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Abstract
Enormouswaste has been generated from the vegetable and fruit processing industries, which are a good source of carbohydrates.
Such unused remnant imposes huge disposal and severe pollution problems. Due to the presence of cellulose, hemicellulose,
pectin, minerals, and vitamins, these waste materials have a great prospective for its bioconversion into useful products, viz.,
acids, enzymes, fuels, and value-added products. To reveal their possible potential, separate sets of experiments have been
conducted by using bottle gourd peel waste biomass as a carbon source for cellulase production. It was observed from exper-
imental findings that 30 °C temperature and 0.56 g/l of inoculum dosages are the most promising situations for cellulase
production by both the fungal strains. FPase and CMCase activity considerably increases by the inclusion of whey as well as
starch hydrolysates in the media used in the production study. The present study portrays the utility of bottle gourd peel waste,
whey, and starch-based hydrolysates in cellulase production by Trichoderma reesei and Neurospora crassa. The exploitation of
cost-effective, cheap, bottle gourd vegetable peel waste for cellulase production could be an innovative, effective, sustainable,
and green approach in cellulase production.
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1 Introduction

The most abundant and renewable resources in the earth for
the production of and value-added chemicals and biofuels are
lignocellulosic biomass [39]. Agro-industrial waste materials
are made up of complex polysaccharide that fortifies the
growth and development of industrially important microbes.
During the agriculture rawmaterial processing for food, a bulk
quantity of agro solid wastes was generated [7, 22, 37].
Economical and efficient depolymerization of lignocellulosic
biomass is the basic necessity for large-scale production of
biomass originated fuels and chemicals [34]. Due to aware-
ness of the health welfares of fruit and vegetable, the demand
for fruits and vegetables has increased considerably. Sound
knowledge about the physicochemical properties of lignocel-
lulosic derived biomass and further analytical characterization

for those properties plays a vital role in the effective biomass
conversion technology [7].

Bottle gourd is an annual climbing vine that belongs to
cucurbitaceae family and also known by other names as cala-
bash, lauki, trumpet gourd, calebassier, cojombro, guiro
amargo, talayag, gucuzzi, and zucca melon [13]. This plant
contains triterpenoid, Cucurbitacins, antioxidants, flavones,
C-glycosides, ß-glycosides, vit C, thiamin, riboflavin, and ni-
acin in fruits. Thus, it is a good source of vitamins, irons, and
minerals as well as an excellent diet for people having diges-
tive problems [23]. Bottle gourd fruits are conventionally used
as a nutritive thing having cardioprotective, cardiotonic, pur-
gative diuretic, and antidote to certain poisons [13]. It is also
beneficial in insanity, epilepsy, and other nervous diseases.

These plants were found to retain anti-inflammatory activ-
ity, anti-diabetics, anti-hyperlipidemic, and anticancer activity
[32, 35]. Bottle gourd peels are also utilized in the detection
and quantification of lethal metals in industrial effluents and
groundwater [1]. Bottle gourd peel based activated carbon acts
as an adsorbent for the exclusion of leather dye (Direct Black
38) from aqueous solution [12]. It has also been used for the
adsorption of hazardous Reactive red 195-A (RRD) and
Reactive blue 222 (RBD) from aqueous solution [30]. Bottle
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gourd peel extract-based magnetic nanoparticles are also used
for organic dyes degradation [33]. Behera and Gupta [6] re-
ported the production of few edible mushroom cultures by the
utilization of bottle gourd peel biomass. Waste produced after
processing of fruit and vegetable is difficult to manage.
Therefore, utilization of these wastes for the production of
value-added chemicals not only valorizes waste biomass but
also helpful in the reduction of environmental pollution [48].
Due to the importance of bottle gourd vegetables in various
processes industries, effective and economical utilization of
their peels is also important for complete exploitation. In the
present investigation, a novel concept has been used to study
the application of bottle gourd peel as a carbon and energy
source for cellulase production.

Chemically and enzymatically processed starch are used in
the food and pharmaceutical industry in different forms such
as starch hydrolysates, glucose syrups, fructose, maltodextrin
derivatives, or cyclodextrins as substitutes, mixtures, thicken-
ing agents, and fillers. In addition to that, the sugars produced
can be fermented to produce value-added chemicals [4, 8, 15].
Starch is a glucose-based polymer mainly comprised of two
main fractions: these are amylose and amylopectin, both hav-
ing different structural properties. Amylose is highly hydro-
philic, due to more number of hydroxyl groups. Amylose is a
much smaller molecule than amylopectin, and it also contains
alpha amylase linkage [2, 56]. Amylopectin entails of short α-
1,4 linkage, linked to linear chains of glucose units and α-1,6
linkage, linked to side chains. Branched amylopectin contains
both α-amylase and β-amylase linkages [3, 8]. Starch is plen-
tiful renewable resources and used as an important feedstock
for industrial applications [36]. Arrangement of starch mole-
cules in the plant is in the form of semicrystalline granules
with a unique granular size. Granular microstructure and the
nanostructure of the growth rings collectively affect the enzy-
matic digestibility of granular starches [8, 50]. Granules of
rice starch are relatively smaller (about 2 μm) than potato
starch granules (up to 100 μm). Wheat starch grains are bi-
modal in size, smaller B-starch (15–20%) ,and the larger A-
starch granules (80–85%) [25, 31]. Water-insoluble protein
complex (wheat gluten) is present in the wheat endosperm.
As literature suggested, the water-soluble starch hydrolysates
also act as a better inducer for cellulase production. It stimu-
lates the enzymatic system to the same extent as pure cellulose
[10, 51].

Dairy industry waste (whey) is the byproduct of a cheese
manufacturing process [38]. It is a severe pollutant that en-
forces excessive BOD of 30,000–50,000 mg/lit. Disposal of
whey creates a substantial loss of possible nutrients in the
form of lactose. It also promotes the process of eutrophication,
causing excessive growth of microorganisms and aquatic
plants [5, 27, 45]. Application of lactose (soluble carbon
source) present in the whey for cellulase production consents
much control on the environment, simplifies the fermentation

operational process, and accelerates the cellulase production
[46]. The present experimental work illustrates the effective-
ness of innovative and cheap bottle gourd peel waste as an
energy source for cellulase production, along with the utiliza-
tion of dairy industry waste (whey) as well as starch hydroly-
sates on its production by Trichoderma reesei andNeurospora
crassa.

2 Materials and methods

2.1 Materials

Chemicals, biochemicals, and reagents consumed to execute
the present work were of Himedia, Sigma-Aldrich, andMerck
make. Trichoderma reesei NCIM 1186 and Neurospora
crassa NCIM 1021 were acquired from the National
Chemical Laboratory (NCL) Pune, India. Whey was procured
from the local dairy industry, whereas the local vegetable mar-
ket was a center for the collection of bottle gourd.

2.2 Methods

2.2.1 Preparation of raw material

After peeling off the bottle gourd, the peel was dried, ground,
and further sieved with a mesh screen. The ground raw mate-
rial (850 μm) was used as a solid bed for cellulase production
analysis.

2.2.2 Estimation of holocellulose and lignin content in bottle
gourd Peel waste

Holocellulose and acid-insoluble lignin in raw materials were
assessed by the TM1-A-9 and TM1-A-7 test method, respec-
tively, as stated in the laboratory guide of Central Pulp and
Paper Research Institute (CPPRI) Saharanpur, U.P., India
[24].

2.2.3 Determination of ash and moisture content

Ash and moisture content were determined by the prescribed
methods, as stated in the laboratory guide of Central Pulp and
Paper Research Institute (CPPRI) Saharanpur, U.P., India
[24].

2.2.4 FTIR/XRD/SEM analysis of bottle gourd Peel

Nicolet 6000 spectrophotometer was used to carry out Fourier
transform infrared (FTIR) spectroscopic analysis. To perform
this, oven-dried samples were mixed with KBr in the propor-
tion of 1:200 mg (raw material: KBr) and further pressed
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under vacuum to form the pellets. Transmittance was quanti-
fying over a scale from 4000 to 500 cm−1.

XRD (x-ray diffraction) analysis of Bottle gourd peels was
estimated on a Bruker AXS D8 Advance diffractometer. The
samples were imaged in the range from 0 to 70° angle.

Scanning electron microscopy (SEM) was used to deter-
mine the surface properties of treated and untreated raw ma-
terials. In this study, the samples were glazed with a gold film.
The samples were then investigated using scanning electron
microscope model LEO-435 VP.

2.2.5 Pretreatment of starch

Acid pretreatment of starch was performed by using a 2%HCl
(v/v) solution. Ten grams of wheat, rice, and potato starch
powdered biomass were taken separately after that 40 mL of
diluted HCl solution were added separately in each starch
sample, to maintain the slurry of about 25% consistency.
Afterwards, starch hydrolysates were exposed to heat treat-
ment in a pressure of 15 psi at 121 °C for 1 h time duration.
The pretreated starch hydrolysates with different volumes
were consumed in the production medium.

2.3 Inoculum development

Inoculum development experiments have been performed in
respective culture media by the methods previously used by
Verma et al. [47].

2.3.1 Dry weight determination

Cell dry weight of microbial suspensions was determined by
the procedure used by Verma et al. [47]. The determination of
fungal growth by cell dry weight was expressed as the mean of
three independent readings.

2.3.2 Preparation of Production Media & Solid State
Fermentation

Three types of production medium were used for production
studies. (I) Normal basal salt media was used for production
studies having the following constituents (g/L): urea, 0.3;
(NH4)2SO4, 1.4; KH2PO4, 2.0; MgSO4.7H2O, 0.3; peptone,
1.0; Tween 80, 0.2; FeSO4.7H2O, 0.005; MnSO4.7H2O,
0.0016; ZnSO4.7H2O; 0.0014; CaCl2.2H2O, 0.4;
CoCl2.6H2O, 0.02. (II) Whey containing production media:
15, 30, and 50% (v/v) whey was incorporated separately in the
earlier described productionmedia. (III)Whey + starch hydro-
lysates containing production media: 30% (v/v) whey along
with 2 and 5% (v/v) of 2% HCl-treated starch hydrolysate
(potato, wheat and rice starch) was incorporated in the earlier
described production media.

Separate sets of batch experiment were performed in
250 mL Erlenmeyer flasks comprising sieved bottle gourd
peels as the carbon source for the growth and production of
organisms impregnated with the normal basic salt media.
Bottle gourd peel waste bed soaked with basal salt media were
autoclaved and then separately inoculated with 0.36, 0.46,
0.56, 0.66, and 0.76 (g/L) of potato dextrose (PD) broth cul-
ture solution of Trichoderma reesei and M2 broth culture so-
lution of Neurospora crassa for 6 days. Further in another set
of experiment, production medium containing flasks was put
in an incubator at 25, 27, 30, 32, and 35 °C for 6 days. To
investigate the influence of various initial pH (3 to 8) of the
basal salt medium, separate sets of experiments were per-
formed at 30 °C. Another set of experiments was carried out
to study the effect of whey, wheat, potato, and rice starch
hydrolysate. About this 15, 30, and 50% (v/v), whey was
incorporated separately in the earlier described production
media and now the whey containing supplementary produc-
tion media was further expended for impregnation of bottle
gourd peel based solid bed. Alternatively untreated, 2% and
5% (v/v) acid-treated wheat, potato and starch hydrolysate
solution were incorporated separately in 30% (v/v) whey con-
taining basal salt media which was further used for impregna-
tion of Bottle gourd peel solid bed. All the bottle gourd peel
bed containing production flasks inoculated with culture solu-
tion to study the effect of whey, wheat, potato, and rice starch
hydrolysates was placed in an incubator at 30 °C for 6 days.

2.3.3 Extraction of enzyme

Extraction of enzyme was performed by the method previous-
ly used by Verma et al. [47]. The subsequent supernatant was
collected and used as a crude enzyme source. All extractions
were performed in duplicate.

2.3.4 Total Cellulase (filter paper activity) and CMCase activity

Filter paper (FPA) and carboxymethyl cellulase (CMCase)
activity were analyzed by the method recommended by
Ghose [16].

3 Results and discussions

3.1 Characterization of bottle gourd peel waste
biomass

3.1.1 Evaluation of bottle gourd peel waste biomass

To establish the major constituent of bottle gourd peel waste
biomass, proximate evaluation has been executed. To resolve
the appropriateness and effectiveness of waste biomass for
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cellulase production, a distinct set of experiments and inves-
tigations have been performed.

It has been observed from the proximate analysis of dried
bottle gourd peel waste that holocellulose (66.35 ± 4.65) com-
ponent stated as major constituent followed by lignin (21.80 ±
3.38) on percentage (w/w%) basis.

3.1.2 XRD pattern of bottle gourd peel waste biomass

The crystallinity and surface area of peel based biomass are
evaluated as the most important factors to interpret the struc-
tural evolution of biomass [20]. To determine the accessibility
and nature of cellulose present in the bottle gourd peel waste
biomass, XRD analysis has been executed.

XRD pattern of bottle gourd peel shows the lesser number
of peaks with broader peak heights which proves its lower
crystallinity as viewed from Fig. 1. Therefore, we can suggest
that cellulose present in Bottle gourd peel is easily accessible
for fungal attacks.

3.1.3 FTIR spectra of bottle gourd peel waste biomass

To identify the constituents of lignocellulosic waste materials,
FTIR spectroscopy has been performed. This is a well-
established analytical method for process monitoring and
identifying the chemical species. It gives a total simultaneous
chemical analysis of lignocellulosic waste material.

FTIR spectroscopy was used for recognizing the compo-
nents of lignocellulosic biomass. The lignocellulosic constit-
uents of bottle gourd peel could be examined from the peak
existence in between 3448 cm−1 and 895 cm−1. Several peaks
were observed by FTIR spectra of bottle gourd peel
(3448 cm−1, 3343 cm−1, 3313 cm−1, 2925 cm−1, 2360 cm−1,
1641 cm−1, 1539 cm−1, 1426 cm−1, 1326 cm−1, 1247 cm−1,
1065 cm−1, and 895 cm−1) as shown in Fig. 2.

Strong bands have been observed in the FTIR spectra of
bottle gourd peel at 3448 cm−1, 3343 cm−1, and 3313 cm−1with
a higher percentage of absorbance. These bands are allied to
the –OH distending vibration of hydroxyl groups present in
the phenolics of lignin and aliphatic compounds [18].

FTIR spectra of bottle gourd peel at 2925 cm−1 shows ex-
treme band at this region with a higher percentage of absorption,
may be consigned to the (C–H) stretch band of methyl groups
present in the lignin [19]. The bands in the region of 1326 cm−1

in bottle gourd peel spectra may be endorsed to phenolic syringyl
ring C–O stretching of phenol, while bands at 1247 cm−1 in
bottle gourd peel spectra may probably be due to C–O stretching
in the acetyl and phenolic groups [44]. The peak in the spectrum
near 1539 cm−1 in bottle gourd peel may be owing to the aro-
matic skeletal vibrations C=C present in the lignin.

The spectral band at 1641 cm−1 in Bottle gourd peel may be
attributed primarily due to the C=O stretching vibration of alpha-
keto carbonyl for cellulose [17, 19]. The presence of the vibra-
tional peak at 1065 cm−1 in the spectra of bottle gourd peel may
be due to the C–OH stretching vibration of the cellulose back-
bone [41]. The absorption band at 895 cm−1 in the spectra of
bottle gourd peel may be assigned to the C–H distortion of cel-
lulose as well as ß-glucosidic linkage between sugars [44, 54].

The FTIR spectral map of bottle gourd peel recommends
that lignin and phenolic components are present in good
amount in the bottle gourd peel which creates impediment to
the uptake of cellulose by the fungal system even that mi-
crobes grow well under bottle gourd peel due to the presence
of sizeable amount of cellulose which provides favorable con-
ditions for fungal attack.

3.2 Bottle gourd peel used in cellulase production

Separate sets of batch experiments were performed for the
cellulase production studies by T. reesei and N.crassa for

Fig. 1 XRD pattern of peel waste
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utilizing bottle gourd peel as raw material for solid support.
Bottle gourd peels are soft and light green as observed from
Fig. 3. It was observed that Trichoderma grew better than
N.crassa under bottle gourd peel-based solid bed as shown
by Fig. 3d, e.

This observation evidences that T. reesei can grow and
produce cellulases under phenolic-based raw materials. On
the other hand, N.crassa showed lesser tolerance under such
harsh conditions. During heat treatment in autoclaving disrup-
tion of raw material cell membranes as well as cell walls are
observed which hydrolyzes the bonds and making more ac-
cessible the cellulosic as well as other constituents such as
antioxidants and phenolics. As literature reported, T. reesei
has the forbearance to grow in the recalcitrant pollutants of a
certain level [43]. Scanning electronmicroscopy has proved to
be a precious and invaluable tool for analyzing the growth of
the fungal system [47]. To study the amplified view of untreat-
ed and microbial treated bottle gourd peel, scanning electron
microscopic analysis of the desired samples has been
performed.

Scanning electron microscopic analysis also proves fruitful
growth of T.reesei as compared with N.crassa under bottle
gourd-based solid state fermentation as shown by Fig. 4.

Fungal production of cellulases was compared under vari-
ous operating parameters such as temperature, inoculum dos-
ages, and pH. As shown in Table 1, a temperature higher or
lower than 30 °C was somewhat less favorable for the

production of cellulase by T. reesei and N. crassa. Under high
temperature, decrement in the enzyme activity has been per-
ceived, whichmight be because at higher temperature, thermal
deactivation enzymes as well as microbes have been occurred
[52]. At higher temperature, the hyphae appears with warped,
reduced branches and thereby concentrates the cell nucleus
which affect and diminish the microbial production [55],
while at lower temperature, the substrates affinity for cells in
microbial system is lowered, because of the thickening of
lipids of the membrane and due to this the microbial produc-
tion of enzyme is decreased [29]. Good cellulase activities
were observed in terms of FPase and CMCase by T.reesei
(3.38 ± 0.09 IU/mL, 3.45 ± 0.11 IU/mL) N.crassa (1.52 ±
0.06 IU/mL, 4.42 ± 0.13 IU/mL) under bottle gourd-based
solid bed at 30 °C.

Alternatively, pH 5.0 was found to be the most suit-
able for cellulase production by T.reesei while N.crassa
performs better at pH 6.0. pH regulates the speciation
and concentrations of electron donors, acceptors, and
reaction products, which in turn establish the energy
yields of redox reactions [21]. Operational pH stimu-
lates a stress response and eliciting a pH signal pathway
to regulate the expression [49]. In higher or lower pH-
based production medium, cellulase activity was sub-
stantially decreased. This indicates that a highly acidic
or alkaline condition becomes unsuitable for fungal
growth and production system.

Fig. 2 FTIR spectral diagram of dried, grounded bottle gourd peel waste

1109Biomass Conv. Bioref. (2022) 12:1105–1114



If the pH is not suitable, microbial metabolism would be
disturbed and ultimately affects fungal production system or
in another word if there is no proper balance of ions, and the
shape of the active site of enzyme would be distracted so that
the substrate could not be bounded into the enzyme. Such
conditions would favor decrement in enzyme activity [52].
Lower pH conditions endorses the dissemination of formic
acid, acetic acid, and other short-chain fatty acids across the
membrane, which disperses proton drive force across the
membrane and deters the microbial growth [21]. An acidic
pH favored cellulase production, while this was significantly
decreased towards much acidic as well as neutral and slight
alkaline pH, as observed from Table 1.

The size of inoculum seems to have a profound effect on
microbial growth and enzyme production. Inoculum dosages
of 0.56 g/l were found most appropriate dosages for cellulase
production by both of the fungal strains. Inoculum size influ-
ences the utilization of carbon and nitrogen from the medium
by microbial sources. Dhillon et al. [11] stated that maximum
enzyme activity was analyzed using 5% inoculum. An incre-
ment in inoculum size from 5% showed a progressive de-
crease in enzyme activity reaching the lowest at 20% inocu-
lums. Smaller inoculum sizes produced a transient mycelial
stage, whereas a higher inoculum concentration becomes fa-
vorable, probably because of the reduction in the lag phase
caused by highly concentrated inocula. Reduction in cellulase

Fig. 3 Bottle gourd whole plant
(a), bottle gourd peel (b), Ground,
sieved, and dried bottle gourd
peel (c),growth of Trichoderma
reesei (d), and Neurospora crassa
(e) on bottle gourd peel

Fig. 4 SEM micrograph of
untreated bottle gourd peel under
× 50 magnification (a),
Trichoderma reesei-treated bottle
gourd peel-based solid bed under
× 500 magnification (b),
Neurospora crassa-treated bottle
gourd peel-based solid bed under
× 500 magnification (c)
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production on increasing the inoculum size could be due to
competition between microorganism colonies for nutrients
and probably the non-availability of nutrients for the large
population limits the fungal growth [26]. Therefore, a suitable
and appropriate inoculum size or dosages required for health-
ier fungal propagation and their enzyme production.

When compared the cellulase activities produced by
T.reesei and N. crassa under bottle gourd peel-based solid
state fermentation, it was observed that cellulases are pro-
duced from T.reesei having higher FPase activity as compared
with N.crassa. On the other hand, cellulases produced from
N.crassa showed higher CMCase activity as observed from
Table 1.

To evaluate the effects of dairy industry waste (whey) and
starch hydrolysates, separate set of experiments has been con-
ducted by utilizing modified basal salt medium.

It was observed from Table 2 that FPase activities were
enhanced by the incorporation of 30% whey in BSM. The
highest increment in FPase was observed by T. reesei (3.80
± 0.13 IU/mL) strain, and the least increment was observed
withN.crassa (1.66 ± 0.08 IU/mL) on bottle gourd peel-based
solid state fermentation, which suggests that T. reesei quite
effectively utilized whey as inducer and carbon source.
Morikawa et al. [28] reported that lactose may function as
an inducer for cellulase formation if it is taken up in the my-
celium of T. reesei PC-3-7. Induction capacity of whey was
very low or negligible by N.crassa system. It has been

observed from Table 2 that CMCase activities (3.58 ± 0.06;
4.58 ± 0.09) were not much enhanced by incorporation of
whey in BSM. These finding insinuate that whey are not much
effective inducers for CMCase in comparison to FPase activ-
ity produced by microbial system.

FPase activities were not improved by most of the
untreated starch-based production systems. They imply
that untreated starch having very little or nearly zero
cellulase induction capability. FPase of T.reesei was fur-
ther improved by inclusion of (2% v/v) wheat starch
hydrolysate (2% HCl treated with 1 h pretreatment time)
in whey based basal salt medium.

By increasing the wheat starch hydrolysate concentration
(5% v/v), additional improvement in the FPase (4.45 ±
0.11 IU/mL) was observed, which suggests that wheat starch
hydrolysates contain few sugars which induce the
Trichoderma reesei cellulase production system. Growth and
cellulase stimulation both take place in the hydrolyzates con-
tainingmedium, apparently due to the presence of few dimeric
sugars in the hydrolyzates which ultimately induces cellulase
production [9]. Gao et al. [14] reported that transglycosylation
products have been successfully used as the cellulase inducer
by Trichoderma reesei. Earlier studies showed that starch it-
self was poor inducer for the cellulase induction, but it was
declared highly operative by acid hydrolysis. This was due to
the formation of reversion products, such as sophorose
(disaccharide) during acid hydrolysis [42].

Table 1 Cellulases activities produced by Trichoderma reesei and Neurospora crassa under bottle gourd peel-based solid state cultivation at different
temperatures, pH, and inoculum dosages

Parameters Trichoderma reesei NCIM 1186 Neurospora crassa NCIM 1021

FPase(IU/
mL)

CMCase(IU/
mL)

FPase(IU/
mL)

CMCase(IU/
mL)

Bottle gourd peel waste Temp (°C) 25 1.98 ± 0.16 2.10 ± 0.13 1.09 ± 0.13 3.49 ± 0.04

27 2.74 ± 0.21 2.81 ± 0.20 1.21 ± 0.10 3.93 ± 0.16

30 3.38 ± 0.09 3.45 ± 0.11 1.52 ± 0.06 4.42 ± 0.13

32 2.96 ± 0.19 3.08 ± 0.17 1.03 ± 0.03 3.38 ± 0.11

35 2.45 ± 0.13 2.97 ± 0.21 0.76 ± 0.19 2.97 ± 0.08

pH 3.0 2.59 ± 0.11 2.26 ± 0.18 0.89 ± 0.05 2.86 ± 0.13

4.0 2.83 ± 0.20 2.79 ± 0.09 1.03 ± 0.11 3.15 ± 0.06

5.0 3.38 ± 0.09 3.45 ± 0.11 1.29 ± 0.09 3.89 ± 0.09

6.0 3.03 ± 0.05 2.83 ± 0.19 1.52 ± 0.06 4.42 ± 0.13

7.0 2.51 ± 0.18 2.34 ± 0.14 1.41 ± 0.03 4.05 ± 0.05

8.0 2.07 ± 0.15 2.11 ± 0.06 1.07 ± 0.13 3.31 ± 0.17

Inoculum dosages(g/L) 0.36 1.78 ± 0.19 1.87 ± 0.11 1.06 ± 0.11 2.93 ± 0.14

0.46 2.54 ± 0.16 2.43 ± 0.08 1.37 ± 0.09 3.69 ± 0.03

0.56 3.38 ± 0.09 3.45 ± 0.11 1.52 ± 0.06 4.42 ± 0.13

0.66 3.13 ± 0.22 3.27 ± 0.17 1.29 ± 0.17 3.29 ± 0.09

0.76 2.83 ± 0.13 2.91 ± 0.19 0.81 ± 0.04 2.78 ± 0.12

Data are reported as mean ± standard deviation based on the repeated trails
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Mandhania et al. [26] suggested that sophorose, cellobiose,
or galactose may provoke a putative lactose permease in
T. reesei PC-3-7 which may be helpful in the induction pro-
cess. Reasonable improvement in FPase (4.37 ± 0.08 IU/mL)
was also observed by T.reesei under (5% v/v) rice starch hy-
drolyzates medium containing bottle gourd peel-based solid
state fermentation, while potato starch hydrolysates were
found not much effective for FPase induction by T.reesei.
No satisfactory enhancement in FPase (4.16 ± 0.13 IU/mL)
was observed under potato starch hydrolysate-based produc-
tion. In contrast, N.crassa system showed different behaviors
for starch hydrolyzate-based cellulase induction. It has been
observed from Table 2 that N.crassa showed satisfactorily
improvement in the FPase activities (2.09 ± 0.16 IU/mL)
(2.01 ± 0.09 IU/mL) under 2% v/v potato and rice starch hy-
drolyzates containing bottle gourd peel bed, respectively,
comparison to FPase activity (1.79 ± 0.09 IU/mL) under
wheat starch hydrolysate-based fermentation. Significant im-
provement in FPase activity (2.28 ± 0.07 IU/mL) was also
observed by increasing potato starch hydrolysates dosages
(5% v/v). These findings suggest that sugars (maltose,
maltodextrins) present in the potato starch hydrolysates may
induce transcriptional factors for improved cellulase activity
for Neurospora system rather than its growth [40] [53].

It has also been observed from Table 2 that CMCase activ-
ities were satisfactorily enhanced by incorporation of acid
hydrolyzed starch in BSM. Higher increment in CMCase ac-
tivity (5.43 ± 0.13 IU/mL) was observed by N.crassa system
under potato starch hydrolysatebased fermentation.

It has been observed from Table 2 that whey and acid
hydrolyzed starches induce cellulase activities diversely under
bottle gourd peel-based solid state fermentation. Higher cellu-
lase activities produced by T. reesei in terms of FPase (4.45 ±
0.11 IU/mL) and CMCase (4.20 ± 0.08 IU/mL) were observed
under whey and wheat starch hydrolysate containing bottle
gourd solid bed-based fermentation.

On the other hand, higher cellulase activities produced by
N.crassa in terms of FPase (2.28 ± 0.07 IU/mL) and CMCase
(5.43 ± 0.13 IU/mL) were observed under whey and potato
starch hydrolysates containing bottle gourd peel bed-based
fermentation.

4 Conclusions

Vegetable waste biomass is an easily available, inexpensive,
and renewable, natural resource for large-scale production of
bio-energy. bottle gourd peel serves as a promising candidate
for cellulase production under solid state cultivation.
Satisfactory improvement in enzyme activities was observed
by Trichoderma reesei under whey based solid support as
compared with Neurospora crassa. Among starch hydroly-
sates, Neurospora performed better under medium supple-
mented with potato starch hydrolysate. Utilization of starch
hydrolysates, as well as dairy industry waste in cellulase pro-
duction under bottle gourd peel-based fermentation, provides
a sustainable, recyclable, green, and eco-friendly approach for
solid as well as liquid waste management; therefore, the

Table 2 Cellulase activities produced by T. reesei and Neurospora crassa on normal basal salt as well as modified basal salt media incorporated on
bottle gourd peel waste-based solid bed at 30 °C

Bottle gourd peel waste Trichoderma reesei NCIM 1186 Neurospora crassa NCIM 1021

FPA (IU/mL) CMCase (IU/mL) FPA (IU/mL) CMCase (IU/mL)

Basal salt media (BSM) 3.38 ± 0.09 3.45 ± 0.11 1.52 ± 0.06 4.42 ± 0.13

BSM +W Whey 15% (v/v) 3.41 ± 0.03 3.09 ± 0.10 1.55 ± 0.02 4.37 ± 0.06

Whey 30% (v/v) 3.80 ± 0.13 3.58 ± 0.06 1.66 ± 0.08 4.58 ± 0.09

Whey 50% (v/v) 3.69 ± 0.08 3.43 ± 0.15 1.69 ± 0.03 4.51 ± 0.05

BSM +W+WSH W30%+UTWS 2% (v/v) 3.85 ± 0.04 3.67 ± 0.09 1.63 ± 0.06 4.56 ± 0.11

W30% + 2% (v/v) 4.19 ± 0.17 4.01 ± 0.10 1.79 ± 0.09 4.70 ± 0.03

W30% + 5% (v/v) 4.45 ± 0.11 4.20 ± 0.08 1.86 ± 0.14 4.81 ± 0.03

BSM +W+ PSH W30%+UTPS 2% (v/v) 3.82 ± 0.19 3.63 ± 0.20 1.65 ± 0.02 4.67 ± 0.08

W30% + 2% (v/v) 4.10 ± 0.07 3.82 ± 0.11 2.09 ± 0.16 4.89 ± 0.05

W30% + 5% (v/v) 4.16 ± 0.13 3.93 ± 0.08 2.28 ± 0.07 5.43 ± 0.13

BSM +W+RSH W30%+UTRS2% (v/v) 3.84 ± 0.16 3.65 ± 0.13 1.60 ± 0.03 4.59 ± 0.11

W30% + 2% (v/v) 4.16 ± 0.13 3.88 ± 0.19 2.01 ± 0.09 4.83 ± 0.04

W30% + 5% (v/v) 4.37 ± 0.08 4.05 ± 0.11 2.21 ± 0.05 5.33 ± 0.17

Data are reported as mean ± standard deviation based on the repeated trails

W whey, WSH wheat starch hydroysate, PSH potato starch hydrolysate, RSH rice starch hydroysate, UTWS untreated wheat starch, UTPS untreated
potato starch, UTRS untreated rice starch
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generation of renewable energy by the exploitation of vegeta-
ble wastes is gaining importance in the present scenario.
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