, labor cost, water
cost, and general supplies [122]. The total operating cost of
3605.1 million United Arab Emirates Dirhams (AED) was
involved during hydrogen production, and cost of hydrogen
was about 68.7 AED/kg hydrogen.

10 Energy feasibility and economic analysis

Energy analysis is mainly considered for the implementation
of large-scale applications. According to the energy consumed
and energy gain, the selection of pretreatment could be cost-
effective. Usually, pretreatment needs more energy for biofuel
production. For example, mechanical pretreatment consumes
more energy than enzymatic treatment. To limit the energy
consumption, two or three pretreatments are combined. It in-
creases the treatment efficiency and reduces energy consump-
tion. Many researchers studied the energy feasibility of pre-
treatment in biohydrogen production [64]. Table 5 represents
the energy analysis comparison for different treatment
methods during biohydrogen production. Biohydrogen ener-
gy production rate (kJ/L/d) and biohydrogen energy yield (kJ/
g VS) are calculated using the Eqs. (2) and (3), respectively,
which are derived from Kumar et al. [124].

Biohydrogen energy production rate BEPRð Þ
¼ Hpr=22:4*Hhv ð2Þ

where

Hpr hydrogen production rate (L/L/day) and
Hhv hydrogen heating value (286 J/mmol).

Biohydrogen energy yield BEYð Þ ¼ Hy=2:44*Hhv ð3Þ

where

Hy hydrogen yield (L/kg VSadded) and
Hhv hydrogen heating value (286 J/mmol).

Economic analysis is another significant aspect considered
during bioenergy production from macroalgae. ManyT
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parameters influenced biofuel generation from marine
macroalgae and considered the conversion techniques used
in biofuel production. From processing till recovery of end
products, economically feasible ways are chosen for
macroalgal biofuel production. High-value end products with
a cost-effective process enhances the economic viability of
macroalgal biofuel generation. Cost-effectiveness is necessary
for all processes such as algal cultivation, harvesting algal
biomass, and treatment methods for extracting high-value
chemicals and upgrading the biofuels for various purposes
[125]. Mthethwa et al. [126] detailed the biohydrogen produc-
tion and its economic analysis. They considered two types of
cost estimation, amortization, and operation cost.
Amortization cost is estimated based on construction, equip-
ment cost, and other fittings, while operation cost includes
treatment cost, chemical cost, and maintenance cost. The fol-
lowing corresponding equations, Eqs. (4), (5), and (6), are
used to calculate amortization cost, energy cost, and cost of
operation [126],

Amortization cost Að Þ =m3Þ ¼ Fc*V cð Þ= Lt*Vð Þð ð4Þ
where

Fcfermentation unit cost ($/m3)
Vc unit capacity of treatment (m3)
Ltlifetime of constructed unit (years)
Vtotal volume of biomass for treatment (m3/years)

Energy cost Eð Þ =m3Þ ¼ Pc*Ec*Wp*Od

� �
=V

� ð5Þ

where

Pc power consumption (kW)
Ec electricity cost ($/kW/h)
Wp working period (h)
Od days of operation (years)
V total volume of biomass for treatment (m3/year)

Cost of operation COð Þ =m3Þ ¼ C*Pð Þ þ E þ 2=100ð Þ Að
ð6Þ

where

C concentration (kg/m3)
P unit total cost ($/kg)

Zech et al. [127] stated that the cost of specific biohydrogen
production (CSP) is measured as a significant indicator to
evaluate the economic analysis of proposed hydrogen produc-
tion concepts which include production cost and distribution
cost. The authors [127] referred to the following equation to
calculate the CSP:

CSP ¼ Cc þ Ac þ OPc þ Oc–Rð Þ=H2prod ð7Þ

where

CSP cost of specific biohydrogen production,
Cc annual capital costs,

Fig. 4 Schematic representation of macroalgal biorefinery
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Ac annual consumption cost (includes raw material and
energy),

OPc annual operation cost (includes labor and operation
and maintenance)

R annual revenues not related to sale of H2, and
H2prod annual H2 production

11 Challenges and future outlooks

Hydrogen production through fermentation has more advan-
tages, such as simple operation and rapid hydrogen produc-
tion. Moreover, the production of hydrogen through biologi-
cal routes has gained interest in recent years because it has a
significant impact that not only treats organic wastes but also
yields clean energy. Inoculum content, type of substrate and
reactors used, nutrients, pH, and temperature are the factors
which influence the biohydrogen production. Hydrogen-
producing microbes are naturally present in excess in sources
like wastewater, soil, compost, sludge, and so on. Hence,
these sources are used as sources of inoculum for biohydrogen
generation [128]. pH is a significant parameter that affects the
hydrogenase action of the biohydrogen pathway. A pH of 5.5
is favorable for biohydrogen production, and an increase in
pH affects the production of biohydrogen. Temperature is
another important factor that also influences the microbe’s
growth rate. Most studies stated that mesophilic temperature
ranges (25–40 °C) are favorable in temperature conditions for
biohydrogen production. There is a limitation for galactose-
based substrate hydrogen production which enhances the char
formations and low biofuel yield [129]. The metabolic path-
way and enzyme activity of fermentative microbes are influ-
enced by trace metal concentration which inhibits the hydro-
gen production [130]. Metals such as iron, zinc, magnesium,
and sodium influence the hydrogenase action on the
biohydrogen metabolic pathway. Clostridium sp. growth is
inhibited by lactic acid production when iron concentration
goes low (0.56 mg/L) [131]. From this study, it is identified
that iron concentration affects the metabolic routes of hydro-
gen production. Biological hydrogen generation is a clean,
innovative method for bioenergy production [132]. A signifi-
cant improvement, such as a hybrid rector system, advanced
metabolic techniques, and gas filtering/separation, makes the
hydrogen production easier. Identifying novel hydrogenases,
advanced genetic methods, and new environmental technolo-
gies makes biohydrogen production more practical and com-
mercially and economically feasible.Ta
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12 Conclusion

This review provides an understanding concerning
biohydrogen fermentation using marine macroalgae and de-
scribes the macroalgal characteristics, pretreatment, inhibitory
compound formation, and their detoxification methods.
Bioenergy generation through algae provides a sustainable
and alternative source of energy. The selection of a suitable
pretreatment method could limit the production of the toxic
components and achieve cost-effective bioenergy generation.
The factors such as efficient energy and economic feasibility
depend on the biomass-processing methods and pretreatment
conditions. Through the overall review from this article, it was
concluded that macroalgae-based biosynthesis provides a bet-
ter economic and energy feasible circular bioeconomy.
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