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Abstract
A number of industries currently produce many tons of agroindustrial wastes with significant consequences on the environment
and human and animal health. In recent years, increasing emphasis has been placed on reducing this negative impact. This review
article aims to investigate the use of pretreatment methods that can be applied as an alternative to the usage of residual biomass. In
addition, we seek to highlight the efficiency of the processes as well as possible weaknesses, which are associated with high
energy and reagent consumption, low yields, and possible secondary impacts. Generally, the waste chemical composition
consists mainly of cellulose, hemicellulose, and lignin; these can be fractionated, extracted, and purified to produce different
value-added products, such as biofuels, organic acids, enzymes, biopolymers, and chemical additives. Despite the multiple
possibilities to produce different products from lignocellulosic biomass, further research is still required to enhance the efficiency
of the methods used nowadays and find new procedures.
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1 Introduction

Agricultural activities can lead tomultiple waste accumulation
and environmental pollution. Both consequences derive from
factors such as the practice of industrial activities and com-
pound usage that are intended to optimize and improve
agroindustrial outputs [1]. Agroindustrial wastes produced
around the world constitute, annually, a large amount of waste
material (approximately 37,522,440,479 kg in 2017) [2].
These should be fulfilled by an appropriate pretreatment

process, in order to avoid adverse effects against the environ-
ment, human, and animal health. However, most of the
agroindustrial wastes around the world do not receive ade-
quate post-treatment and end up being incinerated or disposed
in makeshift landfills [3].

Within the last decades, numerous promising studies have
been made, aiming to develop and improve agroindustrial
wastes disposal methods designed for the obtainment of
value-added products [4]. One of the most prominent types
of wastes is that of lignocellulosic nature [5, 6].
Lignocellulosic biomass is generally composed of a complex
mixture of cellulose, hemicellulose, and lignin; therefore, for
the efficient use of its components, it is necessary to carry out
adequate separation processes. Due to the high amount of
matter present within the lignocellulosic biomass, an
agroindustrial separation process is not common. With the
purpose of obtaining acceptable yields in the components,
additional pretreatment steps are generally required [7–11].
During the pretreatment stage, the natural characteristics of
lignocellulosic compound bonds are modified by altering the
supramolecular structures. This makes the pretreatment stage
essential to enhance the depolymerization of the structural
components in subsequent treatments, increasing the degrad-
ability by using biological, physical, and chemical methods
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[12]. Once said step is performed, it is possible to obtain the
constituent components [7]. Different subproducts can be ob-
tained, which can have a wide application range, categorized
in bioenergy, biomaterials, chemical precursors, enzymes,
among others.

The different value-added products obtained after a pre-
treatment process offer several benefits in comparison with
those that have not been pretreated, such as environmental,
net energy gain, and economical aspects [13–16]. These indi-
cators can be a growth opportunity for local farmer commu-
nities, employment opportunities, industry sector, and energy
sectors [17]. These advantages account for a pretreatment pro-
cess to be a very promising and feasible technology.

In order to provide a better understanding and vision, this
work has involved a comprehensive review of the current
pretreatment methods for lignocellulosic wastes from
agroindustrial activities, for obtaining value-added products.
The first section describes specific data on agricultural pro-
duction and its residues around the world, as well as the prob-
lems related to the accumulation of this type of waste. In the
second section, we present the chemical composition of the
constituents of lignocellulosic material. Consequently, the
third section describes a review of the current pretreatment
methods for lignocellulosic material that has been carried
out. Finally, the last section of this work contains a review
of some of the possible products from pretreated lignocellu-
losic wastes, empathizing the industrial, energetic, and eco-
nomic importance of this biomass.

2 Agroindustrial production around the world

Worldwide, numerous hectares of land are used for agricultur-
al use (Table 1). In addition, a wide variety of products are
generated (Table 2). As a result of the large production of
agricultural products around the world, large quantities of

agroindustrial wastes are inevitably generated, many of which
are lignocellulosic in nature (Table 3).

3 Problems related to agroindustrial activity

Agroindustrial activities have caused a series of problems
associated with the environment and human and animal
health. Related to the environment, the soil is one of the
major sources of pollution and degradation by these ac-
tivities. Agricultural activities have been linked to soil
erosion [29]. This effect can have consequences such as
sedimentation, soil fertility loss, and agricultural produc-
tion decrease, which make agricultural activities unsus-
tainable [30]. Moreover, the most direct effect of soil ero-
sion is sedimentation. Water runoff and excessive sedi-
mentation contribute to the degradation of soil and water
bodies [31]. Additionally, components with nitrogen,
phosphorus, organic compounds, and heavy metals of
pesticides can reach aquifer mantles and bodies of water,
causing the intoxication of aquatic life and eutrophication
of water [32].

Nowadays, the consequences generated by the accumu-
lat ion of pest ic ides and fer t i l izers used during
agroindustrial harvests can contribute to a damaging im-
pact on human health. Therefore, it is necessary to im-
prove the efficiency of agroindustrial processes in order
to reduce their environmental impact [33, 34]. Adverse
effects may depend on the routes and exposure time,
and health conditions of the individual [35]. The most
representative damages to human health are dermatologi-
cal, respiratory, gastrointestinal, carcinogenic, and repro-
ductive and endocrine affections [33, 35]. In European
areas, there are taxes denominated as landfill taxes that
seek to avoid the accumulation of wastes. This trend is
currently expanding to other countries [36]. Moreover,
there is a current trend in developed countries to consider
by-products of industrial processes as recyclable mate-
rials, rather than considering them as wastes. There are
currently numerous companies that no longer consider
these by-products as wastes, but rather as raw materials
that can be used for other processes [27].

4 Agroindustrial waste composition

Agroindustrial wastes of lignocellulosic nature are mostly
composed of different structural fractions (Table 4) that
can be extracted and applied for the synthesis of different
products and materials because of their high energy con-
tent [43].

Table 1 Agricultural land usage in hectares around different areas of the
world to 2016 [18]

Regions Hectares (1000 ha)

East Asia 648,396.00

South America 620,418.50

North America 468,778.91

Europe 464,405.37

Oceania 384,051.44

West Asia 272,272.41

North Africa 174,298.63

Central Africa 166,274.70

South Africa 165,090.60

Central America 124,152.50
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4.1 Cellulose

Plants are responsible for producing many tons of cellulose
per year [44]. This makes cellulose the most abundant natural
polymer in the world, making it and its derivatives one of the
most prolific research topics [45]. Consequently, cellulose-
based products and applications are abundant. They are harm-
less to the environment due to their capacity to easily return to
the carbon cycle through a degradation process, in the pres-
ence of decomposing organisms [46]. Cellulose is typically
differentiated for being a biodegradable compound; having
good mechanical properties; being biocompatible, non-toxic,
and poorly soluble in water; and having a broad susceptibility
to being chemically modified [47]. It is a syndiotactic homo-
polymer with a molecular formula of (C6H10O5)n, composed
of D-anhydroglucopyranose units (glucose units). The glu-
cose units are combined together by means of β-(1-4)-gluco-
sidic bonds forming a dimer called cellobiose, which is the
fundamental unit of cellulose [48]. Hydroxy groups (OH) in
the structure of D-anhydroglucopyranose, the primary (C6)
and the two secondary (C2 and C3), exhibit different polari-
ties, making them able to be involved in intramolecular and
intermolecular hydrogen bond interactions [49].

Cellulose can be considered as an isotactic polymer of
cellobiose (Fig. 1) [46, 48] Among the most common
cellulose applications, there are uses such as an additive
for adhesives, paper-based products, drilling fluids,

cement-based materials, food coatings, and catalysis sup-
port structures, and wide applications in biomedicine [45].

4.2 Lignin

Lignin is one of the three major components of plant organic
matter and represents the main natural aromatic source [50].
Lignin has aromatic units instead of the long carbon chains
presented by cellulose and hemicellulose. Its chemical char-
acterization depends on the type of vegetal and extraction
method [51]. Lignin is a compound with different types of
phenols, such as coniferyl, p-comaryl or hydroxyphenyl alco-
hols, and sinapyl; the first one predominates in softwoods,
while the latter ones are present in a greater proportion in
hardwoods. These monomers are united by carbon-oxygen
bonds between the β-termination of the propenyl group (β-
O-4) and half of the p-hydroxy [52] (Fig. 2).

Due to the complexity of its chemical structure, molecular
weight is an important parameter. The molecular weight of
lignin ranges from 1000 to 20.000 g mol−1, and it is
fragmented into subunits that are repeated randomly. This
contributes to a more difficult extraction process, making lig-
nin analysis constantly complex [53, 54].

Major applications of lignin include using it as a copolymer
in plastics, reinforcement additive in polymeric compounds,
adhesives, flocculants, antioxidant coating in the food indus-
try, precursor for the manufacture of carbon fibers, and com-
ponents in batteries for energy storage, and in biomedical
applications [55].

4.3 Hemicellulose

Hemicelluloses are heterogeneous polymers formed by pen-
toses (xylose and arabinose), hexoses (mannose, glucose, and
galactose), and various acidic sugars. The ratio and proportion
of these compounds vary between different types of plant
species [56]. Hemicellulose polysaccharides can be easily vol-
atilized or hydrolyzed by a dilute acid or base and are highly
soluble in alkaline media. Consequently, hemicellulose, un-
like cellulose, is removable with alkaline solutions from the
plant cell walls [57]. Due to their structural variability, hemi-
celluloses can be divided into four classes: xylanes,

Table 2 Production of common agricultural products by continent to 2016 (index 2004–2006 = 100) [18]

Continent Crops Cereals Vegetable oil Roots Fruits and vegetables Sugar

Africa 134 132 142 133 132 115

America 131 131 158 99 113 150

Asia 136 124 147 131 151 132

Europa 115 119 148 97 109 103

Oceania 110 90 161 107 107 89

Table 3 Types of agroindustrial waste and its production in different
parts of the world

Waste Production (MT/year) Location Reference

Rice straw 740.95 Worldwide [10]

Wheat stalk 529.00 Worldwide [19]

Corn bagasse 384.80 USA [20]

Sugar beet 274.20 Worldwide [18]

Sugarcane bagasse 166.40 Brazil [21]

Soy stalk 143.50 Worldwide [22, 23]

Sawdust 64.05 USA [24]

Cotton stalk 24.82 Worldwide [25]

Orange peel 15.00 Worldwide [26]

Barley straw 0.00083103 Europe [27, 28]
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manoproteins, β-glucans with mixed bonds, and xyloglycans
(Fig. 3) [58].

Generally, the concept of hemicelluloses refers to all those
polysaccharides in the cell wall that cannot be characterized as
celluloses or pectins [59]. Among the applications of hemicel-
lulose, there are its uses in biomedical and pharmaceutical β-
glucans applications, as reinforcement additive in biomedical
polymers, as adhesives, and as flocculants [58, 60–62].

5 Pretreatment methods for lignocellulosic
agroindustrial wastes

5.1 Chemical methods

5.1.1 Acid pretreatment

Acid pretreatments of lignocellulosic biomass have several
advantages. Within them, there are acid solutions that can
remove lignin and hemicellulose without any previous treat-
ment, and it is a low-cost method [63, 64]. Various types of
mineral acids can be used, with sulfuric acid and hydrochloric
acid being the most used. These are usually applied under

different conditions of concentration, temperature, and time,
depending on the kind of waste. Overall, high temperatures,
long reaction periods, and high concentrations usually de-
crease the yield, as well as the crystallinity and thermal stabil-
ity of cellulose [65, 66]. In spite of its effectiveness, acid
pretreatment has the disadvantage that toxic compounds such
as furfural; HMF; and acids, such as acetic, formic, levulinic
and fungal, can be released as well as aliphatic and phenolic
groups, due to the degradation of sugars and lignin, respec-
tively [67, 68].

In a study conducted byMcIntosh et al. [69], the laboratory
and pilot capacity of diluted acid as a pretreatment method
was evaluated in combination with the steam explosion tech-
nique to treat Eucalyptus grandis tree samples for later hydro-
lysis, in order to produce bioethanol. At the laboratory scale,
the digestibility of glucans and glucose yield was 68.0% and
51.3% respectively, for the pretreated biomass at 190 °C for
15 min at 4.8 wt% H2SO4. At the pilot level, the pretreatment
is at 180 °C for 15 min at 2.4 wt% H2SO4, followed by steam
explosion that led to glucans digestibility yields and glucose
yields of 71.8% and 63.6% respectively.

5.1.2 Alkaline pretreatment

Alkaline pretreatments have several advantages, especially the
fact that it is a method that uses less aggressive reagents,
compared with those used in acid pretreatments such as sul-
furic acid [70]. Also, alkaline pretreatments are effective in the
delignification of the biomass, without significantly affecting
its cellulosic structure [4].

The use of reagents such as sodium hydroxide, sodium
carbonate, ammonia, and calcium hydroxide is common for

Table 4 Biochemical composition of common agroindustrial wastes

Residue Cellulose (%) Hemicellulose (%) Lignin (%) Reference

Rice straw 41.0–57.0 8.0–19.0 33.0 [37]

Rice husk 25–35 18–21 26–31 [38]

Wheat stalk 34.0 27.6 18.0 [39]

Corn bagasse 42.4 29.6 21.7 [40]

Sugar beet 26.0 28.0 4.5 [39]

Sugarcane bagasse 33.6 29.0 18.5 [39]

Soy stalk 38.0 16.0 16.0 [39]

Sawdust 47.5 22.5 30.0 [39]

Cotton stalk 42.0 12.0 15.0 [39]

Orange peel 9.2 10.5 - [41]

Barley straw 32.5 25.7 23.0 [39]

Miscanthus straw 44.7 29.6 21.0 [39]

Spent coffee 49.8 9.5 22.1 [39]

Pineapple bran 30 36 7 [39]

Banana peel bran 12.1 10.2 2.9 [42]

Fig. 1 Cellulose structure
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alkaline methods [70]. During the pretreatment process, there
are reactions that include the dissolution of lignin and hemi-
cellulose, and the de-esterification of intermolecular ester
bonds. This kind of pretreatment removes substitutions of
acetyl and uronic acids present in the hemicellulose that would
otherwise reduce subsequent accessibility of enzymes to
hemicellulose and cellulose [71]. The degree of polymeriza-
tion of the components is also altered, causing changes in
surface area, porosity, and crystallinity of the treated solids
[72].

Mittal et al. [73] performed an analysis of the hydrogen
peroxide loading during an alkaline pretreatment to separate
the lignin from the polysaccharides present in corn stover. The
influence of peroxide was examined in a range of 30–500-mg
H2O2/g stubble of dried corn at 50 °C for 3 h, obtaining that at
250-mg H2O2/g dry corn stubble, the delignification was ap-
proximately 80%.

5.1.3 Ionic liquids pretreatment

Ionic liquids are composed of organic heterocyclic cations and
several anions. These are non-volatile, non-flammable, and

can exist in liquid state within a wide range of temperatures,
the most common being below 100 °C. Imidazole ion salts are
currently one of the most popular ionic liquids for pretreat-
ment processes [74]. Its usage is due to its effectiveness in
dissolving cellulose. The general mechanism consists of the
alteration of the hydrogen bonds that crosslink the lignocellu-
lose, which increases the biomass digestion. Then, using sol-
vents such as water, ethanol, or acetone, it is possible to re-
cover the cellulose fraction; however, it is a method that re-
quires high investment costs [63, 65, 75].

Yamada et al. [76] evaluated the use of an ionic liquid
pretreatment in bagasse, for the subsequent use of the biomass
in a direct ethanol fermentation by using cellulase-displaying
yeast. The results showed that 1-butyl-3-methylimidazolium
acetate was the most effective ionic liquid among those stud-
ied. After pretreatment, direct fermentation obtained a yield of
73.4% after a 96-h fermentation.

5.1.4 Organic solvent pretreatment

Pretreatment with organic solvents is applied to isolate
lignin as a solid material and carbohydrates as a syrup,

Fig. 2 Chemical structure of lignin in softwood. Coniferyl alcohol (a). P-comaril alcohol (b)
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which is beneficial, since both are raw materials for nu-
merous products [77]. Normally, this type of pretreatment
is performed using a strong inorganic acid as a catalyst to
hydrolyze the bonds shown in lignin. The main advantage
of an organic solvent pretreatment is that it provides easy
recovery of the organic solvent by distillation for a
recycled use [78].

Salapa et al. [79] evaluated the efficiency of an or-
ganic solvent pretreatment over wheat straw at different
t empe ra tu r e s and t imes , us ing f ive d i f f e r en t
organosolvents (ethanol, methanol, butanol, acetone,
and diethylene glycol), in the presence of 23 mol/m3

of sulfuric acid as catalytic for a later ethanol produc-
tion. After the subsequent enzymatic digestion, the
highest ethanol production yield was 67%, which was
obtained under conditions of 180 °C for 40 min of
pretreatment. In addition, pretreatment with diethylene
glycol at 160 °C for 40 min also showed good results
due to its ethanol production yield of 65%.

5.2 Physical pretreatment methods

5.2.1 Milling

The purpose of this technique is to reduce the particle size and
to promote the disruption of the lignocellulosic material crys-
tallinity. The method provides a reduction of the raw material
that ranges between 0.2 and 2.0 mm, which increases the
specific surface area for a subsequent hydrolysis process
[80]. This method affords the advantage of severely reducing
the processing time. In addition, it decreases the amount of
water consumed; however, it maintains the limitation of re-
quiring high energy consumption [63].

In a study led by Q. Liu et al. [81], the sugar recovery
capacity of a two-stage corn stover pretreatment was evaluat-
ed. The first stage being a dilute HCl pretreatment, and the
second involving a wet grinding technique. The optimum con-
ditions were obtained at a temperature of 120 °C for 40 min
for the pretreatment with 0.7% HCl, and 15 min during the

Fig. 3 Primary structure of xylanes (a), manoproteins (b), β-glucans with mixed bonds (c), and xyloglucans (d)
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wet mill pretreatment. At these conditions, the xylose yield
was 81% and 64% for glucose.

5.2.2 Sonication

The sonication technique is based on the application of ultra-
sonic waves through a fluid to promote pressure variations
[82]. Acoustic waves generate microcavities in which gas
bubbles grow and then collapse, generating shock waves that
cause mechanical effects, such as particle erosion and a con-
sequent particle size reduction [83].

In a study done by Song et al. [84], a sonication pretreat-
ment process was accomplished on roasted wheat straw, in
order to obtain biomass pellets for later use as biofuel. The
results showed that with the assistance of sonication, pellets of
a higher quality than those obtained at the same pressure with
no ultrasonic vibrations can be obtained.

5.2.3 Extrusion

The extrusion pretreatment method consists of the operation
of generating objects with a defined cross-sectional profile by
means of forcing them through a mold with the desired trans-
versal size. The material generally undergoes expansion when
it leaves the mold [85]. The process can be affected by vari-
ables such as the screw extruder profile, the extrusion speed,
and the system temperature [86].

Extrusion methods have different effects on biomass, such
as reduction of particle size distribution, increase in specific
surface area, changes in crystallinity, and visible changes in
biomass structure. It is generally common for the extrusion
method to be combined with other chemical methods such
as alkaline or acid treatments, aiming to improve the process
efficiency [87].

In a study carried out by Oliva et al. [88], an extrusion
pretreatment process on barley strawwas evaluated. The study
combined the steam explosion and extrusion techniques for an
optimal fractionation of the lignocellulosic material. The pro-
cess had a yield of 84%, 91%, and 87% in the recovery of
glucans, hemicellulose, and lignin, respectively.

5.3 Physical-chemical pretreatment methods

5.3.1 Steam explosion

Steam explosion is a hydrothermal pretreatment in which the
biomass is rapidly heated in a reactor containing saturated
steam at high pressures, 0.69–4.83 MPa, in a temperature
range between 160 and 260 °C. The time period in which
the biomass remains in the reactor varies from seconds to
several minutes [89].

During this process, the vapor condenses and penetrates the
biomass, initiating an autohydrolysis where the glycosidic

hemicellulose bonds are broken due to the organic acids that
are generated from the acetyl groups present in this compo-
nent. This results in subsequent solubilization of the hemicel-
lulose, causing a mechanical disruption in the lignocellulosic
matrix [90]. Therefore, this technique is usually used to alter
the plant structure, solubilize hemicellulose, and promote ris-
ing in the accessible specific surface area of the lignocellulosic
material, by enzymes or other compounds. This technique has
the advantage of being environmentally friendly; neverthe-
less, it is still a developing technology, because of the need
to improve the design of reactors, the mode of operation, and
the mixture of catalysts that can improve the biomass pretreat-
ment effectiveness [91, 92].

Medina et al. [93] studied the effect of steam explosion
pretreatment over palm oil empty fruit bunches. Optimal pre-
treatment results were obtained at a temperature of 195 °C for
6 min. Pretreated biomass showed a 34.69% increase in gly-
can content and a 68.12% reduction in hemicellulose content.
In addition, the increase in the subsequent enzymatic digestion
yield was 33%.

5.3.2 Hot water pretreatment

The hot water pretreatment for lignocellulosic biomass keeps
liquid water at temperatures between 140 and 240 °C. During
the pretreatment, the hemicellulose is depolymerized and the
products dissolve in the liquid phase, while the cellulose is
completely retained in the solid phase. The temperature of the
water causes lignin to suffer from simultaneous depolymeriza-
tions and polymerizations, due to its glass transition tempera-
ture in aqueous conditions (between 80 and 100 °C) [94];
insoluble lignin is retained in solid waste [95].

This technique has advantages that include the unnecessary
use of chemical additives, the non-requirement of using a
corrosion-resistant reactor, and the formation of low toxicity
compounds [96].

In a study conducted by Mohan et al. [97], the ability to
obtain total reducing sugars by means of hot water pretreat-
ment applied over bamboo samples was evaluated. For this,
the reaction times were varied between 5 and 40 min, and the
temperature between 170 and 220 °C. The results showed that
the highest yield of 42.21% was obtained at a temperature of
180 °C for 25 min.

5.3.3 Supercritical CO2 explosion

Supercritical CO2 is characterized for being considered as a
green solvent because of its non-flammability and non-
emission of organic vapors. Its critical temperature (Tc) is
31 °C, and its critical pressure (Pc) is 1071 psi [98]. After
the pretreatment, the solvent can be easily separated. Process
variables such as temperature, pressure, extraction bed size,
and solvent flow, among others can be modified to maximize
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yields on specific compounds. In addition, the combined use
of this method with others such as sonication and extrusion is
common [99]. The explosive release of CO2 after the pretreat-
ment process breaks the biomass cellulose and hemicellulose
structures, increasing the surface area for eventual hydrolysis
[100].

In a study developed by M. Jiao Zhao et al. [101],
agroindustrial wastes including corn stover, corn cob, and sor-
ghum stalk, all with a moisture percentage of around 75%,
underwent a long supercritical CO2 pretreatment between 12
and 60 h, at low temperatures (50–80 °C) and pressures be-
tween 17.5 and 25.0 MPa. The results showed that in the
subsequent enzymatic hydrolysis of the lignocellulosic mate-
rial, the yield of sugars was 3 to 4 times higher than those
obtained for the material that had not received a supercritical
CO2 pretreatment.

5.3.4 Ammonia fiber expansion (AFEX™)

The expansion with ammonia fiber is a pretreatment that ap-
plies anhydrous or gaseous liquid ammonia in a pressurized
container to treat lignocellulosic materials [102]. One of the
advantages of this technique is that the ammonia can be reused
by a gas recycling system integrated into the main system used
[103].

The addition of ammonia under high pressures and temper-
atures promotes the decrystallization of cellulose, depolymer-
ization of hemicellulose, and deacetylation of acetyl groups.
These changes dramatically increase subsequent enzymatic
hydrolysis stages, leading to high yields for pretreated bio-
mass by ammonium fiber expansion [104].

In a study carried out by Perez-Pimienta et al. [105], the
response of agave bagasse to a pretreatment with ammonia
fiber expansion was evaluated. Results showed that the meth-
od preserved all the carbohydrates present in the biomass
samples, and in subsequent hydrolysis, the yield of sugar pro-
duction (glucose and xylose) was 42.5%.

5.3.5 Plasma

Pretreatment with plasma uses ozone (O3) for the degradation
of the lignin present in lignocellulosic biomass to optimize a
subsequent hydrolysis process [106].

Plasma is capable of generating highly reactive compounds
such as hydroxyl radical (HO*) and hydrogen peroxide
(H2O2), which are capable of degrading cellulose to obtain
glucose [78]. Therefore, the pretreatment is capable of break-
ing the complex structure of lignocellulosic materials, leading
to their eventual bleaching and delignification [107].

Ravindran et al. [108] used non-thermal plasma technology
to pre-treat brewer spent grains. Variables such as voltage (22,
25, and 28 kV), solvent (acid, basic, and water), and time (5,
10, and 15 min) were taken into account. After a further

hydrolysis stage, the best-reducing sugar yield was obtained
for the biomass pretreated for 10 min in water at 28 kV. The
results showed that 162.9-mg/g brewer spent grain was ob-
tained for the pretreated material, while 75.94 mg/g was ob-
tained for the control.

5.3.6 Microwave pretreatment

This type of pretreatment focuses on irradiating lignocellulos-
ic materials withmicrowaves [109]. They accelerate chemical,
biological, and physical processes due to heat and wide colli-
sions caused by the vibration of polar molecules and move-
ment of ions [110].

The microwave pretreatment performance is highly depen-
dent on the dielectric properties of the lignocellulosic material
to be treated. The loss tangent (ratio of the dielectric loss factor
to the dielectric constant of the material) is normally calculat-
ed to measure the net efficiency of the microwave pretreat-
ment [111, 112].

In a study conducted by Zhu et al. [113], acid (H2SO4) and
basic (NaOH) pretreatments assisted by microwave were per-
formed on sugarcane bagasse. The results showed that the
microwave-assisted pretreatment was more effective than
those pretreatments that used conventional heating methods.
Yields for reducing sugars were 4 times higher for the
microwave-assisted method and performed in 5.7 times less
time.

5.4 Biological pretreatment methods

5.4.1 Microbial consortia

Microbial consortia are complex communities with a high
diversity of microorganisms that interact in numerous ways,
either cooperatively or competitively. In some cases, these
communities often carry out activities that cannot be per-
formed by a single microbe. Microbial consortium applica-
tions offer several advantages such as functional robustness,
efficient productivity, and high stability when biochemically
degrading a substrate [114, 115]. However, this technique has
the disadvantage that biomass degradation rates and physico-
chemical transformation of lignocellulose are easily affected
by several factors, such as physical (temperature, aeration,
substrate size), chemical (pH, residue composition, enzyme
activity), and biological (species of microorganisms and the
interaction between them) factors [116]. The microorganisms
that are normally used include bacteria Cellulomonas and
Cytophaga, and many fungi, such as Humicola, Penicillium,
Aspergillus, and Trichoderma, the last being one of the most
studied for its ability to secrete large amounts of extracellular
protein [117].

Brethauer and Studer [118] applied a microbial consortium
that included the fungi Trichoderma reseei, Saccharomyces
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cerevisiae, and Scheffersomyces stipitis in order to produce
ethanol using wheat straw as substrate; the results showed that
there was a yield of 67% in the production of ethanol, showing
that the technique used has a high potential as a versatile and
economical process for the generation of products based on
lignocellulosic biomass.

5.4.2 Use of fungal species

Fungi are characterized for being a heterotrophic species and
having cell walls composed of chitin. There are fungal species
such as white rot, brown rot, and soft rot, which are charac-
terized for their ability to degrade different components pres-
ent in lignocellulosic biomass. This technique has the advan-
tage that it does not require extensive use of chemical reagents
or high energy consumption; however, at an industrial level, it
has the disadvantage that it requires long incubation times
[119, 120].

White rot fungal are characterized by their ability to de-
grade lignin through enzymatic complexes that include a wide
variety of cellulolytic and ligninolytic enzymes [121, 122].
Brown rot fungi differ by their ability to degrade the cellulose
and hemicellulose contained in biomass by means of hydro-
gen peroxide, endoglucanases, and β-glucosidases [119]. Soft
rot fungi have the ability to degrade cellulose due to them
possessing a wide range of cellulolytic enzymes such as
endo-1,4-glucanase, exo-1,4-β-glucanase, and 1,4-β-glucosi-
dase [119]. In addition, they are capable of degrading lignin to
a lesser extent, due to the presence of enzymes such as lacases
[119, 123].

Dhiman et al. [124] used a fungal consortium (Pholiota
adiposa and Armillaria gemina) in order to produce enzymes
to perform a pretreatment over wet rice straw and wet sauce
that later underwent enzymatic hydrolysis and conversion to
bioethanol. The results obtained showed that the yields obtain-
ed in the hydrolysis of the pretreated biomass were 74.2% and
63.6% for the rice straw and the sauce respectively. The good
yield was confirmed later, by converting the hydrolyzate into
bioethanol with a yield of 72.4%.

5.4.3 Enzymatic pretreatment

Cellulose can be used as a source of carbon for the develop-
ment of a wide range of living organisms including fungi,
protists, bacteria, and plants; these organisms can transform
cellulose through cellulases, a synergistic enzyme complex
that facilitates the hydrolysis of cellulose and its subsequent
biological conversion to a usable source of energy [9, 125].
This system is mainly composed of three enzymes, called
endo-β-1,4-glucanase (EC3.2.1.4), cellobiohydrolase (CBH)
(EC3.2.1.91), and β-glucosidase (EC3.2.1.21). These act to-
gether to hydrolyze the β-1,4-glycosidic bonds of cellulose to
release fermentable sugars [126].

The application of enzymes to degrade lignocellulosic ma-
terials has several advantages, such as a reduced capital in-
vestment, low energy cost, low reagent dependence, and en-
vironmental friendliness, yet it keeps the limitation that it is a
process with low industrial profitability since the incubation
period is prolonged. In many cases, there is low efficiency in
the yields obtained [127, 128].

Ziemiński and Kowalska-Wentel [129] analyzed the co-
fermentation of a mixture of sugar beet pulp silage and vinasse
(3:1, 1:1, and 1:3 w/v) for the production of biogas. It was
found that enzymatic pretreatment with Celustar XL and
Agropect pomace of sugar beet pulp silage, before methane
fermentation, generated a partial degradation of the biomass
polysaccharides, significantly increasing biogas production.
The results showed that the highest biogas yield (765.5 mL/
g) was obtained from the 3:1 mixtures of sugar beet pulp
silage and pretreated vinasse. This had a 27.9% better perfor-
mance than its non-pretreated counterpart.

6 Generated products and their application
in various areas

6.1 Products in the bioenergy area

Currently, there is a growing demand on investigating differ-
ent lignocellulosic sources of low-cost pretreatment methods
and inoculum to produce environmentally friendly fuels
(Table 5). This is due to different factors such as the rising
cost of conventional fuels, global warming problems related to
CO2 emissions, and production rentability, among others
[140]. Usually, the concept of bioenergy refers to any gas,
liquid, or solid that was processed by biorefinery technolo-
gies; these have a tendency to be used as a renewable energy
source. One of the main advantages of biofuels is that their
source crop can sequester CO2 from the atmosphere due to the
increased biomass productivity. In total, 17.97 million tons
(carbon dioxide-equivalent) accumulative greenhouse gas
emission could be mitigated [141]. Crops can be used to pro-
duce energy through combustion methods without increasing
net CO2 emissions, due to the CO2 removed from the atmo-
sphere by the crops themselves during their growth process
[13].

Bioethanol and biodiesel are classic examples of this type
of energies [140]. However, in the last few years, the conver-
sion of lignocellulosic wastes into biohydrogen is being con-
sidered as a promising technology for the replacement of fossil
fuels [142]. This is principally because hydrogen production
by fermentation is a plausible alternative when compared with
other feedstocks, due to lignocellulose abundance and differ-
ent available pretreatment methods [143]. Biohydrogen could
easily be produced from agricultural wastes via fermentation
processes [144, 145]. Soltan et al. produced biohydrogen by a
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multi-fermentation of a complex mix of agroindustrial wastes
and achieved a net energy gain of 1.82-kJ/g feedstock.
Similarly, Soltan et al. achieved a net energy gain of 32.2 ±
4.2-kJ/kg feedstock using an integrated fermentation of a mix-
ture of 30:70 metals in mixed fruit peels (MFPS):paper mill
sludge (PMS). Besides the production of bioethanol, biodie-
sel, and biohydrogen, biogases likemethane and propane have
been generated from lignocellulosic wastes [146, 147].
Dahunsi et al. used an aerobic digestion of peanut hull to
produce biomethane and obtained a net energy gain of
303 kWh tons−1 [148]. It has been reported that by 2025,
biodiesel production and power generation could amount to
72.11 thousand tons and 1.59 billion kW h respectively. Due
to its higher energy recovery, the organic wastewater biogas
industry has the highest output and net profit, followed by the
waste incineration power generation industry [141]. Panigrahi
et al. produced biogas using an electrochemical pretreatment
on yard waste followed by a anaerobic digestion and obtained
a net energy gain of 4.75-kJ/g volatile solid (VS) [149]. These
results suggest that the conversion of lignocellulosic wastes
into biofuels can be a promising technology due to the high
net energy gain obtained by several studies [15, 16, 149].

6.2 Chemical products and their applications
beyond bioenergy

It is possible to obtain a variety of value-added chemical prod-
ucts using the lignocellulosic biomass from agroindustrial
wastes as a raw material due to their chemical composition
[150] (Table 6). Cellulose degradation generally entails glu-
cose production; meanwhile, hemicellulose depolymerization
can be used to produce pentoses like xylose; arabinose; and
hexoses, like mannose, glucose, and galactose [49, 56]. A
wide variety of aromatic compounds can be obtained from
lignin due to its molecular structure being abundant in pheno-
lic structures [162].

Some of the precursor compounds with six carbons in their
structure that can be obtained from biomass degradation

processes are citric acid, 5-hydroxymethyl-furfural, lysine,
gluconic acid, glucaric acid, and sorbitol. Similarly, for com-
pounds with five carbons, there are itaconic acid, furfural,
levulinic acid, glutamine acid, xylonic acid, and arabito. For
compounds with four carbons, there are succinic acid, fumaric
acid, malic acid, aspartic acid, acetoin, threonine, etc. Among
the obtainable precursor compounds with three carbons in
their structure, there are glycerol, 3-hydroxypropionate,
propionic acid, and malonic acid [163].

The precursor compounds have an inherent possibility of
generating a wide range of organic compounds [164]. Organic
acids are some of the most relevant value-added products that
can be synthesized from the previously mentioned precursor
compounds. Some commonly produced organic acids from
agroindustrial wastes are acetic acid, oxalic acid, lactic acid,
itaconic acid, succinic acid, butyric acid, and propionic acid
[163–165].

The production of biochemical compounds such as en-
zymes, vitamins, hormones, amino acids, and antibiotics from
agroindustrial wastes are commonly obtained from microor-
ganisms such as Aspergillus niger, Trichoderma reesei,
Halomonas sp, Bacillus subtilis, and Aspergillus fumigatus
[165, 166]. The industrial enzyme market is one of the most
prolific between the different chemical and biochemical com-
pounds that are marketed worldwide. It is projected that by
2023, the market for industrial enzymes should reach $ 7.0
billion from the value of $ 5.5 billion reached in 2018 [14].

There is also an uprising interest in the production of ca-
rotenoids using different lignocellulosic wastes as feedstock.
This is due to the high production cost of these through bio-
technological methods. Carotenoids have wide applications as
pigments in the food industry and in the pharmaceutical and
nutraceutical industries, and as additives in animal feed [167].

Among other compounds that are produced from
agroindustrial wastes, there are the chelating agents. These
work through bioabsorption mechanisms which are based on
a combination of electrostatic attraction mechanisms,
complexing processes, ion exchanges, and covalent bond

Table 5 Biofuels obtained from various agroindustrial wastes

Residue Product Pretreatment method Inoculum Reference

Sawdust Bioethanol Ionic liquid Saccharomyces cerevisiae [130]

Sugarcane bagasse Bioetanol and biogas Alcaline Saccharomyces cerevisiae [131]

Sugarcane bagasse Bioethanol Alcaline and hydrodynamic cavitation Scheffersomyces stipitis [132]

Rice straw Biogas Alcaline and extrusion Digested sludge from agroindustrial manure [133]

Rice straw Biohydrogen Enzymatic hydrolysis Thermoanaerobacterium thermosaccharolyticum [134]

Barley straw Biodiesel Acid Rhodococcus sp. [135]

Corn straw Biodiesel Alkaline and acid Mycobacterium smegmatis [136]

Wheat straw Biogas Organosolvents and alcaline Digested sludge from agroindustrial manure [137]

Wheat straw Biohydrogen Microbial consortium Digested sludge from agroindustrial manure [138]

Wheat straw Biodiesel Grinding, alcaline, and enzymatic digestion Trichoderma viride [139]
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forming [168]. Chelating agents can found application in wa-
ter cleaning, since they can remove heavy metals and dyes
through bioabsorption mechanisms [169].

6.3 Material and material additive production

In recent years, lignocellulosic biomass has been attributed
with a high potential for obtained value-added materials
with a wide range of applications (Table 7), this due to
their qualities of being renewable, recyclable, and sustain-
able; however, they are accused of having an important
impact on environmental contamination [140, 183].
Currently, biotechnological advances together with nano-
technology and engineering have generated interest in do-
ing research focused on the use of lignocellulosic biomass
for the design of materials that are multifunctional for the
bio- and non-bio-sectors of the modern world. This new
direction is socially acceptable and commercially viable,
and moreover, it possesses an important impact on indus-
trial societies for the development of a sustainable global
economy [7]. One of the most representative types of ma-
terials obtained from lignocellulosic sources lies in the
field of biodegradable polymers. These kinds of materials
can reduce oil consumption and help reduce problems
caused by plastic contamination, since they are easily de-
gradable in soils and marine environments [164]. When
cellulose, hemicellulose, and lignin have been isolated,
they can be incorporated into a wide variety of materials.
There are three main routes through which polymeric ma-
terials can be obtained from lignocellulosic materials. The
first route involves the use of biorefinery waste streams or
paper industry wastes. The second route refers to direct use

of the biomass cell walls; therefore, cellulose, hemicellu-
lose, and lignin must be isolated to subsequently convert
them into final products. The third route is based on hex-
oses and pentoses obtainment from lignocellulosic mate-
rials for their further processing into a wide variety of
compounds, additives, and biopolymers [12, 184, 185].
Depending on the methodology, a wide range of com-
pounds can be developed. They include materials such as
bacterial cellulose, keratin, polyhydroxyalkanoate (PHA),
chitosan, and polylactic acid (PLA), among other synthetic
counterparts [164, 186] (Table 7).

7 Conclusions and perspectives

Worldwide, there is currently a problem related to
agroindustrial waste generation. This is due to it having a
negative impact on the environment. Therefore, the contin-
uous search for alternatives that help mitigate this problem
is essential. As discussed above, the main pretreatment
methods for lignocellulosic wastes, i.e., chemical, physi-
cal, physicochemical, and biological methods, are looking
for an efficient transformation of lignocellulosic biomass
into value-added products. Several agricultural residues
such as rice, sugarcane, soybean, corn, wheat, cotton, pine-
apple, sorghum, cassava, barley, banana, oil palm, and
bean, among other residues from the wood industry, as
well as municipal cellulosic solid wastes, could be used
as raw materials to produce many different products.
However, each technology has its own associated advan-
tages and disadvantages, depending on the source of bio-
mass, the methods used, and the desired final product. The

Table 6 Value-added chemical products obtained from lignocellulosic agroindustrial wastes

Residue Product Pretreatment
method

Application Reference

Coconut, cassava, and soya flour Lycopene Biologic Food industry [151]

Soya stover Carotenoids Extrusion and
fungal hydrolysis

Pharmaceutical, biotechnological, and
chemistry industry

[152,
153]

Wheat bran and corncobs Fumaric acid and
itaconic acid

Fungal hydrolysis Pharmaceutic and chemistry precursors [154]

Corncobs Furfural Grinding Pharmaceutic and chemistry precursors,
plastic and polymer industry, refinery

[155]

Rice straw Lignolytic
enzymes

Fungal hydrolysis Lignocellulosic material treatment [156]

Wheat rice hay and bran, sugarcane bagasse, peanut
peel, birch, and beech branch

Cellulolytic
enzymes

Fungal hydrolysis Lignocellulosic material treatment [157]

Corn stover L-Lysine Acid Food industry [158]

Corn stover Citric acid Acid Pharmaceutic, chemistry, food, cosmetic,
and agricultural

[159]

Cottonseed meal and corn cob D-Lactic acid Hydrolysis without
pretreatment

Pharmaceutic, cosmetic, and chemistry [160]

Corn cob Succinic acid Acid Chemistry, pharmaceutics, food,
cosmetic, and polymeric industry

[161]
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advantages of the lignocellulosic wastes are that such ma-
terials have a great potential to produce biomolecules,
chemicals products, and biofuels to address the current
energy crisis. Within the bioenergy area, a great potential
is suggested for energy production from pretreated bio-
mass, due to the obtainable high net energy gain values.
There are substantial prospects for economic growth due to
the wide range of chemical and biochemical compounds
that are possible to produce after a pretreatment process
of lignocellulosic feedstock. The enormous amount of ob-
tainable compounds could directly benefit several different
industries (textile, materials, biomedical, pharmaceutical,
etc.), in as much as many of those use some of the obtain-
able value-added products as raw materials. Among the
main limitations distinguished from the use of lignocellu-
losic wastes, there are the excessive use of water, energy
consumption, and toxic reagents. In addition, it is impor-
tant to take into consideration the collection, transport, and
handling of lignocellulosic wastes in a cost-effective man-
ner. Despite the multiple possibilities of using lignocellu-
losic biomass, more research is still required, specially to
improve the efficiency of the existent pretreatment
methods, reduce the costs associated with the processes,
and reduce the product ion of toxic compounds.
Moreover, depending on the geographic locations and sea-
son, changes in agroindustrial wastes price and its supply
could emerge. This could affect production costs and effi-
ciency of the overall process. Moreover, many literature
and preliminary studies are made in a small scale but there
is still an enormous gap between the laboratory preliminary
results, the pilot scale, and finally, the industrial scale.
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