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Abstract
In geo-environmental applications, the potential of biochar has been explored as a suitable cover material of landfill and vegetated
slopes. The inherent nature of biochar affects the geo-environmental properties of the soil-biochar composite like water retention,
compressive strength, infiltration, and soil erosion. Performance of a cover depends on biochar’s surface functional groups,
which can be either hydrophobic or hydrophilic based on bio-source. The objective of this paper is to investigate the geotechnical
properties of biochar-amended soil sourced from two contrasting feedstock, i.e., poultry litter (animal based) and water hyacinth
(plant based). The test results show that biochar addition increased the Atterberg limits and reduced the acidity of soil. Biochar
addition directly increased the optimum moisture content and decreased the maximum dry density. Both biochar addition
decreased the composite compressive strength by 25–50% but increased the ductility of composite. Water hyacinth biochar
(WHB) inclusion decreased the erosion rate of soil while it is not the same for poultry litter biochar (PLB). In the case of water
retention, only the addition of WHB increases retention and holding capacity of soil. The obtained results have been discussed in
context with the conducted microstructural, chemical, and physical tests on both biochar. Through these analyses on biochar of
different origin and having contrasting functional groups and intra-pore network, the development of a complex biochar-water
network was confirmed.
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1 Introduction

Biochar, a carbon-rich porous material, has been extensively
used as soil amendment material to promote vegetation
growth for potential applications such as ecological restora-
tion, landfill cover, bio-engineered slope, and green roof

(Fig. 1) [1–3]. Biochar is the carbonaceous residue left after
pyrolysis process, which is characterized by thermal degrada-
tion of organic biomass in the absence or limited supply of
oxygen [4]. During pyrolysis, as temperature increases, the
organic material gradually turns in to char with gradual for-
mation of aromatic sheets, higher surface area, and porosity
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[5]. Biochar when mixed in soil modifies the pore size distri-
bution of soil, provides additional nutrients for plant roots, and
generally increase the soil water retention capacity [6]. The
feedstock used for biochar are majorly organic waste biomass
(both plant and animal based) [7]. Their (animal and plant-
based feedstock) response to thermal degradation is different

due to their inherent biopolymers [8, 9]. Animal biopolymers
mostly constitute of animal protein such as gelatin, collagen,
and polysaccharides like cellulose, starch, carbohydrates, etc.
On the other hand, plant biopolymers are mostly lingo-
cellulosic in nature, i.e., they are majorly constituted by cellu-
lose, hemicellulose, and lignin; and have a defined structure

Fig. 1 Schematic description of the concentric circles showing the effect of biochar production (purple) on inherent biochar properties (blue) and
geotechnical properties of biochar amended soil (red)
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[10]. Conversion of waste biomass to biochar enhance the
stability of the carbon and assists in long-term carbon seques-
tration [11]. Biochar has found popularity in agricultural ap-
plications and forest ecology as a soil medium, suitable for
microbial incubation and water retention [6].

In geotechnical and geological applications, the poten-
tial of biochar was explored as a suitable cover material in
landfill applications [12–16] and vegetated slope stability
[17, 18]. These works in landfill applications majorly en-
capsulate the response of biochar amendment to methane
gas transport, adsorption, oxidation, microbial activity,
water holding capacity, and hydraulic conductivity
[19–23]. Sadasivam and Reddy [24] have investigated
the shear parameters of soil-biochar composite for landfill
conditions and indicated that biochar addition can in-
crease the stability of the cover system. Yargicoglu et al.
[25] characterized the physio-chemical properties of dif-
ferent plant-based biochar but not the soil-biochar, com-
posite. The vegetation potential in compacted biochar
amended soil was also explored with respect to soil water
retention characteristics (SWRC) and vegetation growth
[10, 17, 26, 27]. In all of these geotechnical studies in-
volving compacted soil-biochar composite, only plant-
based commercial biochar was utilized and rarely any
considerations were given to the aromaticity of the bio-
char in form of surface functional groups. This directly
will affect geo-environmental properties like SWRC, co-
hesive strength, water flow, and soil erosion [28–30].
Pardo et al. [31] recently explored the impact of surface
functional groups and inherent porous morphology toward
liquefaction potential of sand. It is thus important to prop-
erly investigate the biochar type (based on plant or animal
source) in form of surface functional groups, inherent
morphology, and utilize it for geotechnical applications
like slope protection.

The overarching objective of this note is to explore the
influence of animal and plant-based biochar on geotechnical
properties of soil. These are initial tests to comprehend the
feasibility of biochar produced from contrasting feedstock.
This was initially done by producing two different in-house
biochar (plant and animal) based on its thermal degradation
response. Thereafter, surface functional groups, surface mor-
phology, and allied physio-chemical properties were charac-
terized. Subsequently, the effect of biochar inclusion in alter-
ing the basic geotechnical properties of soil, at different
weight percentage (5% and 10%) of dry soil was investigated.
Based on the individual compaction characteristics of the soil
and soil-biochar composite, the compressive strength, erosion
potential, SWRC, and infiltration rate were assessed for the
same compaction conditions. The study aims to highlight the
underlying mechanism of soil-biochar composite in terms of
mechanical and hydraulic response, and juxtapose it with in-
herent functional groups and morphology of the biochar.

2 Experimental plan and procedure

The general schematics of experimental plan and procedure
was described in Fig. 2. The pyrolysis condition was deter-
mined based on thermogravimetric analysis (TGA) of the se-
lected feedstock. The produced biochar was investigated for
elemental composition, surface morphology, and surface
functional groups. The soil-biochar composite with biochar
at 5% and 10% of dry soil was investigated thereafter for basic
geotechnical properties such as grain size distribution,
Atterberg limits, compaction characteristics, shrinkage area
ratio, and pH. Based on the obtained compaction characteris-
tics of individual composite and BS, samples were compacted
at the same compaction state. The compaction state was se-
lected at 90% of maximum dry density (MDD) and corre-
sponding optimum moisture content (OMC) along the com-
paction curve. This is done as biochar in geo-environmental
applications are predominantly used for vegetative covers and
vegetation growth is suitable up to around 0.9 MDD [32]. To
account for its feasibility in geo-environmental application, a
series of mechanical and hydraulic tests were done on the
compacted sample whose details are given below. Each ex-
periment was repeated thrice for accuracy and standard error
was reported.

The mechanical tests done were unconfined compressive
strength (UCS) test [33] and pin-hole test [34] to measure
quantitative compressive strength and erosion potential, re-
spectively. The hydraulic assessment was done by measuring
the soil water retention property and infiltration rate by
conducting instrumented column test [35] and disk infiltration
test [36], respectively. The UCS test setup is shown in Fig. 3a
and the strain rate selected for shearing was selected at
1.25 mm/min. The schematic steps of pin hole test setup are
shown in Fig. 3d. The samples were compacted using a static
compactor from both sides and a hole of 0.7 cm was drilled
into the compacted sample. The runoff flow rate was initiated
from 0 to 1 l/min and runoff can pass through the compacted
sample for 10 min [37]. The effluent water is collected in a
chamber after it passes through the sample and later filtrated
using a Whitman 42 grade filter paper. The soil loss is thus
calculated from the retained soil mass on the filter paper.
Pinhole is a popular index test to measure internal erosion of
a soil or soil composite [38, 39]. The use of pin hole erosion
setup is limited to investigate piping or internal erosion.
Erosion due to surface runoff cannot be calculated using pin
hole erosion setup.

The soil water retention characteristics (SWRC, i.e., matric
suction vs. moisture content) is measured by an instrumented
column setup as shown in Fig. 3b. The experiment was con-
ducted under a controlled environment (temperature and rela-
tive humidity, RH) to minimize the variability associated with
SWRC. The temperature and RH were kept at 24 °C and 40%
respectively. Dummy sensors were pre-installed during
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compaction process so that there is no damage to the ceramic
sensors. Thereafter, the sensors are installed carefully so that
there is proper contact between sensor and soil. The column
dimension and sensors were installed at location as per previ-
ous literature pertaining to SWRC measurement [10] and
shown in Fig. 3b. Decagon’s MPS-6 suction sensors and
EC-5 moisture sensors were used to measure the matric suc-
tion and volumetric water content respectively [35].
Decagon’s EM-50 data logger system was used to store the
data of the two sensors. The van Genuchten fitting [40] was
not done to the measured data points of the SWRC as the
residual water content of individual soil-biochar composite
is not known because MPS-6 only measures suction accurate-
ly up to 2000 kPa [35].

The surface infiltration was measured using Decagon’s
mini disk infiltrometer (MDI) by conducting infiltration tests
on column setups. The column dimension was chosen to
avoid any boundary effect as per previous literature [41].
Three repetitions were done for each experiment conditions.
The tension applied to all experiments were corresponding to
2 cm head and a minimum amount (15 mL) of water could
infiltrate in the soil as per literature [42]. MDI was chosen to
conduct infiltration experiments as it is easy to use in

laboratory settings and there is no need of auguring. A sim-
plified approach of measuring infiltration rate was adopted as
per literature [36]. Infiltration rate (I) at any time interval (dt)
was determined in Eq. 1

I tð Þ ¼ 1

A
dV
dt

� �
ð1Þ

where dV is the volume change of infiltrated water within a
given time (dt) and A is the cross-sectional area of the disk.

3 Materials

3.1 Soil characterization

The soil used in the current study was classified as silty
sand (SM) as per the unified soil classification system
(USCS; [43]). As per ASTM D4318-10 [44], the liquid,
plastic, and shrinkage limits of the soil were 36%, 25%,
and 14%, respectively. The grain size distribution of the
soil was presented in Table 1 as per ASTM-D422–63-07
[45]. The specific gravity of the soil is 2.58 as per ASTM-

Fig. 2 Flowchart of the experimental program in this study
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D854 [46]. The compaction characteristic (i.e., maximum
dry density and optimum moisture content) for the soil are
1.7 g/cm3 and 16.7% respectively [47].

3.2 Biochar production and characterization

Two biochar (produced from water hyacinth (WH) and poul-
try litter (PL)) were selected to investigate the effect of plant
and animal-based biochar. The WH plants were selected from
the same water body to minimize the effect of any genetic
variation. The poultry litter was sourced from a local chicken

farm. The TGA was initially done on both biochar to decide
the pyrolysis temperature of the feedstock. As per the TGA
curve and mass loss observed of the feedstock (Fig. 4a), py-
rolysis temperature in the pyrolizer was chosen at 390 °C and
450 °C for WH and PL (Table 2). Slow pyrolysis was chosen
as the pyrolysis method for biochar production as it offers the
highest yield of biochar [48]. Fourier transform infrared FTIR
spectrometer was consequently used to investigate the
surface-active functional groups of the two produced biochar
[49]. FTIR methodology consists of passing infrared days
through the biochar sample. Based on the functional groups
present in the biochar surface, some wavelengths will be
absorbed and the rest will be transmitted. The spectrum ob-
tained (Fig. 4b) of transmittance (in this case) or radiance
along with the wave number gives the qualitative surface
functional groups. In the case ofWH, the predominant surface
functional group is hydrophilic hydroxyl (OH) group with
neutral ether (C-O) being the second group [50]. The poultry
litter biochar (PLB) had predominantly hydroxyl group (OH)
with significant peak stretching. In contrast to water hyacinth
biochar (WHB), there were additional hydrophobic functional
groups like alkyl aliphatic (CH) group as well as aromatic
hydrophobic groups such as (C-C) and (C-OH) present in
PLB [51]. Elemental analysis of C, H, N was done using an

Fig. 3 Photographs of the experimental setup used to measure (a) UCS, (b) SWRC, (c) Infiltration rate, and (d) Soil erosion rate

Table 1 Particle size distribution of the soil and the selected biochar

Group Bare soil WHB PLB

Gravel (> 4.75 mm) 0 0 0

Coarse sand (2.00–4.75 mm) 4 0 0

Medium sand (0.425–2.00 mm) 24 32 32

Fine sand (0.075–0.425 mm) 23 40 52

Silt (0.002–0.075 mm) 34 28 16
Clay (< 0.002 mm) 16

Finer percentage for biochar could not be ascertained by conventional
method

5807Biomass Conv. Bioref. (2024) 14:5803–5818



elemental analyzer and reported in Table 2. The percentage
ash content and cation exchange capacity (CEC) was mea-
sured by [52, 53], respectively.

Field-emission scanning electron microscopy (FE-SEM)
imaging was conducted to observe the surface morphology
of the two biochar (Fig. 4c). Both materials showcase some

porous nature on the surface at same magnification (× 500).
However, WH had clear honeycomb porous surface indicat-
ing high amount of intra-pores. This honeycomb structure of
intra-pores in the case of plant-based biochar was due to lignin
biopolymer encapsulating cellulose and hemicellulose bio-
polymers [54]. During pyrolysis, the hemicellulose and

(a) (b)

(c)

Fig. 4 Biochar characterization through a TGA analysis of feedstock, b FTIR, and c FESEM analysis at × 500 magnification

Table 2 Production conditions, elemental composition, and other chemical properties

WHB PLB

Feedstock Water hyacinth stem sourced
from deepor lake, India

Straw, chicken feces, bentonite clay
(2%), basal dust (~ 1%) and traces of FeO2

Pyrolysis process Slow pyrolysis Slow pyrolysis

Pyrolysis temperature (°C) 350–400 450

Elemental analysis

C (%) 53.39 36.41

O (%) 42.80 61.73

H (%) 1.99 1.86

N (%) 1.82 2.39

Ash content (%) 39 56

CEC (cmol kg−1) 21.95 56.3
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cellulose degrades first, and lignin degrades last. This thermal
degradation leads to honeycomb intra-pores which can facili-
tate water within the pores [31]. In the case of PLB, these
stacked honeycomb pores are not found. Rather, the pores
are random in nature and smaller in number. These can be
due to the absence of a lignocellulose arrangement of biopoly-
mers found in plant-based material. Moreover, the FE-SEM
analysis showcased that PLB particles have a comparatively
rougher surface as compared to WH.

The particle surface morphology was further investi-
gated by Occhio 500nanoXY particle shape and size
analyzer [55] used for precision measurement of pow-
dered materials (see Fig. 5a). The instrument consists of
an integrated computer with an in-built imaging soft-
ware and a particle dispersion device that facilitates
capturing of powdered material (Fig. 5a, b). The soft-
ware can measure particle and its morphology ranging
from 0.2 to 2000 μm [56, 57]. The shape parameters
obtained, and their definition have been reported in
Table 3. However, three major parameters, i.e., round-
ness (Waddel’s concept in Fig. 5c), circularity, and
Occhio roughness was discussed majorly to explain the
mechanical parameters tested in results section. PLB has
a rougher surface and low roundness which can facili-
tate greater soil-biochar and biochar-biochar interface
friction as compared to WHB.

4 Results and discussion

4.1 Atterberg limits, shrinkage area ratio, and pH of
soil-biochar composite

Figure 6a, b showcases the liquid and plastic limit respectively
for the two biochar. It was seen that soil-biochar composite
showed significant increase (6% to 14% for WH) in liquid
limit proportional with the amendment percentage. The inclu-
sion of PLB to soil increases the liquid limit by 3% to 8% for
5% and 10% biochar amendment, respectively. The higher
liquid limit in soil-biochar composite was attributed to the
presence of intra-pores within biochar particle (Fig. 4c) in-
creasing the composite porosity [17]. The intra-pores increase
specific surface area (SSA) of the biochar [58] facilitating
more water within the soil-biochar composite. The plastic
limit for WHB-soil composite also showed similar increase
(4% to 16%) with respect to bare soil. In the case of PLB-
soil composite, there was rarely any change in the plastic limit
and can be attributed to less number of intra-pores in biochar
particle (refer Fig. 4c). Reddy et al. [12] have also reported an
increase in liquid and plastic limit based on a plant biochar
(species not mentioned) at 5%, 10%, and 20%.

The shrinkage limit for soil-biochar composite decreased
by (2–3.5) % from bare soil for both biochar types as shown in
Fig. 6c. To further comprehend the shrinkage potential of the

Fig. 5 Description of a the 500nano XY particle shape analyzer, b the resultant images of biochar, and c the concept of particle roundness (after [52])
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composite, the shrinkage area ratio (SAR) was measured
(Fig. 6d). SAR is ratio of change in area of sample after drying
to initial area of sample. The initial sample was in slurry form
mixed at liquid limit and kept in shrinkage disk. All samples
were dried at 80 °C in an oven for 24 h and measurement was
done based by image analysis technique. It was seen that soil-
biochar composite decreased the shrinkage area ratio of bare

soil by around 10–11% due to the non-cohesive nature of
biochar [12, 59].

Alkalinity or pH of a soil have cascading impacts on nu-
merous processes which are important for top layer function-
ing of landfill systems such as methanotrophic activity, min-
eral precipitation, and greenhouse gas emissions [60, 61].
Figure 7 shows the effect of biochar addition on soil. Each

(a) (b)

(c)
(d)

Fig. 6 a–c Atterberg limits and d shrinkage area ratio of the soil-biochar composite

Table 3 Mean shape parameters measured from particle characteristic analyzer

Parameter Definition Mean value

PLB WHB

Volume-equivalent diameter (μm) The diameter of a sphere having the same volume as the particle 9.0 3.8

Area-equivalent diameter (μm) The diameter of a sphere having the same projection area as particle 10.6 8.6

Inner diameter (μm) The biggest circle inscribed into the projection area of the particle. 7.4 7.1

Thickness (μm) Approximation of the particle width for very long and concave particle 3.9 4.3

Roundness (%) The degree to which the projection area of the particle is similar to a circle.
The ration of the area-equivalent diameter to Feret diameter maximum

58.4 76.4

Circularity (%) The degree to which the projection area of the particle is similar to a circle,
considering the smoothness of the perimeter.

74.7 83.6

Occhio roughness 80% (%) The ratio of smooth reference to the particle projection area. The smooth
reference is defined by inscribed circles tangent to each point of the particle
projection outline with a radius greater than 80% of the maximum inscribed circle

24.5 14.8
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biochar was basic in nature (9.2–9.4) and upon addition to
acidic soil (i.e., bare soil) resulted in soil being relatively neu-
tral or slightly basic (7–8). Similar response was found in a
study conducted by Reddy et al. [62] where pH levels of 6 to 8
was found to be optimal for methanotrophic activity [63].
Literature attributes the alkalinity of the biochar due to surface
functional groups such as carbonates, hydroxides, and other
inorganic alkalis which was reflected in the FTIR response of
both biochar [64].

4.2 Compaction characteristics of soil-biochar
composite

Figure 8 describes the compaction curves for soils and soil-
biochar composite as per standard proctor test. The MDD and
corresponding OMC for the bare soil were 1.69 g/cm3 and
17% respectively. The biochar-amended soil showcased a de-
crease ofMDDwhile OMC increased with addition of biochar
from 5 to 10%. The decreased MDD can be explained by the
lower specific gravity of biochar particles and the smaller
compressibility of the amended soils at a given compaction
energy [62, 65]. The higher optimum water content could be
caused by the porous morphology (Fig. 4c) and high surface
area of biochar particles [66]. Figure 8c shows the schematic
representation of how the morphology changes with inclusion
of biochar and how excess water can be stored with the bio-
char particle matrix [67]. Ni et al. [17] also observed for silty
sand soil that 10% of peanut shell biochar addition also de-
creased MDD from 1.89 to 1.74 g/cm3. OMC increase by 5%
corroborates the current finding of OMC increase of 4% in the
case of plant-based biochar. In the case of PLB, although there

is shift in OMC by 2%, it is much less than the plant-based
biochar possibly due to lower intra-pores.

4.3 Compacted soil-biochar composite

It is to be noted that all soils were compacted at 0.9 of max-
imum dry density and OMC for individual soil type to test the
sample at equal compaction energy given to the soil. The
compaction state was chosen based on the density required
for vegetation growth [32]. The detailed discussion of the tests
was done by explaining the mechanical properties (encapsu-
lating UCS and pin-hole erosion test) followed by the hydrau-
lic properties (water retention and infiltration).

4.3.1 Mechanical response of soil-biochar composite

Figure 9a represents the stress-strain response of individual
sample for soil and compacted soil-biochar composite at 5%
biochar amendment. It is seen that for addition ofWHB and at
10% PLB, UCS decreases with respect to bare soil. Soil with
5% PL biochar addition resulted in a marginal increase of
UCS (20–30) kPa (Fig. 9b). The lower UCS value for
biochar-amended soils could be mainly attributed to the mod-
ification of soil porosity [59] due to intra-pores present in
biochar. Sun and Lu [68] reported that biochar addition result-
ed in an increase of pore volume which will decrease the
strength of the soil. Previous work done on direct shear by
Sadasivam and Reddy [24] reported that hardwood biochar
addition resulted in increase in cohesive strength and angle
of friction. On the contrary, Zong et al. [59] reported that
cohesive strength decreases from 25 to 60% by conducting

Fig. 7 Effect of biochar
amendment on pH of the soil-
biochar composite
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direct shear tests using three biochar (wheat straw, woodchips,
and wastewater sludge).

The soil-biochar composite strength is partially determined
by the frictional forces of soil-biochar interface. The strength
of composite from WHB is way less as compared to PLB as
the roughness of PL is much more (24.5%) than that of WH
(14.8%) as showcased by particle characteristics analysis
(Table 3). The failure patterns and post peak ductility of each
soil type was found to be different. For simplicity, only 5%
biochar-amended soil (Fig. 9a) is used to describe the post
peak ductility using normalized ductility index, (NDI). NDI
is defined as the ratio of fall in post peak strength to that of the
peak stress [69]. Here, complete brittle failure (where σultr or
σultb is taken as 0 at same strain) is indicated by NDI = 1.
Contrastingly, purely ductile behavior with no change in stress
on further straining (peak and ultimate values are same) is
seen in the case of NDI being 0.

NDI ¼ σpr−σultr

� �
σpr

� � or
σpb−σultb

� �
σpb

� � ð2Þ

where σultr and σultb are the ultimate stresses for reinforced
and bare soil, respectively. It was found that bare soil show-
cased distinct shear failure with relatively brittle failure having

NDI between 0.67 and 0.7. Five percent PLB amended soil
showedNDI value between 0.13 and 0.14which indicates that
the sample is relatively ductile. However, 5%WHB amended
soil showed highest ductility (0.09 to 0.1) with multiple shear
planes and bulging failure as shown in Fig. 9a.

The effect of biochar amendment on soil erosion was
showcased in Fig. 10 based on pin-hole erosion test.
Inclusion of WH biochar in soil decreases the erosion rate of
soil after 0.5 Pa shear stress. This can be attributed to the
abundant presence of hydrophilic functional groups which
attract water molecules and increase the inter-particle bonds
[70]. Furthermore, the roundness of WH particles was found
to be very high (76%) as per particle characteristic analyzer.
Thus, the stress caused by the water flow over the rounded
biochar particles would be relatively less as compared to PL
which is relatively coarse (circularity = 58%). It was seen that
with WHB addition to soil, the erosion rate gradually de-
creases. In the case of PLB-amended soils, at 5% PLB-
amended soil, the erosion increases after 0.2 Pa. It can be
attributed to hydrophobic functional groups and probably the
biochar dust coated on soil particles will further decreases the
apparent cohesive forces between the soil [31, 59]. However,
for 10% PLB, there is decrease in erosion rate which needs to

(a) (b)

(c)

Fig. 8 Compaction curve of aWHBand b PLB to estimate the maximum
dry density and optimummoisture content. c Schematic description of the

change in particle matrix arrangement of soil due to biochar addition
(after [52])
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be investigated in the future. Plausible reason may be that
erosion rate is governed by both the functional groups (both
hydrophilic and hydrophobic), surface roughness, as well as
inter particle bonding due to rougher surface.

4.3.2 Hydraulic properties of soil-biochar composite

Soil water retention response of bare soil and soil biochar
composite is shown in Fig. 11a based on the instrumented
column setup. For 5% and 10% WHB-amended soil, at
small suction range (< 100 kPa), retained water content
increased by around 6% and 11% respectively as compared
to bare soil. The increased magnitude is comparable with
results by Ni et al. [17], who found that 10% biochar pro-
duced from plant-based peanut shell increased water con-
tent by 6–8% (from 1 to 10 kPa). Beyond 2 MPa (beyond
wilting point), water content in 5% and 10% WHB-
amended soil were higher by 5% and 11%, compared to

(a)

(b)(c)

Fig. 9 Unconfined compressive
strength of bare soil and soil
biochar composite discussed in a
general stress -strain response. b
Sample at failure and c effect of
percentage amendment

0.00
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0.10
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noisorE
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Fig. 10 Results of the pin-hole tests shown as soil erosion rate Vs shear
stress and resultant average critical shear stress for bare soil and soil-
biochar composite
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that of bare soil. This indicates that WHB could retain soil
water much more significantly at high suction ranges and is
attributed to the intra-pores within biochar (Fig. 4c) and
occupancy of inter-pore space by WHB particles.
Moreover, the fine clay particles of soil could also fill the
biochar intra-pores and thus decrease the pore diameter
within biochar as hypothesized by T. F. Wong et al. [20]
enabling more storage of water. This hypothesis was veri-
fied by taking FE-SEM images of compacted soil-biochar
composites of both WH and PL feedstock (Fig. 11b). It is
clearly seen that portion of clay and fine silt particles can
fill the biochar intra-pores in case of WH, contrary to the
case of PL where soil particles engulf the small sized and
random intra-pores. The major surface functional groups
(i.e., -OH, -CO) in the case of WH are hydrophilic. On
the contrary, when biochar has hydrophobic functional
groups such as PLB, biochar may have no effect on water
retention of sandy soil as previously reported in literature

[71]. This phenomenon is manifested for PLB-amended
soil in the current study. There is a decrease in water re-
tention for 5% PLB-amended soil in comparison to bare
soil. On increasing the biochar amendment to 10%, the
SWRC is almost identical to bare soil. There is obviously
an effect of surface hydrophilic groups as well as relative
less amount of intra-pores. Hydrophobic functional groups
like alkyl (-CH) and aromatic groups (C-C and C-OH)
repel water and thus may decrease the water retention ca-
pacity of soil-PLB composite.

Surface infiltration response of bare soil and soil biochar
composite was shown by plotting the cumulative infiltration
with time graph in Fig. 12a. It was observed that inclusion of
biochar in the current soil reduced the infiltration rate regard-
less of being either plant or animal based. This was evident
because of the fine-grained average diameter of the biochar
(3.8–9 μm). Inclusion of biochar made the soil relatively fine
grained (having smaller pore throat size, refer to Fig. 8c) and

(a)

(b)

Fig. 11 a Soil water retention
response of bare soil and soil
biochar composites. b FE-SEM
images of compacted soil-WHB
composite and soil-PLB compos-
ite at 2KX magnification
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thus there is a decrease in infiltration rate in the same order
(Fig. 12b). Furthermore, the tortuosity due to water flow along
the biochar intra-pores might additionally hinder water trans-
port along the soil-biochar composite. Among the two bio-
char, WH showcased lower infiltration rates as compared to
PL possibly as it is finer in size (refer Table 3). SWCCs of bare
soil and 10PLB show no significant differences and it is ex-
pected that their infiltration rate should be also relatively the
same in magnitude. However, it is to be noted that infiltration
rate of bare soil and 10PLB is in the same order (refer
Fig. 12b), with only difference by a magnitude of 1.5. Also,
the difference in magnitude of that small order can be brought
out by change in contact angle [51] due to hydrophobicity of
PLB, as indicated by the FTIR spectra. The effect of biochar
percentage on infiltration rate did not give substantial trend
and needs further investigation.

5 Concluding remarks

Two biochar (WHB and PLB) of contrasting plant and animal
origin was produced using slow pyrolysis in an in-house py-
rolysis system. Each biochar was characterized for elemental
composition, surface functional groups, and morphology
(using FE-SEM and particle characteristic analyzer). The bio-
char was mixed with a silty sand soil at 5% and 10% by dry
weight of soil and initially characterized for basic geotechnical
properties. The change in geotechnical properties for the indi-
vidual soil-biochar composites were explained in conjuncture
with biochar porosity (including inter and intra-pore arrange-
ment) as well as by hydrophilic or hydrophobic surface func-
tional groups. It was revealed that biochar addition can in-
crease the Atterberg limits (except shrinkage limit) and reduce
the acidity of soil for suitable plant growth conditions. Biochar

(a)

(b)

Fig. 12 Infiltration response of
bare soil and soil biochar
composite. a Infiltration vs time
response, and b effect of
percentage amendment
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addition directly increased the optimum moisture content and
decreases the maximum dry density of the soil.

The mechanical tests revealed that biochar addition in silty
sand at same compaction energy decreased the composite
compressive strength by 25–50%. This is more profound in
the case of plant-based WHB addition to soil at any percent-
age reinforcement. It is only at 5% addition of PLB in soil that
there is a meager increase (5%) in compressive strength and
can be attributed to the rough morphology of biochar particle.
However, for all biochar, the ductility of the composite in-
creased manifold as indicated by higher NDI values. WHB
decreases the erosion rate of soil due to its hydrophilic func-
tional groups and rounded particles. However, for 5% PL, an
increase in soil erosion was observed. In the case of water
retention, the addition of plant-based WHB increased the wa-
ter retention and holding capacity of soil. However, for PLB, a
reduction in water retention is observed. The infiltration rate
decreased for both soil-biochar composites as compared to
bare soil. But the decrease is in the same order as that of bare
soil. Through these analyses on biochar of different origin, the
development of a complex biochar-water network was con-
firmed. Some results contrast with previous literature in geo-
environmental application which has majorly focused on
plant-based biochar. The study aims to draw attention to the
incorporation of the role of functional groups and biochar
porosity depending on the feedstock type and its consequent
manifestation in geo-environmental and geological infrastruc-
ture. Further computational analysis is also required to estab-
lish models for analyzing properties of biochar-amended soils
[72].
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