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Abstract
In the current study, anaerobic digestion method efficiency on biogas production and chemical oxygen demand (COD) degra-
dation was assessed through a sequence of laboratory-scale batch experimentations to compute the role of chosen process
parameters, viz., solid concentration (5–15%), pH (5–9), temperature (30–60 °C), and co-digestion (0–40% of poultry manure).
Biogas production and COD degradation were significantly dependent on the selected process parameters with independent
conditions to accomplish active performance of the process. Central composite design (CCD)-based response surface method-
ology (RSM) was adopted for evaluation and optimizing of the combined performance of system considering two responses.
Among various combinations, it was observed that solid concentration of 7.38%, pH value as 7, temperature at 48.43 °C, and co-
digestion as 29% produce biogas of 6344 ml and COD degradation as 38%. Confirmation experiment performed shows a
deviation of 4.93% maximum between the predicted and experimental results.

Keywords Anaerobic digestion . Biogas production . Multi-objective optimization . Alternative energy . Food waste . Soft
computing

1 Introduction

Energy and resource shortage is one of the most significant
problems faced by the world nowadays. The rising price of
petroleum products and increasing attention regarding envi-
ronmental impacts together with the fossil fuel depletion have
prompted considerable research to identify renewable and al-
ternative fuel sources [1, 2]. Therefore, researchers concen-
trate on finding alternative energy sources and employing

them to reduce adverse effects. Most of the studies shown in
the literature on renewable energy sources have focused on
different waste energy sources. These wastes include used
tires, trees, plastics, municipal solid wastes, etc. These wastes
have several adverse impacts on environment and living or-
ganisms including human beings. These impacts can be re-
duced when they are transformed into fuel. Out of all the
available wastes, food waste contains a considerably large
quantity of organic matter, which can be fermented anaerobi-
cally to produce biogas [3, 4].

The food waste comprises un-consumed food items and
leftovers during the preparation of foods from houses, hotels,
institutional sources like college/school cafeterias, and indus-
trial sources like factory lunchrooms [5]. In 2011, a report
published on global food waste by UN Agriculture
Organization stated that nearly one-third of the total food pre-
pared for human consumption goes as waste that accounts for
1.3 billion tons annually [6]. Usually, food waste contains 69–
93% of moisture, 85–96% of volatile solids (VS), and C/N
ratio of 14.6–18.3 [5]. Because of the higher moisture content
in food waste, biochemical processes like anaerobic digestion
are more suitable when compared to thermochemical process-
es like gasification and combustion [7, 8]. Anaerobic diges-
tion process involves the disintegration and stabilization of
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complicated organic matter by a group of microorganisms
leading to energy-rich biogas which can be used as alternative
energy for the substitution of fossil fuel sources [9, 10].
Higher biogas production can be achieved through a correctly
functioning anaerobic digestion system for fulfilling societal
energy demands along with the production of high-quality
fertilizer as a by-product [11, 12]. Various factors affect the
performance and design of an anaerobic system that can be
identified as reactor design, feedstock characteristics, and op-
erating conditions [5, 7], and hence these parameters have to
be optimized for effective biogas production.

A few studies have been carried on biogas production with
optimization methodologies such as Taguchi’s approach,
genetic algorithm (GA), grey relational approach (GRA),
artificial neural network (ANN), and principal component
analysis (PCA), etc. [13–17]. Kuen-Sheng Wang et al. [18]
studied the suitability of hybridization of Taguchi’s
methodology and RSM for predicting and optimizing the
bio-hydrogen production from cow manure. Experimental
trials were performed based on L18 orthogonal matrix, and
CCD-based RSM design was applied for analyzing the
outputs and optimization procedure. Qdais et al. [19] evaluat-
ed the biogas production and optimized the process factors
pH, total solids, temperature, and total volatile solids using
ANN technique. The model consists of two hidden layers
for predicting the methane production having 0.87 correlation
coefficient. Karichappan et al. [20] performed experimental
trials for studying the biogas production using four parameters
varied with three levels considering Box-Behnken methodol-
ogy in RSM, with parameters and ranges such as pH (4–10),
temperature of reactor (25–45 °C), alkalinity during the pro-
cess (6–24%), and the time period of feedstock retention (6–
30 days). The results obtained were evaluated through analy-
sis of variance (ANOVA) and empirical model of second order
for studying the process parameters interactive effects on the
yield of biogas.

In this work, an effort was made to improve the biogas
production and COD removal efficiency with good reproduc-
ibility levels. The process parameters taken in this study are
solid concentration, pH, temperature, and co-digestion. A

Fig. 1 Experimental setup [16]

Table 1 Variables and their ranges considered for trials

Factors Levels Variables

Solid concentration (X1) − 1 5

0 10

+ 1 15

pH (X2) − 1 5

0 7

+ 1 9

Temperature (X3) − 1 30

0 45

+ 1 60

Co-digestion (X4) − 1 0

0 20

+ 1 40
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large number of input factors parameters involved in the di-
gestion process make it extremely complicated to perform a
traditional method of optimization by studying the effect of
one variable at a time. For this purpose, the response surface
methodology was adopted in this investigation to optimize the
parameters involved in the anaerobic digestion process.

2 Materials, experimentation, and methods

2.1 Feedstock and experimental setup

Food waste (FW) is a highly desirable substrate for anaerobic
digestion with regard to its higher biodegradability and
biogas/methane yield. This contains a substantially large
amount of organic matter, which can be processed anaerobi-
cally to produce biogas. Also, the nutrient content analysis
showed that the food waste contained well-balanced nutrients
for anaerobic microorganisms [5]. FW collected from the stu-
dent hostel mess of NIT Calicut, India, was used for the ex-
periments. The waste collected was shredded into particles to
increase the surface area available for microbial activities.
Water was added to the waste to prepare the substrate with
desired solid concentration, and 1 N NaHCO3 solution was
added to achieve the desired pH. C/N ratio of the feedstock
was varied by co-digesting 10–30% of poultry manure with
food waste before feeding into the digester. The poultry ma-
nure (PM) used in this study was taken from Regional Poultry
Farm, Chathamangalam. Experiments were conducted in a
laboratory-scale anaerobic batch reactors made up of glass
as shown in Fig. 1. The reactor had a total and effective work-
ing volume of 2 l and 1.8 l, respectively. The daily biogas
production was measured with an inverted measuring glass
cylinder filled with water which was partly immersed in water
bath.

2.2 Multiple parameter optimization

A statistical tool, RSM, was used for modeling the experimen-
tal procedure by performing both analyses, by modeling, by
optimizing, and by identifying the relationship that was sup-
posed to be between the outputs and inputs [21–23]. In most
of the problems in RSM, the relationship that exists between
the dependent and independent factors was unknown [24, 25].
Consequently, the initial procedure in RSM is to determine an
appropriate efficient relationship between the “x” set of inde-
pendent input variables and “y” set of dependent output vari-
ables. If the output variable can bemodeled well bymeans of a
linear function of input factor, the function is purely a model
with first order [21].

y ¼ β0 þ β1x1 þ β2x2 þ…þ βkxk ð1Þ

Table 2 Central composite experimental design matrix

Run Coded values Real values

X1 X2 X3 X4 X1 X2 X3 X4

1 − 1 − 1 − 1 − 1 5.00 5.00 30.00 0.00

2 − 1 − 1 − 1 + 1 5.00 5.00 30.00 30.00

3 − 1 − 1 + 1 − 1 5.00 5.00 60.00 0.00

4 − 1 − 1 + 1 + 1 5.00 5.00 60.00 30.00

5 − 1 0 0 0 5.00 7.00 45.00 15.00

6 − 1 + 1 − 1 − 1 5.00 9.00 30.00 0.00

7 − 1 + 1 − 1 + 1 5.00 9.00 30.00 30.00

8 − 1 + 1 + 1 0 5.00 9.00 60.00 0.00

9 − 1 + 1 + 1 + 1 5.00 9.00 60.00 30.00

10 0 − 1 0 0 10.00 5.00 45.00 15.00

11 0 0 − 1 0 10.00 7.00 30.00 15.00

12 0 0 0 − 1 10.00 7.00 45.00 0.00

13 0 0 0 0 10.00 7.00 45.00 15.00

14 0 0 0 0 10.00 7.00 45.00 15.00

15 0 0 0 0 10.00 7.00 45.00 15.00

16 0 0 0 0 10.00 7.00 45.00 15.00

17 0 0 0 0 10.00 7.00 45.00 15.00

18 0 0 0 0 10.00 7.00 45.00 15.00

19 0 0 0 + 1 10.00 7.00 45.00 30.00

20 0 0 + 1 0 10.00 7.00 60.00 15.00

21 0 + 1 0 0 10.00 9.00 45.00 15.00

22 + 1 − 1 − 1 − 1 15.00 5.00 30.00 0.00

23 + 1 − 1 − 1 + 1 15.00 5.00 30.00 30.00

24 + 1 − 1 + 1 − 1 15.00 5.00 60.00 0.00

25 + 1 − 1 + 1 + 1 15.00 5.00 60.00 30.00

26 + 1 0 0 0 15.00 7.00 45.00 15.00

27 + 1 + 1 − 1 − 1 15.00 9.00 30.00 0.00

28 + 1 + 1 − 1 + 1 15.00 9.00 30.00 30.00

29 + 1 + 1 + 1 − 1 15.00 9.00 60.00 0.00

30 + 1 + 1 + 1 + 1 15.00 9.00 60.00 30.00

Table 3 Ultimate analysis of
feedstock used Material Present study Literature

C H N O C H N O Ref.

Food waste 49.96 10.35 1.13 38.28 48 6.40 2.60 37.60 [27]

Poultry manure 37.64 11.86 5.06 45.44 33.84 13.52 3.60 49.04 [28]

Cow dung 36.22 8.07 1.52 53.20 31.6 5.18 6.12 37.8 [29]
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A higher degree polynomial such as a model of second
order may be used, if a curvature exists in the system.

A CCD approach of RSM technique was adopted in this
study for optimizing the input conditions toward higher biogas
production from the waste food feedstock. For this experimen-
tal condition, thirty experiments that include six center points
were considered. For maximum production biogas, the collec-
tive effect of four inputs, viz., solid concentration, pH, tem-
perature, and co-digestion, was experimentally studied, and
multi-criterial optimization was done. The response variables
measured were biogas production and efficiency in the remov-
al of COD. Table 1 outlines the higher and lower values of
input factors, and Table 2 presents the experimental plan as
per the real coded and actual coded values.

3 Results and discussion

The characterization study was carried out for both food waste
and poultry manure. Cow dung was used as an inoculum [26],
which is also subjected to the characterization study. Table 3
gives the elemental composition of feedstock used in this
study.

FTIR (Fourier transform infrared) analysis is an analytical
method used to find the functional group of a molecule or
compound. Exposed to IR radiations, a molecule will absorb
IR energy only at frequencies matching the molecule’s natural

frequency of vibration. As a consequence, the absorption pat-
tern (frequencies and intensities) is unique for a given mole-
cule. The frequencies of vibration of a molecule are directly
related to the nature of the atoms and the structure of the
molecule. The FTIR spectrum for food waste used is shown
in Fig. 2, and the functional groups present are given in
Table 4. The major compounds present in the food waste are
carboxylic acids such as formic acid, acetic acid, propionic
acid, etc. and amine such as methane, ethane, etc. In addition
to these compounds, methyl formate, diethyl ether, nitrometh-
ane are also present in small quantity. Similarly, the FTIR
spectra for poultry manure used in this study are shown in
Fig. 3, and the functional groups are given in Table 5.

Experiments were conducted as per the standard order, and
the output responses such as biogas production and COD re-
moval efficiency were determined, which are tabulated in
Table 6.

Initially the analysis of biogas production (Y1) and COD
removal efficiency (Y2) is performed individually. Later the
combined optimization of both the responses is carried out
using desirability function.

3.1 Biogas production

Biogas production is carried out by setting the goal for max-
imizing the response, since the biogas production should be
higher for a given substrate. Table 7 shows the ANOVA table

Fig. 2 FTIR spectrum of food
waste

Table 4 Functional group from
FTIR for food waste Transmittance

range
Functional
group

Major compounds Type of vibration

1000–1300 Ethers Methyl formate and diethyl ether C–O stretch

1300–1600 Nitro groups Nitromethane N=O stretch and N=O bend

1746 and 2918 Carboxylic
acids

Formic acid, acetic acid, propionic acid,
etc.

Hydrogen-bonded O–H
stretch

2930 Alkanes Methane, ethane, etc. H–C–H symmetric stretch
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for biogas production; the suggested model is quadratic where
the second-order equation of chosen parameters was also con-
sidered. The model F value of 14.257 implies that the model is
significant.

P values less than 0.0500 indicate model terms that are
significant [30]. In this case, D, AC, CD, and C2 are signifi-
cant model terms, and other model terms are not significant.
The lack of fit F value of 3.88 implies that there is a 7.38%
chance that a lack of fit F value this large could occur due to
noise. The predicted R2 of 0.6870 is in reasonable agreement
with the adjusted R2 of 0.8649; i.e., the difference is less than
0.2. The normal probability plot indicates whether the resid-
uals follow a normal distribution, in which case the points will
follow a straight line, where all the points were scattered and
lie on both sides of the straight line. Residuals versus run plot
is a plot of the residuals versus the experimental run order,
which is used for checking the lurking variables that may have
influenced the response during the experiment. The plot
should show a random scatter as in Fig. 4.

Figure 5 shows the response surface plots for the biogas
production with various combinations of chosen parameters.
The figure shows that the surface plot for biogas production
obtained with all the parameters is ridge surface. Observation
shows that, with increase in solid concentration, biogas pro-
duction increases linearly. Biogas production increases up to a
pH level of 7, after which the production rate decreases. For

higher pH values, lower biogas was produced. With hike in
temperature until around 40 °C, biogas production was higher,
and with further rise in temperature, biogas evolution was
reduced. A min-max surface was visualized between pH and
temperature, between pH and co-digestion, and between tem-
perature and co-digestion. With higher co-digestion percent-
age, biogas production increases due to breakdown of ingre-
dients present in food waste in a larger scale.

The empirical model developed for biogas production con-
sidering the chosen input variables is shown in Eq. (2). From
the ANOVA table, it is identified that only significant terms
only contribute and the nonsignificant terms must be removed
from the model. Hence, Eq. (3) was developed removing the
nonsignificant terms from Eq. (2).

Biogas ¼ 1920:185þ 38:28158*SCþ 442:8048*pHþ 119:0038*Temp
Production −4:3655*CDþ 5:15*SC*pH−1:15667*SC*Temp

þ 0:0475*SC*CDþ 1:125*pH*Tempþ 1*pH*CD
þ 0:371667*Temp*CD−1:28491*SC2−40:7807*pH2

−1:36055*Temp2−0:36281*CD2

ð2Þ

Biogas Production ¼ 1920:185−4:3655*CD−1:15667*SC*Temp
þ 0:371667*Temp*CD−1:36055*Temp2

ð3Þ

Fig. 3 FTIR spectrum of poultry
manure

Table 5 Functional group from
FTIR for poultry manure Transmittance Functional

group
Major compounds Type of vibration

1008 Ethers Diethyl ether C–O stretch

1456 Alkanes Methane, ethane, etc. H–C–H bend

1598 Nitro groups Nitromethane N=O stretch and N=O bend

2462 Carboxylic
acids

Formic acid, acetic acid, propionic acid,
etc.

Hydrogen-bonded O–H
stretch

2941 Alkanes Methane, ethane, etc. H–C–H symmetric stretch
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3.2 COD degradation

Analysis of COD degradation is performed in order to maxi-
mize it. Degradation of COD in the anaerobic digestion pro-
cess is utilized for sludge generation, and the rest were con-
verted into methane/biogas. COD provides a measure of the
oxygen present in a sample of sludge that can be consumed in
a reaction with oxidizing agents and reflects the number of
organics present in a sludge, and the efficiency of anaerobic
digestion can be evaluated using COD. The ANOVA table
determined for COD degradation is shown in Table 8.

The F value of 25.19 achieved for the developed model
shows that it is significant. Considering 95% confidence in-
terval, probability values lower than 0.05 are significant mod-
el terms and higher than 0.05 are nonsignificant terms. These
nonsignificant terms should be eliminated for achieving better

results. In this study, B, C, D, AC, BC, BD, B2, and D2 are
significant model terms. The predicted R2 of 0.7412 is in rea-
sonable agreement with the adjusted R2 of 0.9211 since the
difference is less than 0.2. The signal-to-noise ratio is mea-
sured by means of adequate precision value, which is 15.061
in this case, which is most desirable.

The normal plot of residuals and residuals vs. run plot for
COD degradation is shown in Fig. 6. Observation shows that
the residuals follow a straight line path and that in residuals vs.
each experimental run, the residuals were observed to line on
both sides of the center line with run no. 9 producing the
higher residual.

Figure 7 shows the surface plots for COD degradation.
Observations show that, with increase in solid concentration,
a linear increase in degradation of COD was observed. With
pH values, a max-min condition was obtained, and biogas

Table 6 Input and output
responses Std.

order
Run
order

Input parameters Output parameters

Solid concentration
(%TS)

pH Temperature
(°C)

CD
(%PM)

Biogas
production (ml)

COD
(g/l)

30 1 5 9 30 40 5462 26.59

2 2 5 5 30 40 5620 29.89

3 3 5 7 45 20 6314 35.56

28 4 5 9 60 40 6040 37.67

1 5 5 5 60 40 5972 33.45

26 6 5 9 30 0 5427 26.86

21 7 5 5 60 0 5602 25.75

25 8 5 5 30 0 5872 21.55

8 9 5 9 60 0 5495 29.29

14 10 10 7 45 0 5886 32.19

5 11 10 7 45 20 6435 36.97

23 12 10 7 45 20 6380 37.08

27 13 10 7 45 20 6435 35.83

4 14 10 7 45 20 6294 35.08

17 15 10 7 45 20 6480 36.55

13 16 10 7 45 20 6320 36.91

11 17 10 9 45 20 6212 33.98

10 18 10 7 60 20 5953 36.11

18 19 10 7 30 20 5941 34.99

15 20 10 5 45 20 5968 33.05

9 21 10 7 45 40 6330 34.82

29 22 15 9 60 0 5453 27.49

24 23 15 5 60 0 5389 22.16

16 24 15 7 45 20 6128 36.92

20 25 15 9 30 0 5718 25.49

12 26 15 5 30 40 5697 32.86

7 27 15 5 60 40 5770 30.12

19 28 15 9 60 40 5785 31.56

6 29 15 9 30 40 5862 28.61

22 30 15 5 30 0 5780 25.01
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Table 7 ANOVA table for biogas
production Source Sum of

squares
DoF Mean sum of

squares
F value Prob. >

F

Model 3,073,750 14 219,553.6 14.25724 < 0.0001 Significant

A-solid
concentration

2738 1 2738 0.177799 0.6793

B-pH 2592 1 2592 0.168318 0.6874

C-temperature 355.5556 1 355.5556 0.023089 0.8813

D-CD 203,947.6 1 203,947.6 13.24382 0.0024

AB 42,436 1 42,436 2.755683 0.1177

AC 120,409 1 120,409 7.819047 0.0136

AD 361 1 361 0.023442 0.8804

BC 18,225 1 18,225 1.183484 0.2938

BD 25,600 1 25,600 1.662397 0.2168

CD 198,916 1 198,916 12.91709 0.0027

A2 2673.494 1 2673.494 0.17361 0.6828

B2 68,941.63 1 68,941.63 4.47689 0.0515

C2 242,797.1 1 242,797.1 15.76661 0.0012

D2 54,566.18 1 54,566.18 3.543385 0.0793

Residual 230,991.7 15 15,399.45

Lack of fit 204,628.4 10 20,462.84 3.880928 0.0738 Not
significant

Pure error 26,363.33 5 5272.667

Cor total 3,304,742 29

Std. dev. 124.0945 R2 0.930103

Mean 5934 Adjusted R2 0.864866

C.V. % 2.091246 Predicted R2 0.68705

PRESS 1,034,220 Adequate precision 11.36292

Fig. 4 Residual plot for biogas production
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Fig. 5 Surface plots for biogas production
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Table 8 ANOVA table for COD
degradation Source Sum of

squares
DoF Mean sum of

squares
F value Prob. >

F

Model 639.2944 14 45.66389 25.19166 < 0.0001 Significant

A-solid
concentration

2.26845 1 2.26845 1.251449 0.2809

B-pH 10.42722 1 10.42722 5.752447 0.0299

C-temperature 26.28125 1 26.28125 14.49873 0.0017

D-CD 137.6694 1 137.6694 75.94886 < 0.0001

AB 2.864556 1 2.864556 1.580306 0.2279

AC 30.00301 1 30.00301 16.55193 0.0010

AD 0.082656 1 0.082656 0.045599 0.8338

BC 16.58526 1 16.58526 9.149685 0.0085

BD 17.11891 1 17.11891 9.444087 0.0077

CD 5.141556 1 5.141556 2.836472 0.1128

A2 0.650457 1 0.650457 0.358842 0.5581

B2 26.96467 1 26.96467 14.87576 0.0016

C2 3.67548 1 3.67548 2.027674 0.1749

D2 27.13209 1 27.13209 14.96812 0.0015

Residual 27.18988 15 1.812659

lack of fit 24.05275 10 2.405275 3.833555 0.0755 Not
significant

Pure error 3.137133 5 0.627427

Cor total 666.4843 29

Std. dev. 1.34635 R2 0.959204

Mean 31.67967 Adjusted R2 0.921128

C.V. % 4.249887 Predicted R2 0.741197

PRESS 172.4879 Adequate precision 15.06132

Fig. 6 Residual plot for COD degradation
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Fig. 7 Surface plots for COD degradation
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production increases up to 7, after which it reduces. By main-
taining higher temperature inside the reactor, COD degrada-
tion can be achieved through which higher biogas can be
produced with lower sludge. With higher % of co-digestion,
i.e., adding poultry manure around 40%, higher COD degra-
dation was observed. A min-max type of ridge surface was
obtained between pH and temperature.

For COD degradation, the developed empirical model
should be reduced by eliminating the nonsignificant terms
identified from the ANOVA table of COD degradation. The

actual coded equation obtained during analysis is given in Eq.
(4), and the empirical model obtained after removing the non-
significant term is given in Eq. (5).

COD ¼ −29:8024þ 1:46203*SCþ 11:08486*pHþ 0:464206*Temp
þ 0:565055*CD−0:04231*SC*pH−0:01826*SC*Temp
−0:00072*SC*CDþ 0:033938*pH*Temp−0:02586*pH*CD
þ 0:00189*Temp*CD−0:02004*SC2−0:80651*pH2

−0:00529*Temp2−0:00809*CD2

ð4Þ

Fig. 9 Bar graph for desirability
analysis

Fig. 8 Ramp plot for desirability analysis
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COD ¼ −29:8024þ 11:08486*pHþ 0:464206*Tempþ 0:565055*CD
−0:01826*SC*Tempþ 0:033938*pH*Temp−0:02586*pH*CD
−0:80651*pH2−0:00809*CD2

ð5Þ

3.3 Multi-objective optimization using desirability
analysis

In RSM, for performing multi-objective optimization, all the
responses are considered simultaneously using desirability
analysis, a useful approach for optimization more than one
response. The parameter setting achieving higher desirability
value close enough to 1 was considered to be the optimum
conditions, and the simultaneous objective function is a geo-
metric mean of all responses. In this experimental investiga-
tion, the optimum input parameter setting was evaluated with
the objective formulated as maximizing biogas production
and maximizing COD degradation. The ramp plot given in
Fig. 8 shows the optimum input values and the predicted out-
put responses, which were solid concentration as 7.38, pH
value as 7, temperature at 48.43 °C, and co-digestion as 29
which produces a biogas of 6344 and COD degradation of 38.

The desirability plot of the multi-objective optimization is
shown in Fig. 9. Desirability is an objective function that
ranges from zero outside of the limits to one at the goal. The
numerical optimization finds a point that maximizes the desir-
ability function. For several responses and factors, all goals
get combined into one desirability function. The desirability
value is completely dependent on how closely the lower and
upper limits are set relative to the actual optimum. The overall
desirability value is 0.94 for the combined objective, which is
a good measure since it is nearer to 1.

Once the optimum values of the input parameters were
through multi-objective optimization, the consecutive step is
to validate the optimum values and to verify performance
characteristics of the optimized input parameters. Another
set of experiment was performed by setting the above opti-
mum input values with the same experimental setup, and the

output responses were measured. Table 9 shows the RSM
predicted and experimentally observed optimum response
values and the corresponding percentage error during experi-
mental validation of the developed models. It was observed
that the maximum error is 4.93%. Hence, a close relationship
is identified between the predicted and the observed values.

4 Conclusion

Experimental investigation on biogas production through deg-
radation of poultry manure was done employing RSM-based
optimization approach; the conclusions obtained from the
analysis were as follows:

1. Food waste collected from the student hostel mess of NIT
Calicut, India, was used for the experiments. The waste
collected was shredded into particles to increase the sur-
face area available for microbial activities.

2. The FTIR spectrum for food waste shows carboxylic
acids such as formic acid, acetic acid, propionic acid,
etc. and amine such as methane, ethane, etc. In addition
to these compounds, methyl formate, diethyl ether, and
nitromethane are also present in small quantity.

3. For biogas production terms, D, AC, CD, and C2 are
significant model terms with an R2 value of 93%.
Surface plot of biogas production shows a linear increase
in biogas for increase in solid concentration, with increase
in pH biogas production gets reduced, a concave surface
was produced for temperature variation where up to
40 °C, biogas production increases and after that it tends
to decrease. Similarly, nonlinear increase in biogas pro-
duction is observed for an increase in co-digestion.

4. For COD degradation, B, C, D, AC, BC, BD, B2, and D2

are significant model terms with an R2 value of 95.92%.
5. Desirability approach produces a combined optimum con-

dition as follows: solid concentration as 7.38, pH value as
7, temperature at 48.43 °C, and co-digestion as 29 which
produces a biogas of 6344 and COD degradation as 38
with an overall desirability value of 0.94.

6. The maximum error % between RSM predicted and ex-
perimentally observed optimum response values was
4.93%, which proves the efficiency of the multi-
objective optimization procedure.
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