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Abstract
The polysaccharides in the primary plant cell wall are a renewable energy source for biofuel production. However, these
polysaccharides are not readily available for bioconversion, and large enzyme sets are required to deconstruct them. Here, we
aimed to improve the glucan conversion using recombinant hemicellulases and esterase as a treatment in exploded and sugarcane
bagasses (SCB), followed by the addition of commercial CBH I to prevent its inhibition by hemicellulases products. A high
secretion level of the recombinant enzymes was observed on SDS-PAGE. The highest activities were verified at a temperature
and pH ranging from 40 to 55 °C and 4.5 to 6.0, respectively. The released reducing sugar analysis showed that all enzymes act
better on SCB, with xylanase C (XynC) presenting the best activity (0.54 U/mg of protein). The high-performance liquid
chromatography (HPLC) analysis demonstrated that 24 h of pretreatment was enough to reach maximum glucan conversion.
The best synergy was achieved between XynC and CBH I on SCB, 1.4%. All results showed that the enzymes acted better on
SCB, which can be related to the biomass composition and its molecular structure. The enzymatic pretreatment of SCB with
XynC was essential to improve the glucan conversion by CBH I.
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1 Introduction

The change from a fossil-based energy matrix to a renewable
one is increasingly necessary. The use of feedstock waste as an
alternative energy source has been the subject of several stud-
ies on biofuel research. In this context, bioethanol, a form of
renewable energy produced from biomass, has received great-
er attention. The plant cell wall, a structure rich in complex
polysaccharides, can be degraded into fermentable monosac-
charides and subsequently converted into ethanol via fermen-
tation process [1, 2]. In Brazil, sugarcane is the most important
biomass, and the bagasse generated after its processing has
been seen as a source to enhance ethanol production.

The main constituent of sugarcane primary cell wall is
glucuronoarabinoxylan, a hemicellulose polymer consisting
of β-1,4-xylose in the main carbon chain, with the addition
of arabinose and glucuronic acid side chains [3]. Other com-
ponents are cellulose, xyloglucan, mannan, glucomannan, and
pectin, but the last four components represent a small part of it
[4]. Cellulose is the most abundant polymer in nature and the
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most relevant for the 2G ethanol industry. It consists of thou-
sands of β (1→4)-linked D-glucose monomers, which will be
directed for conversion into ethanol by yeasts [5–7]. Another
polymer considered unique to this plant group is β-glucan,
whose main chain consists of glucose, containing β-1-3 and
β-1-4 bonds, which is involved in cell growth [8]. Although
less mentioned, the secondary cell wall is represented in large
amounts on grasses, with lignin as the main component,
whose monomers are coniferyl and sinapyl alcohols, and p-
coumaryl alcohol in low amounts. Its main function is to pro-
mote the plant cell wall rigidity by filling up the pores within
the polysaccharide matrix [8].

In order to convert biomass into a more accessible and reac-
tive form, pretreatment technologies have emerged. Their main
goals comprise lignin and hemicellulose disruption (or even the
removal of them), reduction of cellulose crystallinity, and in-
crease in the porosity of these materials [9]. However, conven-
tional pretreatment methods have technical problems such as the
high cost of reagents, loss of sugars that could be used in sac-
charification, and formation of environmentally harmful com-
pounds and products toxic tomicroorganisms used in subsequent
fermentation processes [10, 11]. After pretreatment, the biomass
is ready for the enzymatic saccharification process. In this step,
the biomass is treated with cellulolytic, hemicellulolytic, and
pectinolytic enzymes. They attack specific polysaccharides in
the biomass, which remained unhydrolyzed after physico-
chemical pretreatments, improving the release of sugars that will
be used in the fermentation process.

However, many sugars released by the action of
hemicellulases can inhibit the action of cellulases, which are
the main ones in the lignocellulosic biomass conversion pro-
cess. Therefore, enzymes that can work synergistically and
tolerate diverse types of molecules are either bioprospected
from nature or produced via genetic manipulation. Another
strategy, for biochemically uncharacterized enzymes, is the
separation of enzymatic pretreatment between hemicellulases
and cellulases. This last strategy was widely used for commer-
cial enzymatic blends. Novozymes, for example, marketed the
cellulase cocktail, Cellic® Ctec 2, and suggested its comple-
mentation with Cellic® Htec 2, a hemicellulase cocktail. Only
recently are state-of-the-art cocktails being marketed with all
enzymes in one blend [12–14].

Filamentous fungi are the preferred source of industrial
enzymes because of their excellent capacity for extracellular
protein secretion with a wide spectrum of action and substrate
specificity [15]. They are one of the largest groups of eukary-
otes that are natural decomposers of organic matter and the
primary decomposers of most decayed plant material [16, 17],
as they have the enzymatic repertoire necessary for the
decomposition of the plant cell wall. Therefore, improv-
ing the production of fungal enzymes is of great interest
in biotechnology.

In this context, the heterologous protein expression by mi-
crobial systems is attractive because of the fast growth on low-
cost substrates; they are genetically and physiologically well
characterized, and a large number of cloning vectors and host
strains are widely available [18]. Furthermore, the use of fila-
mentous fungi as hosts for heterologous protein expression
has advantages, as these microorganisms secrete high quanti-
ties of protein and have the apparatus for efficient folding and
post-transduction modifications [19]. Thus, this work aimed
to evaluate the use of an efficient enzymatic cocktail, with
recombinant hemicellulases and esterase, prior to the action
of a commercial cellulase. The effect of this enzymatic pre-
treatment was evaluated for sugarcane bagasse and steam-
exploded sugarcane bagasse.

2 Materials and methods

2.1 Microorganism strain cultivation
and maintenance

The fungal strains Talaromyces funiculosus ATCC 62998,
Aspergillus niger ATCC 1015, and Trichoderma reesei
ATCC 56765 (American Type Culture Collection, Manassas,
VA) were cultured in potato dextrose agar medium (PDA –
Difco™) at 30 °C until sporulation. In addition, the auxotro-
phic mutant Aspergillus nidulans A773 was cultured in min-
imal medium (MM), supplemented with pyridoxine, as previ-
ously described by Segato et al. [20]. For filamentous fungi
maintenance, the spores were collected from Petri dishes,
transferred to a solution of glycerol 20% and lactose 10%,
and stored at − 80 °C. Shot® TOP10 chemically competent

Table 1 Recombinant proteins and the predicted gene parameters

Organism Function Protein accession no. Cazy EC Locus aa MW kDa Temp °C pH

Talaromyces funiculosus Endo-1,4-xylanase CAC15487 GH11 3.2.1.8 XynC 223 22.3 55 5–6

Trichoderma reesei Alpha -L-arabinofuranosidase CAA93243 GH54 3.2.1.55 abf1 500 49.1 50–55 5.5–6.5

Aspergillus niger Endo-1,5-alpha-L-arabinanase AAA32682 GH43 3.2.1.99 abnA 321 32.3 55 5.5–6

Talaromyces funiculosus Ferulic esterase CAC85738 CE1 3.1.1.73 FaeA 345 34 40 5.5–6.5

GH glycoside hydrolases, CE carbohydrate esterases, aa amino acids, temp temperature, EC enzyme commission number, MW molecular weight

492 Biomass Conv. Bioref. (2022) 12:491–499



E. coli (Invitrogen) were inoculated into plates containing LB
medium and maintained at 37 °C until visualization of colo-
nies. For E. coli maintenance, one colony was propagated in
liquid LB medium, 120 rpm, and grown overnight at 37 °C,
and then 500 μL of the bacterial suspension was added to
500 μL of 80% glycerol solution and stocked at − 80 °C.

2.2 Genomic DNA extraction, plasmids, and gene
cloning

For the genomic DNA (gDNA) extraction, the fungal strains
(Table 1) were grown in MM-glucose media at 30 °C for 24 h.
Themycelial mass was filtered, and 50mgwere frozen in liquid
nitrogen and ground with the pistil and mortar followed by the
addition of 600 μL of lysis buffer (10% EDTA 0.5 M and 1%
SDS). The suspension was heated at 68 °C for 10 min and
centrifuged at 13,000 g for 5 min, and the supernatant was
transferred into a new tube. A volume of 40 μL of KOAc
5 M was added, mixed by inversion, and incubated on ice for
10 min, followed by new centrifugation at 13,000 g for 5 min.
The supernatant was transferred into a fresh tube, and 2.5 vol-
umes of EtOH 95% were added, followed by centrifugation
step as previously described. The pellet was washed twice with
EtOH 70%. The precipitate was dried at room temperature and
then resuspended in 50 μL of TE (Tris-HCl 10 mM, EDTA
1 mM, pH 8.0) containing 50 mg/mL of ribonuclease A.

The gDNA (around 50 ng/μL) were used to amplify the
genes of interest (Table 1), with the touchdown polymerase
chain reaction (PCR) using Taq DNA polymerase (Sigma).
The cycle parameters were as follows: denaturing at 95 °C
for 40 s, annealing at 60 °C for 30 s, and extension at 72 °C
with the time varying according to the fragment size. This
previous cycle was repeated with the exception that the an-
nealing temperature was decreased in 2 °C each cycle until
reaching 52 °C and then 28 cycles of 95 °C for 30 s, 52 °C for
30 s, and 72 °C with the time varying according to the frag-
ment size, followed by a final extension at 72 °C for 10 min.
All fragments carry a NotI and XbaI restriction sites that allow
cloning the genes in the correct orientation into pEXPYR [20].

The cloning of XynC and abfB genes was reported in previous
studies by Gonçalves et al. [21].

2.3 Transformation and protein heterologous
expression

The successful cloning into pEXPYR was confirmed by se-
quencing. The positive plasmid for the gene of interest was
used to transform A. nidulans A773 as describe by Segato
et al. [20]. Positive transformants were selected by the rever-
sion in auxotrophy marker allowing to grow up in absence of
uracil and uridine. Approximately 107–108 spores/mL were
inoculated in 500 mL of liquid MM supplemented with pyri-
doxine and 5%maltose distributed into stainless steel cafeteria
trays and incubated in stationary conditions at 37 °C for
2 days. The experimental control was carried out with the

Table 2 Determination of
apparent enzymatic activity in
different substrates at 45 °C

Apparent enzymatic activity

Function Protein Substrate U/mg prot

CBH I Megazyme CBHI pNP beta cellobioside 0.0074

Endo-1,4-xylanase XynC Xylan beechwood 670.3

Alpha-L-arabinofuranosidase Abf1 pNP arabinofuranoside 33.05

Endo-1,5-alpha-L-arabinase AbnA Arabinan from sugar beet 2.7

Feruloyl esterase FaeA Wheat arabinoxylan insoluble 3.25

*U/mg protein = μmol ferulic acid, xylose e arabinose released per minute per mg of extracellular protein

Fig. 1 Analysis of recombinant proteins in SDS-PAGE. (W) molecular
weight marker, (1) xylanase C (XynC), (2) arabinofuranosidase 1 (Abf1),
(3) arabinanase (AbnA), (4) feruloyl esterase (FaeA), and (5) A773 +
pEXPYR
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auxotrophic mutant transformed with an empty pEXPYR vec-
tor. The protein expression was checked by the supernatant
culture analysis in sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE).

2.4 Enzymatic activity determination

The arabinofuranosidase activity quantification was per-
formed using Kersters-Hilderson method [19, 22].
Arabinanase and xylanase activities were determined using
the DNS method with some modification [23]. For the first
assay, 25μL of 0.25% p-nitrophenyl-arabinofuranoside (pNP-
ara) was used as the substrate in 25 mM sodium acetate buffer
at pH 6.0, and 25 μL of enzyme solution were added. The
reaction mixture was incubated at 45 °C for 10 min and
stopped with 50 μL of 0.2 M Na2CO3. The p-nitrophenol
(pNP) formed was quantified by a spectrophotometer at
405 nm. The standard curve was constructed with (pNP)

(0.09 to 0.54 μmols). The activity unit (U) was defined as
the amount of enzyme able to release 1 μmol of pNP/min/
mL. The assay for arabinanase and xylanase was carried out
at 45 °C for 10 min. The reaction mixture consisted of 25 μL
of 1% debranched arabinan and xylan from beechwood, re-
spectively, in 25 mM sodium acetate buffer, pH 6.0, and
25 μL of enzyme for and stopped with 50 μL of DNS. The
absorbance was read at 540 nm. Arabinose and xylose were
used as the standard, and the activity unit (U) was defined as
the amount of enzyme that releases 1 μmol of reducing sugar/
min/mL, under the assay conditions.

For the feruloyl esterase activity determination, the re-
action mixture consisted of 25 μL of 1% insoluble wheat
arabinoxylan at pH 6.0 and 25 μL of enzyme solution.
The reaction mixture was incubated at 45 °C for 10 min.
Then, the mixture was centrifuged and the supernatant
used for the activity determination. The spectrophotome-
ter measurements were performed at 310 nm using a

Fig. 2 Effect of temperature in the enzyme activity of xylanase C (XynC), arabinofuranosidase 1 (Abf1), arabinanase (AbnA), and feruloyl esterase
(FaeA)
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standard curve of ferulic acid. The unit of enzyme activity
was defined as the amount of enzyme capable of releasing
1 μmol of product/min/mL [24].

A blank reaction was performed for each enzymatic assay. The
protein concentration was determined at 595 nm according to
Bradford [25], using bovine serum albumin (BSA) as standard.

2.5 Effect of temperature and pH on the recombinant
enzyme activity

The optimal temperature and pH were determined at different
temperatures (25 to 100 °C) and pH (2.5 to 9.5). The enzy-
matic reaction was performed as previously described above.

2.6 Biomass pretreatment

The sugarcane bagasse explosion pretreatment was optimized by
the Laboratório Nacional de Biorrenováveis (LNBR), as de-
scribed by Gouveia et al. [26]. In summary, the sugarcane ba-
gasse (SCB) was subjected to steam explosion in 5000 L reactor
for 7 min at 200 °C. This material was thoroughly washed (until

the total removal of soluble solids from the hydrolysis), air dried,
and properly stored. A small amount of this material (3 different
samples) was characterized by their chemical composition. The
hydrolysis products from SCB were evaluated by high-
performance liquid chromatography (HPLC).

2.7 Enzymatic pretreatment

The enzymatic lignocellulosic biomass saccharification was
performed in duplicate as described by Selig et al. (2008),
from which the procedures for calculating the amount of bio-
mass, the volume of buffer, as well as the concentration of
azide used to conduct the experimental assay were taken
[27]. Thus, the total amount of SCB and SSE bagasse used
in this experimental assay was 0.1 g and 0.9 g, respectively,
containing approximately 1% glucan content, based on the
composition of each biomass.

The enzymes chosen to perform the hydrolysis experi-
ments are the main enzymes involved in the degradation of
lignocellulosic biomass. In this way, the catalysts applied were
endo-1,4 β-xylanase (XynC), α-L-arabinofuranosidase

Fig. 3 Effect of pH in the enzyme activity of xylanase C (XynC), arabinofuranosidase 1 (Abf1), arabinanase (AbnA), and feruloyl esterase (FaeA)
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(Abf1), feruloyl esterase (FaeA), endo-1,5–α–L–arabinanase
(AbnA), and the commercial cellobiohydrolase I (CBH I)
(Table 1). All of them were used in different combinations.

The enzymatic load suitable for the biomass saccharifica-
tion was adjusted according to previous experiments, carried
out on Eppendorf scale, in which different concentrations
were tested, without the final reaction volume being changed,
the reaction buffering being guaranteed, and the effect of the
saccharification being maintained. The experiment was then
scaled to the final volume of 5 mL. In addition, the biomass
hydrolysis time was chosen according to the preservation time
of the catalytic activity of XynC, the main enzyme that guar-
anteed the best biomass digestibility effect (data not shown).

The reaction mixture consisted of 100 μL of sodium azide
2%, to avoid microbial contamination, and 0.75 mg of total
protein and buffered in 5 mL of sodium acetate 25 mM, which
was incubated at 45 °C, for 24 or 48 h. Then, the samples were
centrifuged (10 min, 13,000 g), and the pellet was dried at
100 °C. All samples were weighed, and 1mL of the total volume
(5 mL) was filtered on a Millipore filter of 0.22 μm. The filtrate
was analyzed using HPLC in an HPX-87p column (Bio-Rad,
Sunnyvale, CA) with a RI detector, flow rate of 6 mL/min at
85 °C, water as themobile phase, and 10μL of injection volume.

After this process, the commercial CBH I was added in all
tubes in a volume of 4 mL under the same conditions as
previously described. For each enzymatic reaction, a blank
was performed. Arabinose, xylose, cellobiose, and glucose
were used as the standard pattern.

3 Results and discussion

3.1 Protein expression

The expression of XynC, Abf1, AbnA, and FaeA kept high
activity levels at 45 °C (Table 2). The commercial enzyme
CBH I showed an activity of 7.4 U/g of protein at 45 °C.
The SDS-PAGE of the expressed proteins showed a variation

in the amount of secreted enzymes (Fig. 1). The variable num-
ber of gene copies that integrated into the host genome and the
respective gene integration sites might be responsible for this
variation. This factor, sometimes, can also lead to the non-
expression of desired proteins [28].

Another biological phenomenon guaranteed by the expres-
sion system used here is the glycosylation, a post-translational
process that occurs first in the endoplasmic reticulum and later
in the Golgi complex. This process is described in the litera-
ture as being critical to maintaining the biological activity of
the proteins [29]. All enzymes studied kept high activity level,
showing that the expression system used here ensured the
correct protein folding and satisfactory levels of glycosylation
and allowed the perfect catalytic functioning of the proteins.

Fungi are natural decomposers of organic matter and carry a
vast enzymatic repertoire. Many of the proteins produced com-
mercially for the plant cell wall hydrolysis are from fungi, as the
case of the enzyme CBH I from T. longibrachiatum used in this
study [30]. Furthermore, themicroorganisms providing the genes
in this study are filamentous fungi recognized in the literature for
their high ability to secrete potent cellulases (T. reesei,

Fig. 5 Reducing sugars released from hydrolysis of the sugarcane
bagasse (white) and steam-exploded sugarcane bagasse (black) 1%
(w/v) for 1 h after pretreatment with hemicellulases and esterase enzymes

Fig. 4 Chemical composition of the sugarcane bagasse (SCB) and steam-exploded sugarcane bagasse (SSE). Sum of the soluble and insoluble parts
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T. funiculosus) and hemicellulases (A. niger) [31]. For instance,
T. reesei has become the major cell factory in the enzyme indus-
try and the benchmark organism for the production of cellulases
with significant cellulose degradation ability [32].

3.2 Temperature and pH effect

The optimum pH and temperature for all enzymes were
evaluated in order to proceed to the hydrolysis

Fig. 6 Amount of glucan released in g/L from the sugarcane bagasse (SCB) and steam-exploded sugarcane bagasse (SSE) for 24 and 48 h after
enzymatic pretreatment, individually or in combination, and treated with a commercial CBH I
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experiments. The most suitable temperature to keep a
relatively high activity of all enzymes and also to pre-
serve the enzyme activity overtime was 45 °C (Fig. 2).
The highest levels of all enzyme activities were ob-
served under the pH 6.0 (Fig. 3).

3.3 Physical biomass pretreatment

Comparing the two sugarcane bagasse used in this research, the
SCB showed cellulose as a predominant macromolecule with
43.8% in its composition. Other macromolecules were represent-
ed by 25.8% of hemicellulose, 22.1% of total lignin, 6.1% of
extractives, and 1.4% of ashes (Fig. 4). The sugarcane bagasse
pretreated with steam explosion (SSE) had an increased propor-
tion of cellulose to 51.7–58.4% and lignin to 32–34.3%, but the
hemicellulosic fraction decreased to 6.5–8.9% (Fig. 4).

A range of biomass pretreatments has been proposed to
make the complex plant cell wall structure more accessible
to the enzymatic bioconversion processes. An important strat-
egy is the steam explosion, a physical treatment that increases
the biomass surface area and consequently improves further
treatments, such as enzymatic hydrolysis [20]. Many authors
have shown that a sequential biomass treatment is necessary
for the enzymatic hydrolysis of sugarcane bagasse and
bioenergy generation [3, 33, 34].

3.4 Enzymatic cocktail

The DNS analysis of each recombinant enzyme tested on
the sugarcane bagasse showed a good performance of
XynC, followed by FaeA. For the SSE, the best enzymatic
activity was for XynC, followed by FaeA. Comparing the
enzymatic pretreatment of two studied biomass, the SCB
yielded more reducing sugars than exploded bagasse
(Fig. 5). This difference was expected since the explosion
pretreatment removes part of hemicellulose and cellulose
compared with SCB (Fig. 4).

The HPLC analysis showed a high yield of released glu-
cose which can be correlated with the enzymatic pretreatment
with XynC helping the commercial CBH I to access its spe-
cific substrate, cellulose. However, the hemicellulases’ com-
bined action did not improve this access. The hydrolysis time
is essential for the increase in the release of sugar by both
bagasses, SSE and SCB. Because of structural changes caused
by the explosion pretreatment, less glucose yield using SSE
was observed (Fig. 6).

The release of arabinose was not observed in the experi-
mental assay. Since recombinant arabinanase and
arabinofuranosidase were used, the absence of arabinose was
probably because of the low arabinan concentration in this
biomass or by the low access to the branched arabinoxylans
considering the sugarcane bagasse architecture.

The low xylose detection can be explained based on
the xylanase action mechanism. This enzyme attacks the
x y l a n b a c k b o n e f o rm i n g x y l o s e , b u t a l s o
xy loo l i gosaccha r i de s , such as xy lob ios e and
xylotrioses, whose standards were not used in this
experimental assay.

The high xylan concentration in this biomass favored
the endoxylanases’ participation in the bagasse decon-
struction. These data were confirmed by the combinato-
ry analysis, where XynC played a crucial role in the
glucose release observed by HPLC. The feruloyl ester-
ase participation could also contribute to the hydrolysis,
as observed by De Souza et al. [35].

4 Conclusion

It is clear that other enzymes are necessary to create an
efficient cocktail for an enzymatic deconstruction of the
biomass. The data obtained here confirm the hierarchical
enzymatic attack characteristic of the biomass decon-
struction. The action of esterases and hemicellulases pri-
or to the cellulases favored the exposition of the cellu-
lose backbone, leading to an increase of glucose re-
leased by the last group of hydrolases. As the energy
from fossil compounds is not renewable and highly pol-
luting, alternative energy sources emerge as an attempt
to reduce the dependence on fossil fuels. The use of
energy from biomass is one favorable cost-benefit op-
tion to try to overcome these two big universal prob-
lems: energy shortages and nature pollution.
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