
ORIGINAL ARTICLE

Biochar from co-pyrolysis of urban organic wastes—investigation
of carbon sink potential using ATR-FTIR and TGA
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Abstract
Urban organic wastes (UOW) strain the infrastructures for solid waste treatment (SWT) in emerging economies. This study
investigated biochar gained from three major UOW sources in India—banana peduncles (BP), a fibrous waste, from fruit
markets; sewage sludge (SS) from wastewater treatment plants; and anaerobic digestate (AD) from food and market waste
processing facilities—in terms of its potential to sequester and become long-term carbon sink in soils. Herein, the chemical
properties (using ATR-FTIR) and thermal oxidative stability (using TGA) of biochars derived from these UOW and their three
blends were examined. Biochar from SS and AD and the blends were found to possess more ash content, Cl, and alkali and
alkaline earth metals (AAEM) than that from BP. The conventional recalcitrance index (R50) could not quantify and compare the
stability of these mineral- and ash-rich biochars. Hence, a modified thermal oxidative recalcitrance index (TORi) is proposed. All
the biochar from blends prepared at highest treatment temperature of 650 °C shows similar aromaticity. However, biochar from
blend of 50% SS, 30%BP, and 20% AD exhibits the highest recalcitrance (TORi = 0.193) to become a long-term carbon sink in
soil. More than aromaticity, the influence of Si, Fe, and AAEM on the biochar matrix affects its recalcitrance. Variations in the
structural properties and recalcitrance of biochars from blends are attributable to the synergy among their constituents SS, AD,
and BP. The determined TORi confirms the potential of biochar from the blends of UOW as a long-term carbon sink.
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1 Introduction

Nearly 1.6 billion tonnes (CO2-equivalent) of global green-
house gas emissions arise from solid waste management [1].
Rapidly increasing amounts of urban organic wastes (UOW)
exert growing pressure on solid waste treatment (SWT) sys-
tems in emerging economies. Fibrous organic wastes (FOW)
from vegetables and fruits, sewage sludge from wastewater
treatment plants (WWTP), and anaerobic digestate from food
waste treatment constitute a major proportion of these UOW.
The urban areas of such emerging countries in South Asia and
sub-Saharan Africa are also hotspots of industrialization and
economic growth. These regions are expected to see a

doubling of their solid waste generation by 2050. A combined
treatment of UOW and its uptake as resources, besides volume
reduction, can unlock an economic, sustainable, and eco-
friendly SWT approach. Considering their high projected
growth rate and the coupled environmental pollution, such
sustainable combined treatment options become an existential
need in their waste processing infrastructure [2]. Moreover,
soil in these countries is getting degraded [3].

Slow pyrolysis is a thermochemical process that
devolatilizes biomass and converts them into a carbonized
product. If this carbonized product has < 0.7 H/C and < 0.4
O/C, they are considered “biochar.” This recalcitrant aromatic
carbon in biochar becomes a stable long-term sink for atmo-
spheric CO2 [4]. The thermal oxidative stability of this recal-
citrant carbon in the soil system depends on the pyrolysis
temperature and type of input feedstocks. The thermally recal-
citrant pyrogenic material is also proven to be resistant to
abiotic and microbial degradation [5], resulting in longer sta-
bility as carbon sink in soils. Being also porous and nutrient-
enriched, biochar has further applications in agriculture, catal-
ysis, water treatment, fuel cells, and hydrogen storage [6, 7].
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FOW like vegetable and fruit market wastes (VFW)
have the highest availability and lowest procurement costs
among all biomass worldwide. Banana peduncle is the
stalk supporting fruits and inflorescence of banana trees.
It is also an abundantly available feedstock. Places like the
Koyambedu Vegetable Market (Chennai, India) produce
about 150 tons/day of VFW, of which peduncle is a major
constituent [8]. However, only a handful of studies ex-
plored them as a feedstock for producing biochar
[9–11]—most of them investigate a thermal plasma pro-
cess, not the conventional slow pyrolysis.

Biochar from sewage sludge can have higher concentra-
tions of potentially toxic elements (i.e., As, Cd, Cu, Pb, and
Zn) and polyaromatic hydrocarbons (PAH) [12], whose bio-
accumulation in plants depends on pyrolysis conditions
[13]. Such biochars can also be designed to showcase high
sorption potential for organic pollutants [14], neutralize al-
kaline soils [15], and provide a direct nutrient source for
flora [16]. Meanwhile, existing research has also shown that
biochar derived from anaerobic digestates has soil remedi-
ation attributes and a larger potential for heavy metal sorp-
tion (especially lead) in aqueous solutions [17–20]. Thus,
biochar produced from co-pyrolysis of banana peduncle,
sewage sludge, and anaerobic digestate can have a prospec-
tive for carbon sequestration and soil amelioration while
also serving as a cost-effective and less-polluting combined
conversion strategy for UOW in developing countries. Yet,
to the extent of authors’ knowledge, studies in this direction
are lacking.

Biomass pyrolysis and its influence on the ensuing biochar
characteristics are widely studied, yet poorly understood [21,
22]. This is because the pyrolysis of biomass consists of par-
allel interdependent reaction pathways of lignocellulose and
amino acids with catalytic effects by minerals [23]. Biochar
properties—yield, pH, cation exchange capacity (CEC), sta-
bility, oxidative stability in the soils [4, 24, 25], pore volume,
etc.—are influenced by feedstock and process variables like
heating rate, residence time, particle size, feed rate, and
flowrate of purge gas [26, 27]. Infrared (IR) spectroscopy
and temperature programmed oxidation (TPO) tests in ther-
mogravimetric analyzer (TGA) are among the widely used
techniques for biochar assay [28].

Mid-infrared FTIR spectroscopy using attenuated total re-
flection (ATR) is used to compare biochars produced from
different feedstocks and process conditions based on the tran-
sitions of their functional groups and aromatization [29, 30]. It
is an economic method that enables a quick, qualitative, and/
or semiquantitative investigation and comparison of biochars.
TPO measures the recalcitrance of biochars during thermal
decomposition inside TGA in the presence of oxygen. This
provides a key assessment of the environmental recalcitrance
of biochar over time during soil amendment and carbon se-
questration [31].

This study investigates the biochars from UOW blends in
terms of its potential to sequester and become long-term car-
bon sink in soils. Herein, biochar samples were prepared from
banana peduncles, sewage sludge, anaerobic digestate, and
their blends. The study aims to (a) investigate and compare
the prepared biochars samples in terms of structure, functional
groups, and extent of transformation using ATR-FTIR and (b)
determine and compare the thermal oxidative recalcitrance of
these biochars. The study also proposes a modified approach
to quantify the thermal recalcitrance of biochars derived when
fibrous biomass is co-pyrolyzed with ash- and mineral-rich
UOW biomasses.

2 Materials and method

2.1 Materials

The biomass substrates were collected from the city of
Chennai, India. They included banana peduncles (BP) from
Koyambedu Veg. Market (13°04′05.2″ N, 80°11′55.5″ E),
post-fermentation sewage sludge (SS) from Perungudi
WWTP (12°57′23.7″ N, 80°14′02.0″ E), and digestate (AD)
from two anaerobic digestion plants that process food and
market wastes (13°00′38.1″ N, 80°14′12.4″ E and 13°03′
56.8″ N, 80°11′25.1″ E). To ensure representativeness, each
substrate (on wet basis) was collected in triplicates during
three different days of the week from their respective sources.
All samples were then oven-dried (at 105 °C for 24 h).
Composite samples of SS and AD were prepared by coning
and quartering to ensure representativeness according to
German Standard LAGa PN 98. These representative samples
were shredded to an average particle size of 0.2 mm with
Retsch ZM 200. For BP, a composite representative sample
was obtained by shredding (particle size 0.2 mm) the dried
peduncles and mixing them.

For UOW blend preparation, a microbalance (Denver
Instrument Company AA 2000DS) and handheld vibrational
sample mixer (to ensure homogeneity in mixing) were used.
Biomass blends with three different ratios of SS:BP:AD were
prepared on a dry weight basis. The individual unmixed sub-
strates and the three prepared blends are shown in Table 1.
Unblended substrates serve as control group. The blends Ms,
Mp, and Md have SS, BP, and AD in the ratio 5:3:2, 2:5:3, and
2:3:5, respectively. The blending ratios are selected based on
the following: (a) In two blends, SS is kept constant to check
the influence of BP and AD, while in two blends, BP is con-
stant to study the influence of AD and SS; (b) the maximum
representative sample size that fits the available 70 μl TGA
crucible (sec 2.3) is 10 mg due to varying densities of dried
BP, SS, and AD; (c) the upper limit of the three UOW in the
blends is kept at 50% in purview of the pilot-scale pyrolysis
(capacity of 500 kg/day) research this study is part of. Here,
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high concentrations, say 80%, of SS and AD can result in
biochars with high heavy metal and ash concentration, while
high values of BP can reduce the conversion potential of SS
and AD feedstock lowering the effectiveness of a combined
treatment system for UOW; and (d) blending proportions
should be able to highlight the existence of synergy, if any,
among the three UOW during pyrolysis. The study does not
aim to quantify this synergy and interrelationships.

2.2 Elemental, crude fiber, and proximate analysis

The elemental analysis of SS, BP, and AD was done as per
German and European standards. The nutrients in plants—P,
Ca, K, Mg, Na, and S; silica; iron; and heavy metals, Pb, Cd,
Cr, Ni, Cu, and Zn—were determined following DIN EN ISO
11885 (E 22) ; 2009-09 of German Inst i tu te for
Standardization (DIN). Mercury and arsenic were obtained
from tests according to DIN EN 1483; 2007-07 and DIN EN
ISO 17294-2 (E 29); 2005-02, respectively. Chlorine was
measured according to DIN 38405-D 1; 1985–12. The
CHNO analysis used DIN 51732; 2014–07. For crude fiber
and proximate analysis, lignin, cellulose, and hemicellulose
were determined following the standard VDLUFA III 6.5 of
Association of German Agricultural Research Institutes
(VDLUFA); mineral matter was determined using DIN EN
12880-S 2a; 2001–02 and volatile matter through DIN
51720:2001-03. The corresponding values of the substrate
blends were calculated on a proportionate basis.

2.3 Biochar preparation

Here, biochars were prepared using a thermogravimetric ana-
lyzer (Mettler Toledo TGA/DSC 3+ LF) from (a) individual
unmixed biomass substrates (SS, BP, and AD) at the highest
treatment temperatures (HTT) of 450 °C and 650 °C and (b)
their blendsMp,Ms, andMd at HTT of 650 °C. For this, 10mg
of each sample was subjected to slow pyrolysis in a 70-μl
Alumina crucible. After pre-purge with nitrogen (99.99% pu-
rity, product code—nitrogen 5.0 from Linde GmbH) at
100 ml/min for 10 min, a linear heating program of

20 °C/min raised the sample temperature to their HTT where
it was kept constant for 5 min. During pyrolysis, a nitrogen
purge was maintained at 50 ml/min. The pre-purge was re-
peated before each trial. Duplicate trials were performed for
each preparation run.

2.4 ATR-FTIR

The ATR spectra were collected for (a) individual unmixed
substrates, (b) biochar derived from unmixed substrates at
450 °C and 650 °C, and (c) biochar from substrate blends
prepared at 650 °C. A Thermo Fisher Nicolet is50 spectrom-
eter (KBr beamsplitter) was used to collect spectra in the mid-
infrared region between 400 and 4000 cm−1. Each spectral
image was collected with a method of 16 scans having a res-
olution and a gain factor of 8 and 2, respectively. With these
settings, the mid-IR profile of polyethylene and polyamide-6
was collected and verified against the literature and Thermo
Fisher spectral database. The backgroundwas collected before
each measurement. Spectral data was collected three times for
each sample [32] and averaged. Then, it was baseline
corrected (in Omnic Ver.9.7) and analyzed in OriginPro®
(ver. 2020).

2.5 Temperature programmed oxidation (TPO)

The TPO tests were performed with the abovementioned
TGA. Before these experiments, a standard microbalance cal-
ibration procedure was completed using an aluminum refer-
ence sample (99.999% purity, product code—ME 51119701
from Mettler Toledo). The biochars obtained from the un-
mixed substrates and their blends (at HTT 650 °C) were
combusted in an oxygen atmosphere to an HTT of 1050 °C
at a ramp rate of 10 °C/min. The oxidation was sustained
through a synthetic air atmosphere (20% O2 and rest N2, from
Linde Gases GmbH) with a flow rate of 70 ml/min. The de-
fault cell gas flow (protective gas used to protect the measur-
ing cell from corrosive gases) of the instrument was main-
tained at 20 ml/min of pure nitrogen. Thus, the net oxygen
concentration in the reactor was 15.5%. The HTT of 1050 °C

Table 1 Samples from individual
unmixed biomass substrates and
their blends

Substrate/blends
(SS:BP:AD)*

Sample
names

Sewage sludge (SS)
(wt.-%)**

Banana Peduncles
(BP) (wt.-%)

Anaerobic digestate
(AD) (wt.-%)

5:3:2 Ms 50% 30% 20%

2:3:5 Md 20% 30% 50%

2:5:3 Mp 20% 50% 30%

1:0:0 SS 100% 0 0

0:1:0 BP 0 100% 0

0:0:1 AD 0 0 100%

*SS:BP:AD sewage sludge:banana peduncle:anaerobic digestate; wt.-% is on dry basis
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was selected as its maximum safely attainable temperature by
the reactor. Duplicate trials for each sample were performed,
and the average of the TGA data was taken. The differential
thermogravimetry (DTG) curves—rate of mass loss vs sample
temperature—for the TPO were calculated in OriginPro®
(ver. 2020) with 60-point smoothing. The peaks in DTG were
assigned using SavitzkyGolay second-order smoothing with a
50-point window.

2.5.1 Recalcitrance index (R50)

In the literature, there are few existingmethods for quantifying
thermal oxidative stability during a TPO. Among them, the
first common approach utilizes the DTG curve parameters—
peak, onset, and end-set temperatures. The second approach
includes the thermal stability indices developed for studying
soil organic fraction. Both approaches, on a fundamental lev-
el, revolve around the position of peaks in the TGA thermo-
grams. This becomes the inherent demerit as biochar oxida-
tion does not have well-defined peaks. They depend on the
conditions of TPO and, most importantly, the feedstock
characteristics.

To overcome this shortcoming, the recalcitrance index
(R50) was proposed as a measure of biochar stability [33]. It
is an energy-based approach where the energy required for
breaking the carbon–carbon bonds during 50% oxidative
mass loss in biochar is compared with that of a graphite ref-
erence. It utilizes temperature as a measure of the required
energy input. It is calculated as:

R50 ¼ T50;b

T50;g
ð1Þ

where T50,b and T50,g are temperatures (in °C) correspond-
ing to 50% mass loss of biochar and graphite in a thermal
oxidative environment. T50,b, is obtained from the weight loss
data of the TGA. If biochar has more stable aromatic struc-
tures, it would possess more C=C aromatic bonds and would
need a higher temperature to reach a 50%mass loss. Based on
R50, biochars are classified as highly recalcitrant class A
(R50 ≥ 0.70), stable class B (0.50 ≤R50 ≤ 0.70), and easily de-
gradable class C (R50 ≤ 0.50). As we reach higher R50 values
in class A, biochar stability in soils would be comparable with
that of graphite.

3 Result and discussion

3.1 Proximate, crude fiber, and elemental analysis

The elemental, crude fiber, and ultimate analysis of the un-
mixed UOW substrates SS, BP, and AD are shown in Table 2.
The corresponding values for their blends are shown in Fig. 1.

For BP, the concentration of macronutrients (P, K, Ca, Mg),
with K being the highest, 6.53 wt.-%, and C, H, O, and S
content are similar to the reports elsewhere [9, 10].
However, BP has a relatively low nitrogen content (0.98
wt.-%). This N content originates from proteins/amino acids,
which can integrate into the parallel reaction pathways of
hemicellulose, cellulose, and lignin during pyrolysis. A C/N
ratio of 49.85 for BP does not make them suitable for direct
biological treatment processes. Similarly, most organic frac-
tion of municipal solid wastes in countries like India has un-
favorable C/N ratios [34]. Among the three substrates here,
BP has the highest holocellulose (cellulose + hemicellulose)
content [35] and the lowest amount of ash. Its lignin content
(7.7 wt.-%) is near to that of hybrid plantain peduncles [36].

SS and AD are complex heterogeneous substrates with a
larger amount of inorganics. Similar to AD, the SS also has a
low concentration of holocellulose as it is collected from a
post-fermentation process, which mainly degrades the acid
detergent fiber, starch, carbohydrates, proteins, etc.
Digestion usually leaves behind only the resilient lignin struc-
tures and increases mineralization [37]. Figure 2 shows the
relation between the atomic H/C vs O/C ratio (Van Krevelen
diagram) [38] of the unmixed and mixed substrates before
pyrolysis. Except for SS, the unmixed substrates show lower
oxygenated functional groups as compared with the conven-
tional biomass [39]. SS also has the lowest fixed carbon
among the three substrates. Pyrolysis temperature above
600 °C is required to reduce the high H/C ratio in these un-
mixed substrates and carbonize them [40].

Mp has the lowest O/C among the blends, and this should
lead to more stacked polyaromatic hydrocarbons with fewer
cross-links during carbonization of its organic fraction [40].
All blends retain a similar H/C ratio that is representative of
the aliphatic -CH content. As seen Fig. 1, lead and silica are
most prominent in Ms (with 50 wt.-% SS). Sodium and chlo-
rine concentrations are directly proportional to the amount of
AD in the mixture. The three biomass blends have more than
2.5 wt.-% of Ca and K. Total and fixed carbon of all the
mixtures are similar but lower than 35 and 9 wt.-%,
respectively.

3.2 ATR-FTIR spectra

Figure 3 shows the mid-IR ATR spectra of the individual
unmixed substrates—SS, BP, and AD—before pyrolysis. BP
has lignocellulosic material as indicated by the phenol and
amine vibrations between 3500 and 3000 cm−1 and the C-H
symmetric stretching between 3000 and 2800 cm−1 (Fig. 3).
The fingerprint region (1800 to 400−1 cm) provides more in-
sights. The peak at 1031 cm−1 represents the stretching vibra-
tions of cellulose and its derivatives [41]. The CH2 wagging
vibrations at 1312 cm−1; and the shoulder peak near
1730 cm−1 [42] are strong indications of cellulose and
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hemicellulose (salt or ester form), respectively. The signal at
1604 cm−1 is assigned to the aromatic skeletal vibration mode
of lignin [43] and the C=O vibration of lignin and hemicellu-
lose [44]. Other band assignments include the weak
1371 cm−1 as aliphatic CH3 deformation and 1243 cm−1 as
C–O stretching of cellulose and hemicellulose [45], which
will disappear in biochars prepared above the cellulose
devolatilization temperature. BP is not a woody (lignin-rich)
biomass. Hence, specificities like hardwood lignin’s syringyl
absorption [46], at 1315 cm−1, or the C–O deformation
(1081 cm−1) due to secondary alcohols [47] in softwood lignin
are obscured by the majority holocellulose content. The spec-
tral features of BP are in agreement with literature values [11,
48], with the main difference being the peaks in the sub
600 cm−1 region that stems from Si–O bonds in the gravel
and sand retained in unwashed BP.

In ATR spectra of both AD and SS, the broad NH and
phenol region are visible in the range 3800–3000 cm−1. The

aliphatic symmetric C–H stretching (2918 cm−1) is sharper,
giving them a higher H/C ratio compared with BP. The
ensuing vibration in the region of 2850 cm−1 is assigned
as the fermi resonance from the aromatic C=C bond vibra-
tion of lignin around 1425 cm−1. There is a stronger relative
concentration of lignin in them. The signal near 1631 cm−1

is attributed to amides-I [49, 50] from proteins [51] and the
aromatic ring stretching. Peaks between 1540 and
1460 cm−1 represent the stretching associated with the car-
boxylate groups [37]; short-chain fatty acids (SCFA) are the
usual byproducts of fermentation. The peaks at 1417 cm−1

for SS and 1407 cm−1 for AD are phenols [51, 52].
Compared with BP, both have sharper spectral features in
the sub 600 cm−1 region because of bending vibrations of
inorganics like phosphorous, silica, and chlorine [53, 54].
With the reduction of lignocellulose derivatives in biochars,
the definition of these inorganic bands becomes more
prominent.

Table 2 Elemental, crude fiber, and proximate analysis of SS, BP, and AD

# Unit* SS BP AD Equipment/model

P wt.-% 1.9 0.29 2.69 ICP-OES/SPECTROBLUE TI
K wt.-% 0.19 6.53 4.56

Ca wt.-% 7.49 0.89 5.39

Mg wt.-% 1.25 0.2 1.4

Na wt.-% 0.27 < 0.0097** 5.35

S wt.-% 1.51 0.12 0.6

C wt.-% 28.5 41.9 27.4 Elemental Analyzer/TruSpec CHN from Leco Instrumente
H wt.-% 4.5 5.6 4.6

N wt.-% 2.7 0.98 2.6

O wt.-% 19.3 15.2 18.1

O/C ratio 0.40 0.22 0.37

H/C ratio 1.67 1.51 1.77

As mg/kg 4.33 < 0.1 0.6 ICP-MS/ICAP Q from Thermo Fisher

Hg mg/kg 4.61 < 0.01 0.47 AAS/Hydra AA from Teledyne Leeman Labs Inc.

Cl mg/kg < 1884 4642 76,815 Titration/Metrohm Robotic Titrosampler (855) with Ag-Electrode

Pb mg/kg 41.3 < 1.93 6.6
Cd mg/kg 2.12 < 0.1 0.37

Ni mg/kg 67.6 < 1.93 18.5

Zn mg/kg 1703 14.6 191 ICP-OES/SPECTROBLUE TI
Fe mg/kg 11,600 30.3 5522

Cu mg/kg 235 < 1.93 42.6

Cr mg/kg 277 2.96 38.4

Si mg/kg 91,891 5568 42,050

Lignin wt.-% 13.4 7.7 9.6 Muffle Furnace/FT12 from Gerhardt
Cellulose wt.-% 4 44.7 5.9

Hemi cellulose wt.-% 5.3 12.1 8

VM*** wt.-% 27.1 65.3 42.6 Muffle Furnace
Ash Content wt.-% 67.2 13.8 41.8

Fixed Carbon wt.-% 0.6 16.8 7.4

* wt.-% indicates weight percent on dry basis; ** all “<” indicates those values which are below the detection limit of the test; *** VM is volatile matter
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The aromatic substitution and/or ring fusion depends on the
available adjacent hydrogen atoms in a ring. The less the adja-
cent hydrogen atoms, the more the fusion and/or substitution.
Here, the assignment of aromatic components are made in two
regions: (a) 2800–3100 cm−1 for aromatic C–H stretching [55]

and (b) 900–700 cm−1 as follows—single aromatic hydrogen
with 3–4 ring condensation/substitutions at 870 ± 20 cm−1; ring
with two adjacent hydrogen at 815 ± 20 cm−1; ring with three
adjacent hydrogen 790 ± 10 cm−1; and aromatic ring with four
adjacent hydrogen at 750 ± 20 cm−1 [56–58].

Fig. 1 Elemental, crude fiber, and proximate analysis of biomass blends—Ms, Mp, and Md. VM and TC indicate volatile matter and total carbon,
respectively

Fig. 2 Van Krevelen diagram of
SS, BP, AD, and their blends—
Ms, Mp, and Md—before
pyrolysis
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3.2.1 Biochar from the individual unmixed substrates

At 450 °C HTT, the biochar from BP, SS, and AD are labeled
450P, 450S, and 450D, respectively, while the biochars pre-
pared at 650 °C are labeled as 650P, 650S, and 650D. Figure 4
and Fig. 5 show the ATR-FTIR spectra of biochar of unmixed
substrates—SS, BP, and AD—prepared at HTT 450 °C and
650 °C, respectively. Comparable trends are observed in their
spectral profiles.

At 450 °C In the spectrum of 450P (Fig. 4), the presence of -
OH/-NH groups (3600–3100), aliphatic C–H (3000–2800),
and cellulose derivatives (peak near 1026 in the fingerprint
region) [59] has reduced. The shift in baseline towards the
right denotes increased loss of functional groups and graphi-
tization [60, 61]. Holocellulose content (region around

1031 cm−1) lost most of its spectral features. The other bands
are aromatic ring vibrations at 1565 cm−1; C–C stretches in
aromatic ring at 1398 cm−1 [60]; CH2 wags of cellulose-
hemicellulose remnants at 1308 cm−1 [42]; remaining C–O,
C–C, and C–O–H vibrations in polysaccharides at 1034 cm−1

[62]; and substituted aromatic C–H out-of-plane wags be-
tween 871 and 756 cm−1 [43, 63, 64]. This biochar still retains
aliphatic C. Poly-substituted aromatics have also started
forming in 450P.

In the spectra of 450D and 450S, existence of phenols and
amides, aliphatic C–H, and cellulose reduces. However, com-
pared with 450P, there is flattening of spectral features be-
tween 3600 and 2500 cm−1 at 450 °C due to more prominent
loss in functional groups. Carboxylate groups are not visible
anymore. As noted by other authors [50, 65], the amide peaks
have changed position due to interaction with heavy metals
and shifted to lower wavenumbers—shoulder peak near
1600 cm−1. Substituted aromatic signals (near 774 cm−1) have
formed in both 450S and 450D. In short, at 450 °C, biochar
from BP retains more volatiles than 450D and 450S. The
450D and 450S profiles seem to have an almost complete
decomposition of aliphatic C–H bonds, but they retain recal-
citrant phenols and lignin. The existence of aliphatic C–H and
cellulose derivatives subsides in all biochars at 450 °C, there-
by revealing the transformation of biomass with temperature.

At 650 °C In the IR spectrum of biochar from BP at 650 °C
(650P), in Fig. 5, there is an aromatic C–H stretch between
2800 and 3100 cm−1 [55]. The relatively indistinct spectral
line in the 4000–2200 cm−1 region confirms a larger loss in
aliphatic functional groups (lower O–C and H–C ratio) [61]
compared with the spectrum of 450P. The lignin transforma-
tional products, ketones (C=O) and phenols (O-H bending),
are seen at 1449 and 1359 cm−1, respectively [41]. The
stretching of polysaccharides at 1030 cm−1 has considerably

Fig. 4 ATR spectra of biochars prepared from individual unmixed
substrates at 450 °C

Fig. 5 ATR spectra of the biochars prepared from individual unmixed
substrates at 650 °C

Fig. 3 ATR spectra of the individual unmixed substrates—SS, BP, and
AD—before pyrolysis
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reduced. The 870 cm−1 peak is from fused/substituted aromat-
ic rings. The peak at 706 cm−1 is assigned to C–H alkyl bend-
ing vibration, showing trace presence of aliphatic volatile
structures. The ratio of aromatic compounds (C=C ring
stretching at 1650 to 1450 cm−1) to aliphatic compounds
(CH stretching at 3000 to 2800 cm−1) [64, 66] is also higher
in 650P compared with 450P. The spectral profile of 650P
becomes more similar to that of graphite [67, 68], confirming
more transformation as compared to 450P.

In the 650D spectrum, due to onset of lignin degradation
and higher aromatization, the aromatic skeletal vibration com-
bined with C–H in-plane deformation gets shifted to
1428 cm−1. Silicates and phosphates remain unchanged at
temperatures below 700 °C. The wideband around
1000 cm−1 in 650D is from Si–O [16, 53], and phosphates
[41]. Aromatic ring substitution is seen at 879 and 776 cm−1

[57, 58]. In 650S spectrum, there is a strong presence of Si–O
(1012 cm−1), metal-halogen compounds (sub 600 cm−1) [69],
and Si–Ph (1300–1090 cm−1). It undergoes less aromatization
as compared with 650P and 650D. Strong peaks between
2280 and 2000 cm−1 are usually assigned to Si–H stretching
vibrations [70–72] or C ≡ N. But, here, the weak signal in this
region is due to the atmospheric background.

A comparison of biochars prepared at 450 °C and 650 °C
provides more insights into their composition. The bands at
877 cm−1 (for SS) and 872 cm−1 (for AD) are visible as a sharp
peak in their biochars prepared at 450 °C. While they have
completely disappeared in 650S, they are only fractionally vis-
ible in 650D and shifts to a higher wavelength of 879 cm−1.
This represents the changes in their bond energy. In some liter-
ature [73], these bands are ascribed to inorganic carbonates.
Carbonate decomposition starts above 620 °C and continues
till 800 °C. This, as seen here, cannot result in a complete signal
loss in its IR spectra in the biochar derived at 650 °C.
Carbonates of magnesium have lower thermal degradation tem-
perature. However, Mg has only a trace presence in SS and AD.
Here, these bands are assigned as resistant aromatics remaining
after anaerobic digestion [45]. In biochar from SS, this band
may also arise from oxygen substituted aromatic compounds
present in the wastewater [12, 50]. Silicates, phosphates, and
iron minerals are thermally stable at higher temperatures. In
450S and 650S, the twin peaks near 428 and 444 cm−1 [74,
75] are from Si–O bending; the peak near 674 cm−1 is Si–O–Si
bending [75]. Even in 650S and 650D spectra, the region be-
tween 1000 and 1022 cm−1 has a signal due to a combination of
thermally stable silicates and phosphates [76]. The 590 cm−1

peak in the IR profiles of 450S and 650S can be from iron
oxides [77] or Fe–O–Si bond [78, 79] that forms in presence
of iron minerals and silicates at higher temperatures.

The spectral profile of 650P still retains a relatively small
signal of volatiles, while 650D and 650S do not. The 650P and
650D havemore aromatic ring substitution/fusion, while 650S
has the least [12] and retains more Si–O bonds. Compared

with biochars at 450 °C, the general pattern is that all the three
biochars from unmixed substrates at 650 °C are more stabi-
lized and have more polyaromatic and graphite-like structure.
This is comparable with similar multi-HTT pyrolysis results in
the literature [15, 16]. Hence, the biochar from biomass blends
is investigated at 650 °C.

3.2.2 Biochar from SS, BP, and AD blends

Biochars from pyrolysis (Fig. 6) of blends Mp, Ms, and Md at
HTT of 650 °C are labeled as 650Mp, 650Ms, and 650Md,
respectively. They have differentiating features mainly in the
fingerprint region. Other than the weak peaks between 2200
and 2000 cm−1, the characteristics region is relatively feature-
less. The broad signal in the region between 1410 and
1425 cm−1 region includes C stretching of heteroaromatic
structures [13], OH deformation of recalcitrant phenols [49],
and CO3

2− ions [76, 80]. The lignin transformational products
from 650P are not visible in 650Mp due to the catalytic effect
of alkali and alkaline earth metals (AAEM) incorporated by
AD and SS. In 650Ms, absorption by Fe–O bonds of iron
oxides is present.

Inorganic spectral signals in the sub 600 cm−1 region per-
sist in these biochars. In the spectra of 650Ms and 650Md, the
signals at 438 and 428 cm−1 are from Si–O bending vibration
from the silicates in SS, which is also seen in 650S spectra.
The concentration of Pb, Zn, Cd, and Cu will be higher in the
biochar as they are unaffected during pyrolysis [15].
However, investigation regarding their mobilization is re-
quired to understand the bioavailability in soils [13, 81]. The
fingerprint region of 650Mp and 650Md features similar con-
tours. It has lost more features as compared with 650P and
650D. More signals are seen for 650Ms in the region 1000–
600 cm−1, which are attributed to minerals incorporated from

Fig. 6 ATR spectra of biochars prepared from SS, BP, and AD blends at
650 °C
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SS. After devolatilization at 650 °C, these biochars are left
with amplified concentrations of ash [82] and minerals. This
can reduce their higher heating value (HHV) [83] and influ-
ence the oxidation mass loss. 650Mp, 650Ms, and 650Md have
similar aromaticity. The spectral changes in 650Mp, 650Ms,
and 650Md compared with SS, BP, and AD cannot be ex-
plained by the proportionate changes of substrates in the
blends. Rather, it is evidence of the synergy between SS and
AD, and its effects on BP during pyrolysis.

3.3 Biochar stability during TPO

Figure 7 represents the DTG thermograms of the biochars
prepared at 650 °C from the individual unmixed substrates,
labeled as 650S, 650P, and 650D. And Fig. 8 shows the DTG
curves of biochars from blends Ms, Mp, and Md, labeled as
650Ms, 650Mp, and 650Md, respectively.

3.3.1 Biochar from the individual unmixed substrates

During TPO of 650S, 650P, and 650D, four stages are visible:
(1) dehydration of physically adsorbed and bound moisture,
under 200 °C [37]; (2) oxidation of remaining lignin,
substituted aromatics, and polycondensed aromatic structures,
400 to 600 °C; (3) mass loss of carbonates, 600 to 800 °C
[84–86]; and (4) mainly mass loss due to fixed carbon [87]
and residual ash decomposition—heavy metal volatilization
and metals reduction—above 800 °C [88, 89].

In DTG of 650P (Fig. 7), there is a small broad peak between
200 and 300 °C. This is the release of remaining volatiles (al-
iphatic C) left after pyrolysis as seen in its IR profile (sec 3.2.1).
In stage 2, reactivity or max peak temperature in their decreas-
ing orders is 650D > 650P > 650S. Despite more aromatization

during pyrolysis, reactivity of 650P is lower than 650D due to
catalytic effect of K [90] in 650P. Though AD also possesses a
higher concentration of AAEM, it also has 7.6 wt.-% of chlo-
rine, which vaporizes a large portion of AAEM as metal chlo-
rides above 500 °C during 650D formation [91, 92]. AD has the
highest amount of phosphorus (stable during pyrolysis), which
can increase the oxidative stability of 650D [93]. In this stage,
650S has the highest reactivity (lowest max peak temperature—
417.11 °C) owing to (a) its comparatively lower aromatic con-
densation as seen in its IR profile and (b) possible catalytic
effect of AAEMs, mainly calcium. During stage 3, 650P has
the least mass loss, while 650S and 650D, with higher fixed
carbonates, undergoes more oxidation [94, 95].

During stage 4, 650D has the highest rate of mass loss,
650P exhibits a twin peak, and 650S possesses negligible
reactivity. Despite similar ash content in SS and AD, the rea-
sons behind inertness of 650S in this region are (a) lowest
fixed C in SS (as seen in sec 3.1) and (b) its relatively high
silica (SiO2) content that is a major ashing factor during com-
bustion. The AAEM also form silicates in the presence of high
amounts of silicate minerals [96]. This ash prevents further
diffusion of gases into the biochar at higher temperatures
where the reaction is mainly driven by diffusion or mass trans-
fer [97, 98]. Inherited from AD, 650D can retain higher chlo-
rine concentration in it. Heavy metals—Cu, Zn, and Pb—
volatilization increases in the presence of chlorine, as reduced
metals form metal chlorides that are more volatile than their
oxides [88, 99]. Under sub-stoichiometric O2 flow, unburnt C
from stage 3 can also get oxidized here.

3.3.2 Biochar from BP, SS, and AD blends

The DTG curves of biochar derived from biomass blends (Fig.
8) also possess four stages as seen earlier. Initially, there is an

Fig. 8 DTG curve of biochars derived from SS, BP, and AD blends at
650 °C

Fig. 7 DTG curve of biochars derived from individual unmixed
substrates at 650 °C
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increase in mass of 650Mp due to surface oxidation. After
dehydration, during stage 2, all biochars undergo oxidation
of refractory and recalcitrant carbon. 650Mp has the highest
reactivity in this stage. 650Ms has the lowest reactivity here
due to its high ash and Si concentration, which improves
thermal stability owing to the formation of Si-aromatic struc-
ture [25, 100] and phosphorus content in Ms. The max peak
temperatures during stage 2 lowered from 475.8 °C in 650D to
456.2 °C in 650Md; lowered from 471 °C in 650P to 433 °C in
650Mp; and increased from 417.1 °C in 650S to 463.4 °C in
650Ms. These variations are not proportional to the changes in
SS, BP, and AD in substrate blends.

In stage 3, 650Ms and 650Md show similar reactivity due to
similar amounts of carbonates. Stage 3 of Mp is spread out
over a broader temperature range. During stage 4, (a) the
650Ms has the smallest mass loss like that of 650S, and (b)
650Mp and 650Md have similar mass loss rate and peak tem-
peratures due to similar fixed C.

3.3.3 Thermal oxidative recalcitrance

With an R50 of 0.951, 650P falls in the upper echelons of class
A biochar. This is higher than the R50 values of most other
biomass-derived biochars prepared at HTT of 650 °C as re-
ported in the literature [101–103]. This shows that the stability
of 650P is almost like that of graphite with a good amount of
condensed/fused aromatic structures. R50 of other biochars is
not measurable as they undergo less than 50% mass loss dur-
ing oxidation. This is due to their higher recalcitrance than
graphite.

Similarly, the gained stability index [104], a sub-scale of
R50, also cannot be used here. The recently proposed c-based
recalcitrance index also suffers the same limitation in addition
to the fact that it demands additional equipment for multi-
element scanning thermal analysis (MESTA) [105, 106].
These two techniques also isolate the catalytic and/or
inhibiting behavior of minerals in the biochar, which plays a
major role in total oxidative stability of ash- and mineral-rich
biochar. Besides, the value of T50,g depends on the mesh-size
of graphite [107], conditions of the oxidative environment—
oxygen concentration, sample mass, and heating rate—and
intrinsic thermal lag in the TGA equipment. Therefore, T50,g
is not a constant that can be used across experiments; it must
be measured under each study condition as well—an extra
mandatory step. While some authors [108–110] have follow-
ed this, others [102, 104, 111] have used T50,g value of 886 °C
from the original work of [33].

The existing methods cannot quantify and compare the
relative changes in overall thermal oxidative stability of bio-
char from a FOW like BP when it is co-pyrolyzed with mul-
tiple ash- and mineral-rich biomasses like SS and AD. In such
cases, aromaticity, ashing, mineral types, and phases play
equally important roles in oxidation recalcitrance [25]. For

such a comparison, suitable reference material is the biochar
from unmixed FOW itself.

The thermal oxidative recalcitrance index (TORi) can be de-
fined as the moisture-corrected total mass loss of biochar relative
to the temperature at which 50% oxidation of reference material
occurs under the same oxidative environment—heating rate, ox-
ygen concentration, and flow rate. It is calculated as

TORi ¼
50−Δm50;i
� �

100
ð2Þ

−0:5≤TORi≤0:5 ð3Þ

where Δm50, i is the moisture-corrected mass loss of the
biochar, i, at the reference temperature Tr (in

°C) where 50%
mass loss of reference biochars occurs. Equation (3) shows the
limiting values: (a) when TORi = +0.5, the biochar i is inert
compared with the reference biochar; (b) at TORi = 0, i has the
same stability as the reference; and (c) when − 0.5 ≤ TORi < 0,
i is more reactive than the reference, undergoing complete
oxidation at − 0.5. It can be seen that TORi is based on the
R50 concept but only modified to be relativistic. Its values are
relative to the biochar whose changes in oxidation stability/
reactivity need to be compared during co-pyrolysis of its par-
ent substrate with other mineral-rich biomasses. TORi encom-
passes the oxidation of volatiles, labile organics, aromatic car-
bon, and influence of inorganics.

In Table 3, the R50, total oxidative mass loss (moisture-
corrected), maximum peak temperatures (during stage 2 of
TPO), and TORi of the biochars are shown. Here, 650P is
taken as the reference biochar. Its Tr is 842.59 °C. In descend-
ing order of stability, TORi of the biochars is 650D (0.294) >
650S (0.278) > 650Ms (0.193) > 650Md (0.142) > 650Mp

(0.134) > 650P. The recalcitrance of 650D is the highest
among the biochar from unmixed substrates. Despite high
recalcitrance, the biochars 650D and 650S can pose difficul-
ties as a carbon sink in soil due to their potentially lower
carbon [112] and higher ash and heavy metal content.

While among the biochar from UOW blends, 650Ms has
the highest recalcitrance despite lower graphitization com-
pared to 650P as seen in its FTIR spectrum. 650Ms has more
silica inherited from Ms (sec 3.1), which increases the recal-
citrance through Si encapsulation of carbon [113]. In addition,
the higher Fe content in 650Ms (sec 3.2.2) also promotes
graphitization [114] and higher recalcitrance [115]. Thus,
more than aromaticity, these factors make 650Ms most recal-
citrant as a carbon sink in soil. The water extractable organic
carbon from 650Ms will also be lowest among the biochar
from blends [115]. 650Mp has the lowest TORi despite signals
of good aromaticity in its IR spectra. This is due to the cata-
lytic activity of AAEM species during its oxidation reaction
[116] and the comparatively lower amount of Si and Fe in it.

Between 650Ms and 650Md, oxidative stability is higher
for blend with a higher concentration of SS. While between

4738



Biomass Conv. Bioref. (2022) 12:4729–4743

650Mp and 650Md, recalcitrance is higher for the blend with
higher AD content. The blends 650MS and 650Md, which
were prepared from a total of 70% ash and mineral-rich AD
and SS, have stabilities far lower than 650D and 650S. These
TORi variations of biochar from blends are not proportional to
their component concentration, but rather due to synergistic
influence of the SS and AD among themselves and on the BP.
Non-negative values of TORi of 650Ms, 650Mp, and 650Md

indicate that biochars from blends of BPwith SS and AD have
recalcitrance higher than conventional biomass-derived bio-
char at HTT of 650 °C. This is due to the interaction of ash
and mineral content on the carbon matrix of 650Ms, 650Mp,
and 650Md.

4 Conclusion

The biochar from the slow pyrolysis of three biomass, BP, SS,
AD, and their blends, Ms, Mp, and Md, were prepared and
investigated using ATR-FTIR and temperature programmed
oxidation to determine their potential as a long-term carbon
sink in soils. Biochars from SS and AD and the blends are
richer in AAEM and ash content than that from BP. The con-
ventional R50 index is found insufficient to measure and com-
pare the recalcitrance of such mineral- and ash-rich biochars.
A modified thermal oxidative recalcitrance index (TORi) is
proposed for this purpose.

For the biochars derived from these three UOW blends at
HTT of 650 °C, aromaticity is similar. But, the Si, Fe, and
AAEM content influence their recalcitrance more. Biochar
gained from UOW blend of 50% SS, 30% BP, and 20% AD
exhibits the highest TORi. The relative differences in FTIR
spectra and TORi among these biochars are found to be due
to the synergy between the constituent SS and AD, and their
effect on BP during co-pyrolysis process. The study confirms
the potential for biochar derived from the UOW blends of BP,
SS, and AD to become stable carbon sink in soils. They possess
recalcitrance higher than conventional biochar prepared from
biomass at 650 °C. Further investigations are required to quan-
tify the carbon sequestrated per unit weight of these biochars,

their PAH content, and bioavailability of heavy metals. The
authors recommend future studies in this direction.
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Table 3 Biochar TPO stability
parameters Biochars at

650 °C
Recalcitrance index
(R50)

Thermal oxidative recalcitrance
(TORi)

Max peak temperature
(°C)

650S NC* +0.278 417.1

650P 0.951 0 471.8

650D NC +0.294 475.8

650Ms NC +0.193 463.4

650Mp NC +0.134 433.0

650Md NC +0.142 456.2

* NC indicates those that fall beyond calculation range of R 50
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