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Abstract
An increasing interest in biochar application has opened many multidisciplinary research areas in science. Biochar can be
produced by thermochemical conversion of organic biomass in an oxygen-deficient condition. Extensive research has been
conducted on the potential of biochar for agronomic applications, such as soil fertility improvement and carbon sequestration
due to its specific mineralogical composition and long-term stability in the soil. Using biochar for environmental remediation has
also been recognized recently as a promising area of research for its unique physicochemical characteristics, redox potential, and
adsorption capacity. However, the published works are mostly focused only on the agronomic and environmental applications
with little information presented to elucidate the different mechanisms involved. This study, therefore, aims to examine the
influence of controlling parameters during biochar production, such as pyrolysis temperature, residence time, and types of
feedstock on the characteristics of biochar. Various mechanisms explaining the potential of biochar for the environmental and
agronomic applications are discussed in detail. The challenges faced in biochar development and its field applications for
agronomic and environmental remediation purposes are also highlighted. Finally, recommendations for future research are given
on the development of biochar with high redox functional groups and sorption potential as well as on understanding the behavior
of biochar under the natural field conditions.
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1 Introduction

Biochar is defined as “a carbon (C) rich material produced
when organic biomass such as crop residues, wood chips or
manure are burnt in a closed container with little or no air”
[80]. More descriptively, Shackley et al. [122, 123] explained

biochar as “the carbonaceous porous solid material obtained
from the thermochemical conversion of organic biomass in
oxygen-deficient conditions with the physicochemical charac-
teristics suitable for the long-term and safe carbon storage in
the environment.” Research on biochar is rooted in (a) re-
search on Amazonian terra preta soils in the twentieth century
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(the pioneering work of Sombroek), (b) significant efforts
during the 1970s and 1980s on research related to charcoal
application on plant and soil, (c) research on the characteristics
of naturally occurring charcoal and black carbon, and
(d) research and development on biomass pyrolysis
and gasification [13, 79].

The conversion of biomass to biochar could assist with
waste management while also offering additional benefits to
the environment [43, 150]. Those include soil amendment,
carbon sequestration, and pollutant remediation (Fig. 1) [35,
150, 151]. Owing to the carbon sequestration capabilities of
biochar, its application in soil has been recommended as a
promising way for climate change mitigation [127].
Specifically, the atmospheric emissions of carbon dioxide
(CO2) are highly favorably affected due to the long-term bio-
char stability in soil [126]. Recent research studies on soil
application have also claimed that biochar affected both abi-
otic and biotic processes and reduced the emissions of meth-
ane (CH4) and nitrous oxide (N2O) [86].

Recently, the successful application of biochar for environ-
mental remediation has also been recognized [4]. Due to an-
thropogenic activities, the water and soil ecosystem are highly

subjected to contamination from residential areas, industries,
and other commercial sources [34]. Different technologies
have been developed to remediate these contaminants.
Among these, reducing the toxicity and accumulation of con-
taminants by lowering their bioavailability has been found as
an effective strategy. To this end, biochar has been recognized
as an outstanding ameliorant to reduce the bioavailability of
contaminants due to its unique physicochemical characteris-
tics along with the additional benefits leading to soil fertiliza-
tion [128]. However, in the soil-biochar systems, the bioavail-
ability of pollutants is highly affected by redox and adsorption
reactions [32, 106]. Moreover, the published works have
mainly explained the agronomic and environmental applica-
tions, while little information has been presented elucidating
different mechanisms, which is the focus of the present
review.

This critical review is aimed at examining the influence of
biochar synthesis controlling parameters such as temperature,
residence time, and types of feedstock on the characteristics of
biochar. Moreover, the mechanisms explaining the potential
of biochar for the environmental and agronomic applications
are also discussed. This review also highlights the challenges
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faced in biochar development and its field applications for
agronomic and environmental remediation purposes.
Furthermore, several recommendations for future research
are given on the development of biochar with high redox
functional groups and sorption potential as well as on under-
standing the behavior of biochar under the natural field
conditions.

2 Development of biochar

2.1 Feedstock characteristics

Any types of organic biomass, such as crop residues, yard
wastes, forestry wastes, animal manure, and sludge, can be
subjected to thermal treatment for biochar production [150].
During production, the high-temperature treatment degrades
the organic components along with the removal of pathogens
and organic toxins (aflatoxin) present in the feedstock. The
physicochemical characteristics of the feedstock used have a
strong influence on the composition, quality, and yield of
biochar [46]. For instance, biochars are rich in potassium
(K) if produced from animal manure as feedstock, whereas
woody biomass produce a high C content biochar [75]. The
use of cellulosic feedstocks results in low bio-oil yield with
high ash content, whereas high lignin content feedstocks tend
to give high bio-oil yields [44].Moreover, high lignin biomass
also results in higher biochar yields, along with gases and
liquid products. In addition, mineral components can also
have a catalytic-like effect to some extent and increase the
char yield. The moisture content and particle size can also
have a direct impact on char yield depending on operating
conditions. The published research depicts that the moisture
content < 10% is required for high-quality biochar [119].
Higher biochar yields can also be achieved by using large
particle sizes of feedstocks through restricting vapor disen-
gagement and boosting the secondary char forming reactions
[124]. In contrast, to facilitate the pyrolysis process, different
feedstocks also require size reduction by crushing or cutting
[150]. Besides, some feedstocks are highly complex, with a
heterogeneous composition that cannot be treated directly by
pyrolysis. The use of such feedstocks needs pre-treatment that
requires extra energy. Hence, the use of appropriate feed-
stocks should be considered for economic biochar production
[150].

2.2 Biochar development through pyrolysis of
biomass

Biochar can be produced through pyrolysis that is a process of
biomass decomposition at a temperature range of 150 to
900 °C in an oxygen-deficient environment [4]. During ther-
mal conversion, the complex organic compounds such as

lignin, cellulose, and hemicellulose undergo various types of
degradation reactions including fragmentation, depolymeriza-
tion, and cross-linking at different temperatures to produce
char, bio-oil, and a mixture of gases containing CO2, H2,
and CO. However, the products of pyrolysis reactions are
highly influenced by temperature, residence time, and heating
rate. Depending on the temperature and residence time, pyrol-
ysis is categorized into slow, intermediate, and fast pyrolysis
(Fig. 2) [101]. During slow and intermediate pyrolysis, the
feedstock is subjected to prolonged residence time from few
hours to days with a low heating rate [97]. The biochar yield
under slow pyrolysis is between 25 and 35%, and it has been
reported that biochar production through slow pyrolysis is of
high surface polarity and acidity along with low aromaticity
and hydrophobicity. However, the yield and functional groups
(i.e., hydroxyl (–OH) and carboxyl (–COOH)) are decreased
with increasing pyrolysis temperature with an increase of ash
content and basic functional groups (Table 1). Fast pyrolysis
is the treatment of biomass at a high temperature for a short
residence time (∼ 1000 °C s−1) Zhang et al. [166–168]. It is
commonly used for producing bio-oil from biomass as the
biochar yield is about 20% along with bio-oil yield of up to
75% of the total biomass [101]. The higher bio-oil at a higher
temperature (above 500 °C) is due to the cracking process
[113]. The research findings of Al-Wabel et al. [10] and
Zhang et al. [166–168] indicated that increasing the pyrolysis
temperature decreased the acidic functional groups and bio-
char yield, whereas the pH, ash content, C stability, and basic
functional groups were increased. The main reason behind the
pH increase with increasing the pyrolysis temperature was the
reduction of various organic functional groups including –OH
and –COOH.

Waqas et al. [150] produced biochar at different tempera-
tures from various types of green waste. The feedstock, in-
cluding waste leaves of date plant, branches, and leaves of
ornamental plants, trimmed grass waste, and coconut plant
leaves and branches, were subjected to pyrolysis for 3 h in
the absence of oxygen (O2) using a pyrolysis reactor at three
different temperatures (250, 350, and 450 °C). They observed
that increasing the pyrolysis temperature resulted in a decline
in the volatile content of the resultant biochar. The volatile
content of biochar produced at 250 °C was 13.5%, which
was reduced to 10 and 7.6% in biochar produced at 350 and
450 °C, respectively. They explained that the reasons for the
reduction in the volatile content with rising temperature were
the volatilization of lignocellulosic matters and mineral depo-
sition. In addition, they also found a reduction in the yield of
biochar with increasing pyrolysis temperature. The biochar
yield at 250, 350, and 450 °C was reduced from 51.1 to 33.5
and 24.3%, respectively. The primary reason behind the high
yield of biochar at lower temperatures was the minimum loss
of H- and O-containing surface functional groups and aliphat-
ic concentration. While increasing the pyrolysis temperature
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resulted in the loss of –OH groups because of dehydration and
formation of various gases and low molecular organic com-
pounds due to the thermal degradation of various complex
compounds, which resulted in lower biochar yields.
Furthermore, they also studied the mineralogical composition
of biochar produced at 250, 350, and 450 °C. The x-ray dif-
fraction (XRD) spectral analysis presented several peaks
depicting the development of various mineral crystals. The
XRD analysis for biochar produced at 250 °C showed strong
peaks at various degrees that could probably be associated
with the presence of various minerals, including fluorite,
chlorapatite, and graphite minerals. However, with the

pyrolysis temperature increasing from 250 to 350 °C, an ad-
ditional peak with a higher intensity was observed, which
indicated the presence of gibbsite mineral. Furthermore, at
450 °C, the sharp peaks observed at 350 °C disappeared;
while new peaks at a certain intensity were observed. They
stated that this variation in peaks with increasing temperature
revealed themineral disintegration and formation of new com-
ponents at higher temperatures. Moreover, the scanning elec-
tron microscope (SEM) images of biochar produced at differ-
ent temperatures also confirmed that the surface variation in
biochar with an increase in pyrolysis temperature was due to
the high volatilization process. At 250 °C, the biochar showed
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Fig. 2 Biomass to biochar
conversion

Table 1 Characteristics of biochar produced at different temperatures and feedstocks

Study Feedstock Pyrolysis
temperature (C)

Yield (%) Ash content (%) C (%) H (%) pH Surface area (m2 g−1)

Ahmad et al. [3] Peanut shell 700 21.8 8.9 83.6 1.6 10.6 448.2

Mullen et al. [104] Corn stover 500 17.0 32.8 57.3 2.9 7.2 3.1

Keiluweit et al. [68] Fescue straw 700 28.8 19.3 94.2 1.5 – 139.0

Chen and Chen [29] Orange peel 500 26.9 4.3 71.4 2.25 – 42.4

Kloss et al. [69] Poplar wood 525 – 6.8 77.9 2.7 8.7 55.7

Ahmad et al. [3] Soybean stover 700 21.6 17.2 81.9 1.8 11.3 420.3

Kloss et al. [69] Wheat straw 400 34.3 9.7 65.7 4.1 9.1 4.8

Liu et al. [87] Rice husk 500 – 42.2 42.1 2.2 – 34.4

Lin et al. (2012) Saw dust 550 – 2.8 85.0 1.0 5.9 –

Mullen et al. [104] Corn cob 500 18.9 13.3 77.6 3.1 7.8 –
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a slightly porous surface that was changed to flake-like struc-
ture by increasing the pyrolysis temperature from 250 to 350
and 450 °C. They reported that at higher temperatures, the
flake structure of biochar surface was due to the partially
blockage of micropores by condensed volatiles (tars) and oth-
er decomposed products.

2.3 Biochar development through hydrothermal
carbonization

Various types of biomass contain high moisture con-
tents, and hence to reduce the energy requirement and
obtain high yields, an additional drying step is required
to remove the extra moisture. The shortcoming is the
hydrothermal treatment of such biomass to produce
valuable products. During this process, the biomass is
placed in a closed container, and the temperature is
increased after a certain time. In addition, the pressure
is increased to maintain the liquid state (above 100 °C).
Based on the specific temperature and pressure used,
biochar, bio-oil, and various gases are produced [28,
153]. However, the characteristics of the products are
determined by the water-biomass ratio, pressure, temper-
ature, and residence time. The char produced from hy-
drothermal carbonization (HTC) process is often called
hydrochar. The produced char as a result of HTC con-
tains high C compared with the char produced through
the pyrolysis process [26].

2.4 Other technologies for biochar development

In addition to pyrolysis and HTC, there are other tech-
nologies for biochar preparation such as torrefaction and
flash carbonization. In torrefaction, the biomass is slow-
ly heated within a specific temperature range (200 to
300 °C) in O2-deficient environment and retained for a
particular period of time to remove moisture, O2, and
CO2 present in feedstocks [144]. The biomass obtained
after torrefaction has the characteristics between biochar
and feedstock as this process is just like the initial stage
of pyrolysis and therefore, the torrefied biomass still
contains volatile organic compounds [65]. Likewise, in
the flash carbonization, the solid and gas products are
obtained by igniting the packed bed of biomass through
flash fire at high pressures (1–2 MPa). For flash car-
bonization, the temperature for biomass conversion is
about 300~600°C with a reaction time of ≤ 30 min.
However, the carbonization time is decreased by in-
creasing the pressure, and it has been reported that at
1-MPa pressure, about 40% of biomass is converted to
biochar [26].

3 Characteristics of biochar

3.1 Structural and chemical characteristics of biochar

3.1.1 Surface chemistry

Generally, the structure of biochar is like a honeybee comb
supported by the hexagonal arrangement of C without O and
hydrogen (H) [81, 82]. However, the surface chemistry is
much complex and heterogeneous, depending on the type of
feedstock used for biochar production. Biochar surface exhibit
both acidity and basicity in conjunction with hydrophobic and
hydrophilic characteristics [73]. The acidity of biochar surface
is mainly due to the presence of –OH and –COOH groups. In
contrast, basicity is due to nitrogen (N) and O functional
groups and some minerals like calcium carbonate (CaCO3),
magnesium oxide (MgO), and calcium oxide (CaO) [154].
During pyrolysis, some elements such as chlorine (Cl) and
potassium (K) are vaporized easily at a lower temperature
(below 300 °C), whereas some heteroatoms such as sulfur
(S), phosphorous (P), O, and N are often present. Other min-
erals like sodium (Na), calcium (Ca), magnesium (Mg), and
silicon (Si) and some toxic elements such as cadmium (Cd),
lead (Pb), and arsenic (As) may also present in trace amounts
[45]. Similarly, elements like S, Mg, Ca, P, and N tend to be
covalently bonded with organic compounds that could be va-
porized only at elevated temperatures (above 500 °C) [73].
Moreover, biochars obtained from fast pyrolysis (about
700 °C) have abundant –COOH and –OH functional groups,
whereas the slow pyrolysis (250 to 900 °C) biochars are rich
in C–H groups [138]. Other functional groups present on the
surface of biochar are comprised of pyrenes, nitriles, phenols,
carbonyls, quinones, and lactones [74, 89].

3.1.2 Surface area and pore volume

Brunauer–Emmett–Teller (BET) surface area of biochar range
from several hundred to several thousand m2 g-1 [124].
However, the surface area is highly influenced by feedstock,
pyrolysis temperature, the presence of active reagents (CO2,
O2, and steam) and residence time (Table 1). Day et al. [36]
reported that for most of the feedstock, the surface area of
biochar increased with increasing the pyrolysis temperature.
They observed that by increasing the temperature from 400 to
900 °C, the surface area was increased from 120 to
460 m2 g−1. The main reason behind the high surface area
was the development of micropores. However, there is still a
gap in understanding the role of micropores in soil due to the
additional surface area provided by biochar. Therefore, it
would be beneficial to produce biochar with a very high sur-
face area in the macropore range. There exists the possibility
to produce high-surface-area biochar in a well-defined
macropore range, but the structure is likely to be highly
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influenced by feedstock and crushing the feedstock before
pyrolysis [124]. Lik surface area, the porosity of biochar, is
also highly affected by pyrolysis temperature, the presence of
gases, and gas flow [78]. Mukherjee et al. [103] reported that
increasing the pyrolysis temperature results in the release of
volatile matter present in the biochar pore-infillings, thus pro-
ducing biochar with high porosity. The relative distribution of
micro, meso, and macropores has a high impact on interac-
tions between biochar and its environmental application, such
as nutrients flow and contaminant remediation. For instance,
high adsorptive capacities towards small molecules have been
observed for micropores in biochar [80].

3.1.3 pH and cation exchange capacity

In the literature, most of the biochars are reported to have an
alkaline pH; however, as like other properties, pH is also de-
pendent on feedstock and pyrolysis conditions [75, 161].
Laghari et al. [75] reported that biochar made from black
locust wood and pinewood had neutral to slightly acidic pH.
In addition, pH is also related to the ash content, where high
ash contents led to higher pH values of the produced biochar
[81, 82]. Typically, pH is also related to the temperature used
(Table 1). The pH of the biochar increases with increasing the
pyrolysis temperature. This could be mainly due to alkali salt
separation from organic compounds that results in the reduc-
tion of acidic functional groups with enhancement in basic
functional groups [142].

Furthermore, during pyrolysis, most of the volatiles com-
pounds escape out while the exchangeable cations such as
Mg2+, Ca2+, Na+, and other recalcitrant cationic species re-
main in the biochar resulting in higher pH values [5]. It should
be noted that the pH of biochar also has an impact on cation
exchange capacity (CEC), where high pH values increase
CEC and low pH values decrease the CEC of biochar [124].
The CEC of freshly produced biochar is low that increases
with time in the presence of water and O2 [31]. However, in
comparison with pyrolysis temperature, the CEC of biochar is
highly affected by the feedstock characteristics. Laghari et al.
[75] reported that the CEC of biochar decreased by increasing
the pyrolysis temperature. In contrast, for the feedstock,
Agrafioti et al. [2] observed that the biochar prepared from
straw showed a higher CEC than the biochar derived from
manure. The reason behind this was the composition of the
feedstock, where the presence of P, Mg, K, Ca, and Na in-
creased the formation of O-containing functional groups
resulting in the higher CEC of the biochar [2].

3.1.4 Redox potential of biochar

Redox reactions are the processes of accepting and donating
electrons in a chemical reaction [116]. In the soil, redox reac-
tions play an essential role in nutrient cycling, removal of free

radicles, as well as in formation and decomposition of several
chemical compounds Liu et al. [89]. In this context, biochar
can also transfer, donate, or accept an electron to the surround-
ing environments through both various biotic and abiotic path-
ways [120]. The redox capacity of biochar varies with types of
feedstock used and pyrolysis temperature applied. Notably,
the high pyrolysis temperature, in combination with high res-
idence time, results in high redox potentials in the resultant
biochars [114]. At neutral pH, the reducing potential of bio-
char increased with increasing the pyrolysis temperature using
grass or wood as feedstock [70]. Klüpfel et al. [70] studied the
redox potentail of different biochars produced from different
feedstocks at different temperatures (200 to 700 °C). They
observed that biochar could donate and accept electrons up
to 2 mmol g−1. Moreover, the biochar prepared from grass
showed high electron exchange capacities compared to the
wood-based biochar that was due to high mineral ash content
in the grass-based biochar. Ishihara [60] carbonized wood at
three different temperatures, i.e., < 300, 300, and 800 °C, and
reported them as an insulator, a semiconductor, and a conduc-
tor, respectively. They further added that above 600 °C, the
char produced was highly conductive but contained a lattice
structure with a considerable amount of stable radicals and
micropores within the structure. However, the concentration
of O2 functional groups and water-soluble organics were
found very low. The redox potential of biochar is thought to
be due to the products formed during the thermal decomposi-
tion of cellulose and lignin [114]. The O2-containing function-
al groups form the redox pool within a soil-biochar system.
For biochar, the reducing agents are phenolic species, whereas
the oxidizing agents comprised polycondensed aromatic com-
pounds and quinones [120].

4 Applications of biochar

4.1 Biochar as sorbent for organic pollutant
remediation

The potential use of carbonaceous materials as a sorbent for
the pollutant remediation from soil and water has been well
reported in the literature (Fig. 1) [4, 35]. The most common
carbonaceous materials are activated carbon; it is a material
when charcoal is treated with O2 to enhance its surface area
and porosity. In contrast to activated carbon, biochar is a
product of pyrolysis with a higher surface area and contains
a non-carbonized fraction that interacts with the contaminants
[19, 20, 106] (Fig. 3). The effective binding of soil pollutants
to biochar is because of the presence of a wide range of –OH,
O-containing –COOH, and phenolic functional groups on bio-
char surface [4]. Hence, due to these multi-functional charac-
teristics, biochar has been proved as an effective sorbent for
pollutant remediation from the environment (Fig. 4).
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4.1.1 Remediation of wastewater

Several characteristics of biochar help the sorption of the or-
ganic pollutants from water onto biochar, including particu-
larly its microporosity and high surface area [92]. Ahmad et al.
[3] reported that the biochar produced at a higher temperature
(above 400 °C) showed high sorptive capacity towards organ-
ic pollutants because of their high microporosity and surface
area. Chen et al. [30] observed that at lower temperatures
(100–300 °C), the primary sorption mechanism was the split-
ting of the materials into non-carbonized fractions of biochar,
while, for high temperatures (400–700 °C), the dominant
mechanism was the adsorption onto porous carbonized frac-
tions. However, aromaticity and surface polarity of biochar
are also critical as they affect the sorption of organic

contaminants from the aqueous medium [30]. For instance,
the biochar produced at a higher temperature (above 500 °C)
becomes more aromatic and less polar due to the loss of H-
and O-containing functional groups, which may affect the
adsorption of organic pollutants. The research findings of
Uchimiya et al. [140] revealed that biochar produced from
broiler litter at elevated temperature (700 °C) showed higher
sorption capacity towards deisopropylatrazine because of
higher aromaticity. Similar studies were carried out for the
sorption of trichloroethylene on biochar derived from peanut
shells and soybean stover at 300 and 700 °C. The high sorp-
tion by the biochar at 700 °C is attributed to low polarity and
high aromaticity of the biochar surface [3]. On the other side,
Sun et al. [132] stated biochar was produced at lower temper-
atures (400 °C) with high polarities for the effective sorption

Biochar

Pollutants

Non-carbonized fraction

Sorption complexes

Hydrophobic interaction

p–p electron interaction

Electrostatic attraction

Fig. 3 Mechanisms of pollutants
removal by biochar

Fig. 4 Postulated mechanisms of
the interactions of biochar with
organic contaminants. Circles on
biochar particle show partition or
adsorption. I—electrostatic inter-
action between biochar and or-
ganic contaminant; II—
electrostatic attraction between
biochar and polar organic con-
taminant; and III—electrostatic
attraction between biochar and
non-polar organic contaminant
[4]. Reprinted figure with
permission from Elsevier.
Copyright©2014. License
Number: 4867180410300
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of organic compounds such as fluridone and norflurazon.
However, the mechanism of different types of organic com-
pounds sorbed at various types of biochar is mainly attributed
to the nature of the organic compounds. For instance, on bio-
char surface, the non-polar compounds such as trichloroethy-
lene are adsorbed on the hydrophobic sites between water and
O-containing functional groups in the absence of H-bonding,
whereas polar compounds including fluridone and
norflurazon are adsorbed through H-bonding among the O-
containing functional groups on biochar and compound [3].
Therefore, it is proved that the adsorption capacity of biochar
is directly affected by the functionality of the organic
pollutant.

Another mechanism of pollutant adsorption is electrostatic
attraction and repulsion (Fig. 3). The surface of biochar is
negatively charged that could attract positively charged cat-
ions. Qiu et al. [115] and Xu et al. [155] reported an adsorption
study of cationic dyes such as rhodamine and methyl violet
from water using biochar. Generally, the biochar produced at
400 °C is highly polar due to aromatic p-systems, which are
rich in electron drawing functional groups [68]. Hence, to-
wards electron donors, they may act as p-acceptors.
However, biochar produced at high temperatures are rich in
both electron-poor and electron-rich functional groups; ac-
cordingly, they can interact with both electron acceptors and
donors [133]. This interaction of electron donor-acceptor has
enhanced between the p-electron-rich surface of biochar and
positively charged p-electron-deficient organic compounds
[133, 135]. Likewise, the electrostatic repulsion between bio-
char and anionic organic compounds could promote adsorp-
tion through H-bonding, as reported by Teixidó et al. [135] in
their adsorption study of sulfamethazine on hardwood-derived
biochar produced at 600 °C.

The solution chemistry, such as ionic strength and pH also
affect the sorption potential of biochar towards organic com-
pounds. Xu et al. [155] reported high electrostatic attraction
between methyl violet and biochar at high pH. The reason
behind the high attraction was the high net negative charge
on the biochar surface because of the dissociation of phenolic
−OH groups. Likewise, the adsorption of organic compounds
on biochar was positively affected by the ionic strength of the
solution [4]. For instance, the adsorption of anionic blue dye
on the biochar surface was due to neutralization of Na+ with
the negatively charged surface of biochar. Moreover, the at-
traction between the biochar and anionic dye was due to the
compression of the electrical double layer near the biochar
surface that reduces electrostatic repulsion [115].

4.1.2 Remediation of soil

In soil, the contaminants bind with biochar through O-
containing hydroxyl, phenolic, and –COOH surface function-
al groups [141]. In addition, the unique characteristics of

biochar make it a good sorbent material for the environmental
remediation of organic and inorganic pollutants (Table 2).
These characteristics include surface area, pH, porosity, sur-
face functional groups, CEC, mineral composition, hydropho-
bicity, polarity, and molecular structure [159]. In addition to
these properties, the suitability of biochar as a sorbent is also
due to its low-cost availability with high resistance to decom-
position [52].

Jones et al. [63] conducted a soil experiment to assess the
effect of biochar on the sorption of simazine. They stated that
leaching and biodegradation of simazine were reduced due to
the sorption of simazine into the micropores of biochar.
Among different particle sizes and application rates, they not-
ed that small particle size of less than 2 mm and high applica-
tion rate of 25 t ha−1 were proved effective for the adsorption
of simazine. Similarly, in other studies, Yu et al. [160] and
Yang et al. [158] reported low leaching of fipronil, chlorpyr-
ifos, and carbofuran from the soil due to the high sorption
capacity of biochar that reduces the bioavailability of these
compounds. In comparison, the biochar produced at lower
temperatures (below 450 °C) showed less efficiency towards
the sorption of organic pollutants. Zhang et al. [163] explained
this phenomenon that the lower adsorption of organic pollut-
ants from the soil is due to the association of dissolved organic
matter between the soil and biochar, which block the micro-
pores in biochars, and hence reduce the availability of sorption
sites for the organic compounds to adsorb. In another study,
Cao et al. [19, 20] tested the sorption of atrazine on biochar
produced at a lower temperature (450 °C). They reported that
the higher content of dissolved organic carbon in the soil
blocks the pores of biochar that reduce the sorption of atrazine
on the surface of biochar.

However, along with the chemical and structural composi-
tion, the sorption capacity of biochar is highly affected by
pyrolysis temperature during its production. Yavari et al.
[159] reported that the pyrolysis of biomass enhances the
sorption capacity of produced biochar by up to 1000 times.
Biochar produced at higher temperatures (above 400 °C)
shows high sorption capacity towards organic pollutants due
to their high porosity and surface area [4, 141]. Moreover, at
high temperature (500 °C), the biochar surface is more aro-
matic and less polar because of the loss of H- and O-
containing functional groups that affect the adsorption of or-
ganic pollutants. Zhu et al. [172] have given proposed mech-
anisms of biochar-microbe interactions and the environmental
effects of biochar (Fig. 5).

4.1.3 Redox reactions for pollutants degradation

Depending on the chemical structure, the organic pollutant
transformation, either through substitution or through reduc-
tion, is highly facilitated by the redox potential of biochar [57,
161]. Yu et al. [160] reported the presence of redox-mediated
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functional groups on biochar. Xu et al. [157] also observed the
higher degradation of different organic pollutants due to the
presence of sulfide on the surface of biochar. Likewise, using
biochar in another study, Oh et al. [110] reported the chemical
reduction of organic compounds of explosives and herbicides
through electron shuttling between organic contaminants and
reductants. Recently, it has also been reported that the cata-
lyzing potential of biochar also degrades toxic organic con-
taminants (pesticides, antibiotics, and explosives) through bi-
ological or chemical transformation reactions. However, few
research findings also revealed the enhanced chemical trans-
formation reactions of biochar due to its electrical conductiv-
ity (p–p electron network with conductive graphite surface) in
addition to surface functional groups (Fig. 2) [156]. In such a
case, a direct transfer of electron occurs from electron donor’s
graphite regions in biochar to electron acceptor of the pollut-
ant. Zhu et al. [172] have given the schematic diagram show-
ing the roles of biochar functional groups (Fig. 6).

Similarly, using biochar, the biological transformation of
organic contaminants occurs due to the extracellular electron
transfer [57]. For instance, biochar added in the soil stimulates
the microbial growth and metabolism that increases the extra-
cellular electron transfer for the biotransformation of penta-
chlorophenol (PCP) [137]. Tong et al. [137] also reported that
the efficiency of biochar to degrade PCP is due to both elec-
tron exchange capacity and electrical conductivity. Using bio-
char, they explain three pathways for the PCP degradation that
is (i) PCP reduction byGeobactor sulfurreducens, (ii) transfer
of electrons through its redox-active surface groups, and (iii)
transfer of electrons through its conductive graphite frame-
work. Correspondingly, the immobilization of inorganic con-
taminants (heavy metals) is also highly influenced by the re-
dox potential of biochar. The dissolved organic matter (DOM)
of biochar can act both as an electron acceptor and as a donor
and hence had great influence biogeochemistry of metals in
soil [161]. Dong et al. [40] proved this phenomenon by using

DOM extracted from biochar and reported that the extracted
DOM successfully reduced the Cr (VI) and oxidized the As
(III). However, they suggest that in comparison to the oxidiz-
ing potential, the DOM had a higher reducing potential by
reducing Cr (IV). The reducing potential was confirmed by
the X-ray photoelectron spectroscopy (XPS) analysis, which
revealed that surface functional groups of biochar were rich in
p-electrons that act as electron donors.

4.2 Biochar as sorbent for inorganic pollutant
remediation

In comparison with organic pollutants, the most critical are
metals that are non-biodegradable with high toxicity to living
organisms [165]. For inorganic pollutant remediation from
soil and water systems, many carbonaceous materials have
been extensively used (Fig. 1) [113]. Recently, biochar is
termed as a novel material for metal sorption from soil and
water (Figs. 2 and 3). Generally, the sorption of organic con-
taminants by biochars is more favored than that of the inor-
ganic contaminants due to their high surface area and micro-
porosity. The main mechanisms for sorption of inorganic con-
taminants by biochar are ion exchange, electrostatic attraction,
and precipitation (Fig. 7).

4.2.1 Remediation of wastewater

Removal of heavy metals from aqueous medium using bio-
char has been reported recently to explain the binding mech-
anisms and adsorption [59]. Lima et al. [83] studied the ability
of different types of biochar produced from various feedstocks
to adsorb heavy metals from water. Among the heavy metals,
copper (Cu2+) showed higher affinity, which could be credited
to the surface complexes between −OH and −COOH biochar
functional groups and Cu2+ [136]. However, an x-ray absorp-
tion fine structure (XAFS) spectroscopic analysis showed that

Table 2 Potential of biochar for remediation of organic and inorganic pollutants

Study Biochar feedstock Pyrolysis
temp (°C)

App:
medium

Pollutant Results

Organic
contaminants

Zhang et al. [167] Green biomass 450 Water Atrazine Partitioning and adsorption of the pollutant
Yang et al. [158] Cotton straw 850 Water Chlorpyrifos and

fipronil
Adsorption due to porosity and high surface area

Lou et al. [92] Rice straw 700 Soil Pentachlorophenol Adsorption due to porosity and high surface area
Zhang et al. [163] Pine wood 350 and 700 Soil Phenanthrene Trapping in the meso and micropores of biochar
Jeong et al. [61] Hard wood 850 Soil Tylosin Sorption

Inorganic
contaminants

Hartley et al. [54] Hard wood 400 Soil Arsenic Mobilization due to high DOC and pH
Dong et al. [39] Sugar beet waste 300 Water Chromium Complexation and electrostatic attraction;

reduction of Cr(VI) to Cr(III)
Tong et al. [136] Crops straw 400 Water Copper Surface complexation result in adsorption
Ahmad et al. [3] Oak wood 400 Soil Lead Immobilization by rise in soil pH and adsorption

onto biochar
Kong et al. [72] Soybean 700 Water Mercury Surface complexation precipitation and reduction
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sorption of Cu2+ was affected by the pH of the solution [59].
They stated that higher sorption of Cu2+ on biochar was at pH
6 and 7. In addition, another parameter concerning adsorption
of metals on biochar was the atomic size, where the small
atomic radius could easily penetrate the pores of biochar and
resulted in higher adsorption [105].

Lu et al. [93] explained the mechanisms of lead (Pb2+) sorbed
on the surface of biochar derived from sludge. They proposed
four various possible mechanisms, i.e., (a) electrostatic outer-

sphere surface complexation between Na+ and K+ available on
biochar with metal exchange from the outer medium, (b) inner-
sphere complexation and co-precipitation of metals from the me-
dium with mineral oxides and organic matter of biochar, (c)
surface complexation with –OH and –COOH functional groups
of the biochar, and (d) metal precipitation in the form of lead–
phosphate silicate (5PbO–P2O5–SiO2). As like Pb and Cu, the
alkaline biochar surfaces comprised of high chloride content
could also precipitate the water-soluble mercury (Hg) in the form

Fig. 5 Proposed mechanisms of biochar-microbe interactions and the
environmental effects of biochar. The central circular area illustrates the
interaction between biochar and microbes, while the enclosing four boxes
represent the effects of their interaction on carbon sequestration, soil
processes (elemental cycling), contaminant degradation, and plant
growth. Interactions between the biochar and the microbes and its effects
include the following: (1) biochar can act as a microbial shelter with its
pore structure; (2) through sorption of nutrient cations via functional
groups, biochar can improve soil cation exchange capacity and maintain
nutrients for microbial growth; (3) free radicals and volatile organic com-
pounds on biochar can be toxic to some soil microbes, inhibit soilborne
pathogens, and favor plant growth; (4) biochar can improve soil proper-
ties (e.g., pH, water content, and aeration conditions), and change the
growth pattern of soil microbes; (5) biochar can adsorb enzyme

molecules, influence soil enzyme activities and elemental cycles; (6) bio-
char can adsorb and enhance the hydrolysis of signaling molecules, and
consequently interrupt microbial communication and alter microbial
community structure; (7) biochar can enhance the sorption (via biochar
surface functional groups) and degradation of soil contaminants (facili-
tated through electron transfer between biochar, microbes, and contami-
nants), which can reduce the toxicity of contaminants to soil microbes.
The interactions between biochar and soil microbes can alter the micro-
bial community and their metabolic pathways (which can be revealed by
metagenomics analysis of microbial DNA sequencing), resulting in
changed soil processes. There are interactions among different environ-
mental effects as well [172]. Reprinted figure with permission
from Elsevier. Copyright©2017. License Number: 4867200697003
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HgCl2 or Hg(OH)2 [72]. Similarly, the sorption mechanism of
chromium (Cr) on biochar was credited to the negatively charged
biochar active sites due to O-containing functional groups [15].
The high adsorption potential towards Cr (VI) of biochar pro-
duced from oak bark and wood at higher temperature was swell-
ing behavior. This swelling of biochar opened the closed pores
and hence enhanced the adsorption capacity by providing more
internal surfaces.

4.2.2 Remediation of soil

In comparison with water, biochar has a different effect on
metal mobility in the soil. Nevertheless, metal mobility is high-
ly affected by soil pH. Biochar exerts a liming effect in the soil,
for its alkaline nature, and causes mobilization of various
oxyanions and immobilization of metals [9]. Ahmad et al. [4]
stated that the soil blended with biochar enhanced the sorption

of Pb on to kaolinite due to an increase in the soil pH. At higher
pH values (above 5), kaolinite in biochar forms a strong inner-
sphere surface complex with Pb [49]. Furthermore, biochar
could also remediate Cr from the soil due to the ability to
donate electrons and the presence of reactive sites with many
functional groups [33]. The proton supply for Cr (VI) reduc-
tion is due to the presence of many acidic functional groups
such as phenol, lactonic, –COOH, carbonyl, and hydroxyl and
basic functional groups, including pyrone, ketone, and
chromene [4]. As a result, the reduced Cr (III) either partici-
pates or adsorbs by forming surface complexes with biochar
[58]. However, in some cases, the dissociation and oxidation of
–OH and phenolic groups were inhibited due to the high alka-
linity of biochar, which limited the proton supply and hence
inhibited the Cr (IV) reduction [33]. Cao et al. [19, 20] also
investigated the effect of biochar on Pb immobilization in the
soil. They reported that due to the presence of phosphorus (P)

Fig. 6 Schematic diagram showing the roles of biochar functional groups
(AFG = acidic functional groups, SOM= soil organic matter): (1) The
AFG are responsible for the liming effect of biochar which modifies the
soil microbial habitat; (2) the electrostatic attraction between the carboxyl
groups of biochar with the nutrient cations effectively retains nutrients to
ensure a nutrient supply to soil microbes and (3) to immobilize heavy
metals, thus reducing heavy metal toxicity to microbial cells; (4) electro-
static attraction, as well as polar and non-polar organic attraction, of
humic acid molecules can result in the adsorption of soil organic matter

that is beneficial for carbon sequestration (further discussed in later chap-
ter); (5) hydrogen bonding between –OH groups on biochar with oxy-
genated anions can adsorb inorganic anions to supply nutrients or reduce
anion contaminant toxicity; (6) electron transfer to form free radicals on
the biochar surface can facilitate organic contaminant degradation and
heavy metal transformation and can reduce contaminant toxicity to
microbes [172]. Reprinted figure with permission from Elsevier.
Copyright©2017. License Number: 4867200697003
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in the biochar, Pb was immobilized because of the formation of
insoluble hydroxypyromorphite precipitates.

Kong et al. [72] reported 86.4% removal of Hg (II) and
99.5% removal of phenanthrene by biochar derived from soy-
bean stalk. They stated that the high sorption capability of
biochar towards organic compounds was due to their high
microporosity and surface area. Likewise, for inorganic pol-
lutant remediation, the prevailingmechanisms of biochar were
precipitation, electrostatic attraction, and ion exchange.
However, the physicochemical characteristics of biochar are
greatly affected by the pyrolysis temperature and hence great-
ly influence their sorption potential towards organic and inor-
ganic pollutants. For instance, the high surface area and pore
structures of biochar produced at high temperature possess
higher efficiencies towards organic pollutants, whereas the
high cations release and O-containing functional groups on
the biochar produced at a lower temperature are efficient to-
wards inorganic pollutants [4].

4.3 Agricultural application of biochar

It is essential to understand the mechanism and impact of
biochar on improving agricultural soil (Fig. 5). It has been
well reported that for agricultural soils, biochar has been

proved as an optimum conditioner. Biochar improves the sta-
bility of soil aggregate and increases the water holding capac-
ity by enhancing water retention using its pore characteristics
[67]. Moreover, the inorganic minerals and organic matter
contents of biochar provide essential nutrients to the plants
(Fig. 5). Biochar also affects other characteristics of the soil,
such as tensile strength, swelling/shrinkage, and density of
cracking [173]. In addition to these benefits, the key feature
of biochar is the stability with very low decomposition rates in
the soil. The estimated mean residence time of biochar in the
soil is above 3000 years.

4.3.1 Nutrients source

Organic compounds such as fulvic-like and humic-like sub-
stances and inorganic compounds such as salts of N, P, and K
present in biochar serve as fertilizer and can be assimilated by
microbes and plants [37]. Lin et al. [84, 85] demonstrated that
the biochar derived from sawdust and Acacia saligna at 450
and 380 °C contained humic materials up to 17.7% and fulvic-
like materials up to 16.2%. Similarly, Masto et al. [98, 99]
reported that the biochar produced from Lantana camara
contained Ca (5880 mg kg−1), Na (1145 mg kg−1), Mg
(1010 mg kg−1), K (711 mg kg−1), and P (0.64 mg kg−1).

Fig. 7 Postulated mechanisms of
biochar interactions with
inorganic contaminants. Circles
on biochar particle show physical
adsorption. I—ion exchange be-
tween target metal and exchange-
able metal in biochar; II—
electrostatic attraction of anionic
metal; III—precipitation of target
metal; and IV—electrostatic at-
traction of cationic metal [4].
Reprinted figure with permission
from Elsevier. Copyright©2014.
License Number:
4867180410300
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Likewise, Mukherjee and Zimmerman [102] also stated that
freshly produced biochar had a high nutrients availability po-
tential and could release large amounts of P (46–
1664 mg kg−1) and N (23–635 mg kg−1). However, the nutri-
ent contents of biochar is greatly affected by the feedstock and
pyrolysis temperature. The biochar derived from different
feedstocks showed various nutrients and elemental composi-
tion. For example, the biochar produced at 400 °C from swine
manure contains P (6.1%) and N (3.2%), whereas at the same
temperature the biochar produced from Arundo donax pos-
sessed P (0.13%) and N (0.69%) [139, 170]. Likewise, the
ash content of biochar derived from poultry litter at 350 °C
was 30.7%, whereas a lower ash content (1.5%) was recorded
for the biochar produced at 350 °C from pine wood [18, 130].

The nutrient contents of biochar also considerably fluctuate
with changing the pyrolysis temperature. For instance, above
400 °C, the N content began to lose, and at 750 °C, half of N
was lost in different herbaceous and wood-derived biochar
[76]. As reported by Zheng et al. [170] that increasing the
pyrolysis temperatures from 350 to 600 °C, the available
water-soluble N content in biochar was reduced from 39 to
8 mg kg−1, which was due to the heterocyclization of N during
pyrolysis. Furthermore, increasing the pyrolysis temperature
from 300 to 600 °C, the total and available K concentration in
biochar also increased from 3.7 to 5.02% and 37 to 47%,
respectively [170]. In contrast, the total P concentration was
considerably increased from 0.12 to 0.17%with increasing the
pyrolysis temperature from 300 to 600 °C, which was due to
the carbon loss and relative stability of P in plant biomass in
response to heating [37, 170]. However, it has been found that
the biochar produced at lower temperature contained a higher
concentration of P than the biochar produced at elevated
temperature.

4.3.2 Soil reclamation

Continuous cropping degrades most of the agricultural soils
with several problems such as organic matter (OM) reduction,
loss of water and nutrients, compaction, waterlogging, and
erosion [75]. Soil with low OM, high compaction, and clayey
nature has a high tensile strength, which directly affects soil
processes, seed emergence and growth, and soil tillability.
Hence, the tensile strength could be reduced through the ad-
dition of carbonaceous material such as biochar [14]. The
changes in the tensile strength as a result of biochar addition
is due to the ability of biochar that reduces the density, and
cohesiveness of the soil through weakening the inter-particles
bonding [174]. Zong et al. [174] reported that the tensile
strength of soil was significantly reduced by applying higher
rates of biochar (> 50 Mg ha−1). However, at a lower applica-
tion rate, biochar may have no or minute effect on soil tensile
strength Chan et al. [27]. Regardless of the soil texture, bio-
char could significantly reduce the tensile strength by up to

42%. Moreover, biochar also contributes to soil flexibility
against external forces as well as microstructural development
[6]. Similarly, soil porosity is also highly affected by biochar
addition through changes in soil bulk and particle density
because the particle density has a direct effect on the porosity
of the soil. Variation in C concentration as a result of biochar
addition (> 60% C) induces changes in soil and significantly
reduces the particle density Blanco-Canqui [14]. Biochar has a
particle density of up to 2 g cm−3, whereas depending on the
texture, the particle density of the soil ranges from 2.3 to
2.7 g cm−3 [17]. The field study results reported that the par-
ticle density of the soil reduced by 14% (from 2.55 to
2.20 g cm−3) when biochar was applied at 30 Mg ha−1.

In addition to the soil’s physical properties, biochar also
has a high impact on soil temperature due to its unique thermal
and electrical characteristics. Soil temperature is a primary
factor affecting biological, physical, and chemical processes,
as well as the energy balance of the soil [14]. Variation in soil
thermal properties as a result of biochar addition is the most
critical factor for understanding the response of soil to climatic
fluctuations. The field study in the North China Plain reported
that the application of biochar up to 9.0 Mg ha−1 reduced the
daytime soil temperature by 0.8 °C [165]. In addition, the
other soil thermal properties, such as thermal diffusivity, vol-
umetric heat capacity, and thermal conductivity, are also high-
ly affected through biochar addition. These thermal properties
affect the heat storage and transfer, as well as the overall
energy balance of the soil. Zhang et al. [165] also found that
the thermal conductivity of the soil was reduced by 3.5 and
7.5% under 4.5 and 7.5 Mg ha−1 biochar application, respec-
tively. Correspondingly, Usowicz et al. [143] also reported
that the use of biochar up to 30 Mg ha−1 reduced thermal
diffusivity and conductivity up to 10-cm soil depth. In other
studies, Zhao et al. [169] observed that the application of
biochar at 4.5 and 9.0 Mg ha−1 reduced the thermal conduc-
tivity and diffusivity of the soil. All these studies concluded
with their findings that biochar can regulate the fluctuations or
extreme soil temperature. Biochar can significantly reduce the
amount of heat transfer through the soil. In the end, the bio-
char amendment could be a strategy for managing climatic
fluctuations such as droughts and heat stress conditions [14].

4.3.3 Soil enzymes

It has been reported that soil enzymes have a crucial role in
soil health (Fig. 5). Soil enzymes decompose organic matters
and make the ammonium (NH4

+) and energy available to the
plants. Soil application of biochar has been proved to affect
the composition of soil enzymes positively. In this regard, Luo
and Gu [94] experimented with biochar application on man-
grove sediments and found that biochar application signifi-
cantly improved the level of β-glucosidase and phenol oxi-
dase in the soil. However, they found that the level of other
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enzymes such as acid phosphatase, N-acetyl-glucosaminidase,
and peroxidase was considerably reduced. Due to these con-
sequences, Kavitha et al. [67] recommended assessing the
impact of biochar to improve the levels of some enzymes
while decreasing the levels of other enzymes. However, be-
hind these consequences, the main reasons could be various
factors such as soil types and biochar interaction with
other substrates that resulted in the unavailability to soil
enzymes [67].

4.3.4 Soil microbial activities

In the soil, most of the carbon (C) present in biochar is not
available to the microbes. However, there exist several evi-
dences that biochar promotes the activities, growth, and bio-
mass of microbes present in the soil as it provides suitable
habitat to the soil microbes (Fig. 5). The better activity, diver-
sity, and retention of microbes are facilitated due to the high
surface area of biochar [171]. Domene et al. [38] stated that
biochar application on sandy loam soil significantly improved
the functions and activities of soil microbes. Furthermore,
they stated that biochar with the application rate of 30 t ha−1

doubled the population of soil microbes. Similarly, in another
study, Ducey et al. [41] found that biochar application to arid
subsoil significantly enhanced the microbes involved in nutri-
ent cycling. The authors also observed the higher denitrifica-
tion and nitrogen fixation microbial genes for the biochar ap-
plied at 135 t ha−1. From the study, they concluded that bio-
char could enhance plant growth and nutrient cycling by im-
proving soil biological characteristics. However, depending
on the soil types (pore size, pH, charge properties, and surface
area), biochar behaves differently to soil biological activities
[112]. For instance, the activities of microbes, particularly the
autotrophic nitrifying bacteria, were increased in less acidic
soil conditions [112].

4.3.5 Crop productivity

It has been well reported in the literature that the application of
biochar significantly improves soil fertility and substantially
enhances the crop performance and productivity under differ-
ent types of agricultural soils (Table 3; Fig. 5) [81, 82]. Glaser
et al. [48] reported that the application of biochar at the rate of
68 t ha−1 enhanced the rice biomass by 20% and cowpea by
50%, whereas when applied at 136.75 t ha−1 the cowpea bio-
mass was increased by 100%. Likewise, the 3-year field study
of Major et al. [95] reported that in comparison to control
treatment, the maize yield was significantly increased when
biochar was applied at the rate of 20 t ha−1. They also reported
that the yield of maize in three consecutive growing seasons
was increased by 29%, 31%, and 143%. The reason behind
the higher maize yield was the liming effect of biochar that
increased the base cation retention and improved nutrient

availability in the rooting zone [117]. Furthermore, other
mechanisms attributed to higher crop yield were the soil water
retention and inhibiting the leaching of important nutrients
such as N, P, K, Mg, and other associated nutrients.
Additionally, it has been reported that biochar application
not only increased the grain yield but also enhanced the
growth and development of rooted crops, as reported by Liu
et al. [88]. They found maximum sweet potato yield with
increasing the application rates of biochar.

The fresh fruit weight of tomatoes grown under sandy loam
soil also significantly increases with the addition of biochar
[8]. This improvement of higher yield as a result of biochar is
also attributed to the enhancement of water holding capacity
of the soil [8]. However, the impact of biochar to enhance the
crop yield is dependent on feedstock materials and pyrolysis
temperature. For instance, different feedstocks such as rice
hull, weed, bamboo, wheat straw, and eucalyptuswhen treated
at various temperatures (450 °C to 600 °C) enhanced the
maize yield from 6 to 143%. In addition to these, the soil type
also plays a critical role in crop yield. The loamy texture soil
such as fine loamy sand, silty loam, sandy loam, and loamy
resulted in higher crop yields up to 101%. The variations in
increasing the crop yield under various soil textures were also
due to changes in the soil properties that directly affected the
plant growth and development (Table 3). This happens as the
soil texture directly affects the formation of aggregates, nutri-
ent retention, and water holding capacity of the soil [7]. In
contrast, Güereña et al. [50] reported a non-significant in-
crease in yield of maize crop as a result of biochar application.
The null effect on crop yield might be due to phytotoxic com-
pounds present in biochar that inhibited microbial activities
and thereby stunted plant growth [107]. Furthermore,
Rajkovich et al. [118] revealed that biochar with low C/N
ratios, when applied to soil, resulted in N immobilization
and hence reduced the plant growth and final yield.
Therefore, it is critical to give special attention to the biochar
when selecting for improving specific soil type.

4.4 Balancing greenhouse gas emissions and albedo
feedback

A meta-analysis of biochar application for controlling green-
house gas (GHG) emissions revealed that characteristics of
biochar are critical in offsetting the emissions (Fig. 1) [11,
96]. However, it was found that the potential GHG mitigation
is highly dependent on the type of feedstock used to produce
biochar (Table 4). Cayuela et al. [23] reported that woody and
crop residue biochar decrease the GHG emissions by 50%
more than the biochar produced from other feedstock.
Moreover, the quantity of biochar also affects the potential
where above 2 w/w% biochar application enhances the miti-
gation potential. Cayuela et al. [24] stated that the mitigation
potential of biochar for GHG emissions, especially for N2O, is

Biomass Conv. Bioref. (2021) 11:339–361352



due to the H:C molar ratio of biochar. Biochar with lower H:C
molar ratio (< 0.3) is highly effective by lowering N2O emis-
sions up to 73% with a high degree of aromatic compound
condensation. In comparison, the biochar with a high H:C
molar ratio of > 0.5 reduces the emission up to 40% [96].
Likewise, it has also been explored that the adsorption poten-
tial of biochar inhibits the mineral N supply, and thus lowers
the amount of substrate to denitrifiers that require a labile N
and C and hence expected to reduce the emissions of N2O
[145]. Moreover, biochar also contains organic compounds
such as polychlorinated compounds, polycyclic aromatic hy-
drocarbons (PAHs), ethylene, furans, and dibenzodioxins that
affect themicrobial soil toxicity [55]. For instance, PAHs have
been reported to affect the nitrification processes and modify
the soil bacterial communities [51]. Spokas [129] observed a
direct impact on N2O emission from the soil as a result of
ethylene released from biochar. The possible reason was the
introduction of specific compounds that affect both nitrifica-
tion and denitrification reactions and N cycling in the soil.
Similarly, in another study, Case et al. [22] conducted a field
trial by applying biochar at 49 tons ha−1 and observed that
CO2 emission was reduced up to 53%. Further, they explain
that the reason for reducing the emission was due to the neg-
ative PE where new C stabilized in the soil and unavailable to
the microbes for degradation.

However, to improve the efficiency of catalytic reduction,
biochar activation has been recommended to increase the ox-
ygen functional groups further, and increase the quantity of
active sites, surface area, and pore size on the char surface.
Cha et al. [25] and Jo et al. [62] pyrolyzed rice straw and
sewage sludge to produce biochar and their use as selective
catalytic reduction (SCR) catalysts. During their studies, the
produced biochar was chemically activated using ammonia
(NH3) as a reducing agent, and their efficiencies were exam-
ined for the removal of NOx. Their results depict that
oxygen-containing functional groups and NH3 adsorption
sites on biochar surface play an essential role in the removal
of NOx. Moreover, to further increase the NOx removal ef-
ficiency, Cha et al. also recommended the impregnation of
3 wt% manganese on chemically activated char. In other
studies, Ko et al. [71] activated the char obtained from mu-
nicipal waste and refuse-derived fuel through a physical
method using steam and chemical methods using KOH and
HCl. The activated char was used as low-temperature SCR
catalysts. They noticed that the NOx removal efficiency of
KOH-activated char was higher in comparison to other chars.
From the study, they suggested that the high NH3 adsorption
ability of that char was due to the increased oxygen functional
groups, high quantity of active sites, surface area, and pore
size on the char surface.

Table 3 Impact of biochar on
crop yield different types of soil Study Crop Soil type App: rate (t ha−1) Yield increase

(% relative to control)

Masto et al. [98, 99] Maize Sandy loam 04 11

Liu et al. [88] Maize Calcic 20 10.38

Akhtar et al. [8] Tomato Sandy loam 67.5 20

Schmidt et al. [121] Grape Haplic regosol 08 2

Liu et al. [89] Rice Sandy loam 2.4 6

Joseph et al. [64] Wheat Sandy loam 0.1 40

Agegnehu et al. [1] Peanut Ferralsol 10 21

Raboin et al. [117] Bean Acidic clayey 50 53

Sigua et al. [125] Wheat Fine loamy 40 28

Liu et al. [90, 91] Soybean – 20 7

Table 4 Application of biochar for mitigation of greenhouse gases emission

Study Location Soil type Biochar type App: rate (t ha−1) GHG abatement

Zhang et al. [164] China Calcareous loamy soil Wheat straw 20 to 40 Increase CO2 by 12% and
decrease N2O up to 40%

Wang et al. [149] China Paddy soil Rice husk 25 to 50 Reduce N2O up to 50%

Case et al. [21] UK Sandy soil Hardwood 22 Reduce N2O up to 49%

Taghizadeh-Toosi et al. [134] UK Pasture soil Pine 30 Reduce N2O up to 70%

Karhu et al. [66] Finland – Mixed commercial biochar 9 Reduced CH4 up to 96%
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The application of biochar might also change the balance
of surface radiative energy [16]. Biochar being a C-based
material hence has a very low reflectivity [109]. Soil applica-
tion of biochar affects the background color of the treated land
and thus affects the energy flux partitioning and surface albe-
do [47]. In the climate system, surface albedo is one of the
critical geophysical drivers that reveal information about the
land use and the consequences of anthropogenic surface ac-
tivities on the climate system of the earth [131, 148]. In addi-
tion to the environmental benefits (negative radioactive forc-
ing), the changes in surface albedo as a result of biochar ap-
plication to cropland might be higher than its benefits of C-
sequestration [47, 131]. The research findings of Meyer et al.
[100] predicted that the application of biochar at the rate of
30 Mg ha−1 could possess the mitigation potential from 13 to
22%. Other studies reported variations in the effect (5–11 to
13–44%), however, that depends on biochar application tech-
nique either deep incorporation or superficial application and
rates of application (120 or 10 Mg ha−1) [148]. In addition, it
has been estimated that the effect of biochar on soil albedo
during the winter season is stronger, with dominant bare soil
in snow-free areas [47]. Similarly, in dense vegetation land,
the effect is supposed to be negligible. However, on the proper
scale of land studies, these predictions have not been explored
yet due to variations in plants/crops phenology and cropping
systems [16].

5 Key constraints in biochar application

5.1 Contamination risk

Several studies like Hilber et al. [55], Yavari et al. [159], and
Han et al. [53] reported that biochar itself could be a source of
contamination in the soil due to several factors. For instance,
during biomass pyrolysis, different compounds (dioxins,
PAHs, and PCBs) and heavy metals (Al, Cd, Pb, Zn, and
Cu) are produced from parent biomass [56]. These com-
pounds and heavymetals are tightly bound to biochar matrices
through π–π interactions hence unavailable for the microbial
breakdown [159]. The concentrations of these toxins in bio-
char depend on the feedstock, and pyrolysis conditions such
as temperature and retention time [162]. Fast pyrolysis and
gasification are most likely to produce biochar with a high
concentration of dioxin (~ 92 pg g−1) and PAHs (~
45 μg g−1). Special consideration should be given for the
use of such biochar for environmental applications [53].
There are two main guidelines, the International Biochar
Initiative (IBI) and the European Biochar Certificate (EBC)
guidelines, that signify the threshold values of inorganic and
organic contaminant content in biochar (Table 5). However,
there exists a difference between the maximum threshold
values for organic and inorganic contaminants in both EBC

and IBI. The difference is mainly due to the contaminant man-
agement in different countries as the EBC based their maxi-
mum threshold values accordingly to Switzerland and
Germany regulations, whereas IBI is based on the US and
Australian regulations. However, each country also exists na-
tional standards that need to be followed for the potential
application of biochar. For instance, for quality control of
pyrolysis feedstock, Austria regulates the heavy metal con-
tents in plant biomass [111]. For agricultural application, the
regulation stated that the biochar must not exceed certain con-
centrations by 3 mg kg−1dw for Cd, 100 mg kg−1dw for Pb,
150mgkg−1dw for Cu, 1mg kg−1dw for Hg, and 500mgkg−1dw
for Zn. In addition, the standards also provide guidelines for
analytical methods, quality assurance, and control for the pro-
ducers concerning the properties of biochar.

5.2 Environmental impacts on biochar performance

It has been observed that in comparison with laboratory-scale
or greenhouse trials, the sorption capacity for contamination
removal is lower for field applications of biochar. This could
be due to several factors such as temperature, soil moisture,
pH, wind, soil microbes, and rainfall that are difficult to con-
trol [108]. Many laboratory scales and greenhouse studies
successfully explored the effect of temperature on the sorption
capacity of biochar. Liu et al. [90, 91] observed that at 25 °C,
sorption capacity was 14.9 mg g−1 for As (V), whereas, at
45 °C, it reached 17.9 mg g−1 that clearly shows a direct
relationship of sorption capacities with temperature.
Likewise, under field conditions, soil moisture, wind, and
rainfall also affect the sorption capacities of biochar.
Leaching and percolation of tiny biochar particles into the soil
occurs due to heavy rainfall with large floating particles and
hence separates them from contaminants that reduce the
chance of contact and sorption. Correspondingly, during ap-
plication and spreading some biochar may also be lost due to
wind. Major [95] estimated that during loading, about 2%
biochar is lost, whereas, during transportation, the loss is
about 3%. Similarly, about 30% is lost during spreading;
hence, the total loss during application is above 30% along
with the high cost.

5.3 Biochar impacts on plant-environment interaction

The long-term application of biochar for promoting plant
growth and biomass development had raised several impor-
tant mechanistic questions about the effect of biochar on plant
survival and success [12]. Spokas [129] observed beneficial
effects on plants due to biochar-derived plant hormone (eth-
ylene). However, the amount of ethylene decreased with in-
creasing the pyrolysis temperature, whereas, at high treatment,
no ethylene is detectable. The reasons are that low amount of
ethylene either is produced during high-temperature treatment
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ormay be sorbed by biochar due to high surface area. Through
this phenomenon of sorbing organic chemicals, it has been
suggested that biochar can affect symbiosis and allelopathy.
Activated carbon and biochar are able to sorb allelopathic
compounds and hence have been successfully used for study-
ing allelopathic interactions between plants [77]. However, it
has also been observed that in addition to allelopathic poten-
tial, they can affect the plant by reducing mycorrhizal root
colonization by sorbing signaling compounds between sym-
bionts and plant roots [152]. Moreover, several essential sig-
naling compounds, such as flavonoids secreted for rhizobia by
a legume host, are most likely to be sorbed by biochar due to
its similar log Koc values to the PAH (naphthalene) and make
them unavailable [42]. Hence, the high sorbing potential of
biochar towards organic compounds is most likely to harm the
plant signaling compounds and symbiotic microorganisms.
Such conditions harm plant growth with the lower success
of revegetation with a lower resistance of plants to diseases.

5.4 Regulatory constraints

For ensuring consumer satisfaction, various certifications
demonstrate guidelines for specifications and quality require-
ments of biochar [146, 147]. These include International
Biochar Initiative (IBI), European Community Biochar
Criteria (ECBC), Biochar Quality Mandate (BQM), and
European Biochar Certificate (EBC) that proposed guidelines
for the sustainable soil application of biochar [146]. These
legislative agencies attempt to define the production criteria,
quality, and properties of biochar. In addition to the labeling
and technical description of the feedstock, the certification
frameworks consider the socioeconomic and environmental
context of the area where the biochar is applied. In this regard,
a certification label of biochar should include information
about the properties of biochar that make it applicable for
specific ecotopes to grow certain crops at certain application
rates (Mg ha−1 per year). Moreover, the certification proce-
dure should perform socioeconomic impact assessments for

the possible combinations of all these factors [122, 123].
However, in several cases, the available soil data is not much
enough to satisfy the required information for the certification
procedure of sustainable biochar. Hence, the certification pro-
cedure in such cases requires a comprehensive soil testing.
However, for any specific site, the sampling design and soil
testing parameters should be according to the range of poten-
tial properties of biochar [147]. For instance, if the feedstock
materials are organic waste with a sufficient amount of salt
content, hence, the precautions should be kept to identify
those type of soil that is susceptible to modification or salini-
zation. For sustainable biochar application, any regulation or
certification requires solid scientific evidence and recommen-
dations. Likewise, the scientific evidence should be provided
to the policy and decision-makers in such a way that it reflects
comprehensiveness, and a vigorous, clear objective, and is
free from any conflict of interest. For achieving all these, the
mechanism should be provided by the intergovernmental pan-
el on biochar [146].

6 Practical implications of this study

Biochar has a vital role in soil improvement and pollutant
remediation. The primarymechanism of pollutant remediation
is sorption; however, the sorption potential of biochar in
laboratory-scale or greenhouse experiments is higher than
field conditions. That is mainly due to several environmental
factors such as rainfall, temperature, soil pH, and wind that are
difficult to control; hence, more studies are required with
a focus on understanding the behavior of biochar under natu-
ral field conditions. Likewise, it is also critical to understand
the complete sorption mechanism as well as the coordination
of these mechanisms among the contaminant and biochar
[162]. Moreover, there is also no solid evidence
supporting best biochar application procedures for most of
the toxic pollutants, requiring a significant deal of work to
specify of biochar, preparation conditions, specific time, and

Table 5 Maximum threshold
level of pollutants in biochar Pollutants Name IBI (max limit) EBC (max limit)

gt−1 dw

Heavy metals Cd 39 < 1.5

Pb 300 < 150

Cu 6000 < 100

Ni 420 < 50

Cr 1200 < 90

Organics Dioxins and furans 17 ng kg−1 TEQ < 20 ng kg−1 TEQ

PCB 1.0 < 0.2

PAHs 300 < 12

TEQ: toxicity equivalent
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rate of application. Furthermore, for enhancing the redox po-
tential of donating or accepting electrons, a detailed biochar
production technology, as well as post-treatments, should be
adopted for introducing more redox functional groups onto
biochar surface. Correspondingly, the redox-mediated poten-
tial and long-term stability of biochar should also be checked
against real industrial wastewaters with a heterogeneous mix-
ture of pollutants to promote remediation on a commercial
scale. In addition, to further enhance the potential of biochar,
several modification technologies should be adopted, such as
oxidation, grafting, impregnation, and nanomaterial treatment.
The modification will bring changes into reactive surfaces,
pore structure, and sorption potential of biochar for its wide-
range applications.

7 Conclusions

The thermal conversion of biomass into biochar has the dual
benefit of managing waste, along with the production of car-
bonaceous material that has a wide range of soil and environ-
mental applications. In addition to carbon sequestration and
soil application, biochar affects both abiotic and biotic pro-
cesses to reduce the emissions of methane (CH4) and nitrous
oxide (N2O). Similarly, through biotic and abiotic pathways,
biochar can also transfer, donate, or accept an electron to the
surrounding environments through its redox potential.
Through redox reaction, biochar can play its role in nutrient
cycling in the soil, removal of free radicles and toxins, and
formation and decomposition of several important chemical
compounds. Furthermore, biochar has been proved as an ef-
fective sorbent due to the presence of a wide range of –OH, O-
containing –COOH, and phenolic functional groups, which
provide effective binding sites to the pollutants from the sur-
rounding environment. However, the redox and sorption po-
tential of biochar are highly affected by the type of feedstock
used, residence time, and temperature during biochar produc-
tion. Primarily, the high pyrolysis temperature, in combination
with high residence time, results in high redox potentials in the
resultant biochars. Similarly, at high temperatures, biochar
surfaces are more aromatic and less polar due to loss of H-
and O-containing functional groups that affect the electrostatic
attraction and repulsion. Biochar has also been proved as an
effective soil amendment for improving the physicochemical
characteristics of the soil. The application of biochar positive-
ly affects the physical, chemical, and biological properties of
the soil. Being a rich source of organic compounds such as
fulvic-like and humic-like substances and inorganic com-
pounds such as salts of N, P, and K present in biochar posi-
tively affect the nutrient dynamics of the soil. The application
of biochar positively affects the composition of soil enzymes
and promotes the activities of soil microbes by providing a
suitable habitat to the beneficial soil microbes. However, the

impac t o f b iocha r on so i l ma in ly depends on
the interactions between biochar and soil, including types of
biochar, crop, and soil system. Thus far, there still remains a
gap in understanding the critical controlling parameters for the
production and application of biochar that could affect its
agronomic and environmental uses. Hence, significant work
is required to produce biochar with specific activity and long-
term stability for its agronomic and environmental
applications.
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