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Abstract
Biomass waste generation is increasing enormously and biomass burning emits greenhouse gas emissions causing severe effects
on the environment and health of the population. It contains high organic and carbon content which can be reused/diverted for
useful products (like Biochar) that facilitate climate change mitigation. Biochar, a renewable carbon, is gaining importance and it
opens up an area of research to explore on the properties and stability of biochar, its wide applications, impacts on soil
characteristics, techno-economic details, carbon and nitrogen interactions of biochar-soil matrix, and emission control. This
review addresses opportunities of biomass wastes for biochar production, various thermo-chemical reactions for preparation
and its basics/mechanisms, properties of biochar and hydrochar, and gaps/operational challenges, and summarizes wide appli-
cations of biochar in soil improvement, climate change mitigation, energy production, waste management, and environmental
remediation. The effect of physico-chemical parameters (temperature, heating rate, chemical composition, etc.) on the biochar
production will help in valorizing this industry. The optimized process conditions involved in low temperature (torrefaction,
microwave-assisted pyrolysis, hydrothermal carbonization), pyrolysis (Fast, Slow, Flash), gasification, and combustion processes
for biochar, syngas, and bio-oil production are to be explored. The critical review on the biochar addition influence on CO2, CH4,
and N2O emissions in various soil types and carbon sequestration is done here. The modification and activation of biochar are
recently attractive due to their role in improving biochar quality and for expanding its applications. Limitations and future status
of biochar production from biomass waste are highlighted. Biochar will be a promising solution as an alternative to fossil fuels,
waste management, bioenergy, and combat climate change.
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1 Introduction

A major environmental issue affecting the globe presently at
an alarming rate is “Global Warming.” The challenges and
impacts of global warming are well documented by several
scientists [1–3]. The Intergovernmental Panel on Climate
Change has shown that global warming is increasing

drastically in the consecutive three decades and total temper-
ature is elevated by about 0.78 [0.72 to 0.85] °C, which has
been recently enforced for limiting to 1.5 °C to prevent ad-
verse global warming impacts [4, 5]. This effect is predomi-
nantly due to greenhouse gasses (GHGs) emissions that com-
posed of carbon dioxide (CO2−72%), methane (CH4−18%),
nitrous oxide (NOx- 9%), and other gaseous emissions (1%)
in atmosphere. Especially, atmospheric CO2 concentrations
contribute to ~ 60% of gaseous radiative forcing liable for
human-induced climate change impact and its CO2 emission
levels have peaked from 1.1% (in 1990–1999) to greater than
3% (in 2000–2004). In turn, it contributes to the rise of mean
global atmospheric CO2 concentrations from 280 (in 1700s) to
380 ppm (in 2005s) and reaching up to a maximum of
405 ppm (in 2017s) primarily attributable to anthropogenic
activities and is exceptionally highest concentration in com-
parison to last 800,000 years [6, 7]. It is evident that carbon
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emissions are the major contributors to climate change, in
which burning of biomass plays a bigger role [8, 9].

The major emissions from biomass burning are particulate
matter, carbon monoxide, hydrocarbons, oxides of nitrogen
(NOx), oxides of sulfur (SOx), volatile organic compounds
and polycyclic aromatic hydrocarbons, and their effects are
severe [8–12]. Jacobson [13] showed impacts of biomass
burning that may cause net global warming of ~ 0.4 K (by
cloud absorption effects—CAE I (~ 32%), CAE II, semidirect
effects, anthropogenic heat (~ 7%) and moisture fluxes, aero-
sol absorption greater than cooling and indirect effects) and
calculated that 5 to 10% of worldwide air pollution mortalities
causes premature deaths of about 2, 50,000 people each year
are frightening facts in a transient 20-year simulation study. If
this biomass waste containing high organic content is reused/
diverted properly for waste to energy options rather than burn-
ing, then certainly, the biomass facilitates to mitigate climate
change by reducing the amount of greenhouse gas emissions.
In recent years, conversion of biomass waste to “Biochar” is
gaining significant emphasis due to its use in climate change
mitigation strategies which offers potential for disposal of or-
ganic waste thus facilitating to achieve food security through
its use as soil amendment. An in-depth knowledge about bio-
char production from different biomass wastes; thermo-
chemical reaction fundamentals; biochar properties; wide-
ranging biochar applications; effects of different types of bio-
char amendment on various soils; greenhouse gas reduction
mechanism; nitrogen transformation between biochar and soil

matrix are to be well understood and applied to our daily lives
are addressed in this review.

2 Biochar production from biomass waste

2.1 Biomass feedstock materials

Biomass waste can be defined as an organic material or bio-
residue originating from living matter or complexes of
organic/inorganic materials from different sources (such as
water-based vegetation, forest or organic waste, by-product
of crop production and agro or food industries waste) which
contains both living organisms (plants and animals) and
wastes (from animals, sludge, waste wood, etc.) [14, 15].
The world biomass production is around 105 billion metric
tons or 104.9 petagrams of carbon/year that comprises 53.8%
of terrestrial (56.4 Pg of C) and 46.2% of oceanic (48.5 Pg of
C) [16]. The biomass classification depends upon the source
and its waste composition, which is summarized in Table 1
along with their examples. Many authors have explored the
various biomass types and their characteristics [14, 17–19].
Among them, agricultural residues can further be classified
based on their source as primary residue (yield are field-
based) and secondary residue (assembled during processing).
The biomass waste feed stock availability globally is projected
as in Woolf et al. [19]. This projection scenario showed the
total maximum sustainable technical potential of biomass is

Table 1 Biomass waste classification with its waste composition

S.
no

Biomass waste source Waste composition Examples

1. Forestry plantations, wood
processing wastes and
logging residues

Natural forests, woodlands, woods
from forests and residues from
wood industries

Logs, wastewood, leaves, wood shavings, forest industry based waste
products, sawdust, wood chips, barks, slabs and splinters, black
liquor. Off-cuts generated during wood processing

3. Agricultural residues By-product from processing,
harvesting of agricultural
crops and others

Straws/stalks of cereals, pulses and fiber crops (wheat, rice, corn,
coffee, cocoa pod, sorghum, and millet), crop wastes (like sugarcane
trash, rice husk, coconut shell, etc), seed coats of oil seed. Green
agricultural wastes; Others like elephant grass, guinea, grass, switch
grass, macroalgae and microalgae

4. Agro-industrial wastes Agro-industrial based wastes Wastes from paper mills, pulp wastes from food processing units,
textile fiber waste, molasses from sugar refineries, cob/husk of corn,
wheat, rice, cocoa, coconut, sugarcane bagasse, oil seed cake, oil
palm empty fruit bunch, etc.

5. Animal wastes Animal manure Cow manure, livestock or poultry wastes like goat, cattle, pig, sheep
and poultry litter

6. Industrial wastes Industrial wastewater and
by-product of biofuel processes

By-products such as biodiesel, bioethanol and biomethanation; black
liquor from paper manufacturing

7. Municipal solid wastes
(MSW) and sewage

Biodegradable wastes and sewage
sludge

food waste, kitchen waste, fabrics, clothes, greenwaste, compost, paper
and inert wastes such as demolition debris

8. Food processing wastes Hotel, restaurants and community
kitchens waste; Wastes from
confectionary industry

Vegetable peel waste, stale food, uneaten bread, rice, dish washer
rejects, fruit and vegetable rejects, etc.

Source: Adapted from Kumar et al. [14]; Murali et al. [17]; Brosowski et al.[18]
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2.27 Pg C per year. In which, 0.14 Pg C per year are from
forestry residues (44% of difference reported between fellings
and extraction), 0.62 Pg C per year from agroforestry residues
(170 Mha of tropical grass pasture changed to silvopasture),
0.14 Pg C per year from Green/wood waste (75% of low-end
estimation of yard trimmings production and wood-milling
residues, food waste, including 80% of sawn wood waste),
0.28 Pg C per year from rice residues (rice husks and 90%
of paddy rice straw unused for animal feed), 0.18 Pg C per
year from cereal residues (20% of total straw and stover—
45% extraction rate minus animal feed), 0.13 Pg C per year
from sugar cane residues (bagasse waste plus 75% of field
trash), 0.60 Pg C per year from crop residues (100% of poten-
tial production of abandoned, degraded cropland which is not
in other use), and 0.19 Pg C per year from animal waste, i.e.,
manures (25% of cattle manure plus 90% of pig and poultry
manure).

The biomass waste material composition for their percent-
age of cellulose, hemicellulose and lignin content is described
elsewhere [13, 20, 21]. The growing step of biomass is con-
sidered as the efficient method recently existing for carbon
dioxide extraction from atmosphere. However, carbon in bio-
mass is easily degraded by microorganisms and releasing it to
the atmosphere as greenhouse gasses. If biomass is pyrolyzed,
then the organic carbon content is converted into solid (bio-
char), liquid (bio-oil), and gaseous (syngas) carbonaceous
products [22]. Biomass waste conversion is dependent on bio-
mass feedstock source, quantity, moisture content, particle
size, operating conditions (temperature, time, heating rate,
carrier gas type, flow rate, catalyst, reactor type, etc.), eco-
nomic conditions, etc. Biochar is produced both from ligno-
cellulosic and non-lignocellulosic biomasses. Biochar can be
produced from biomass feedstock like organic materials such
as crop residues, wood residues, animal manures, industrial
wastes (paper sludge; biosolids) [23–25], agricultural and for-
est residues (rice husk, corn straw, switch grass, sugar beet
tailings, soybean stalk, flax shive, olive pomace, orange
waste, hard/pine/oak wood, pine/oak bark, paper, pulp, green
waste, etc.) industrial by-products and wastes, municipal solid
waste materials, (sewage sludge, anaerobically digested sug-
arcane bagasse, distillers grain, bagasse, poultry litter, etc.)
and non- conventional materials, such as waste tires, papers,
and even bones [26, 27]. A study by Ahmed et al. [28] ex-
plored the extent of biochar research globally by a
bibliometric analysis for a time period of 15 years (2000–
2015). It revealed that the biochar research trend is widely
growing and new avenues on future biochar research are up-
coming. In developing country like India, biochar is common-
ly produced from agricultural residues and food processing
residues (crop residues, cassia stems, rice husk, palm leaves,
saw dust, wheat straw, baggase, walnut shell, corn cobs, palm
oil press cake waste, soyabean stover, etc.) [29–31], which are
also expanding in other areas. Biochar is a rich carbonaceous

material produced when heating the biomass waste with little
or no air/oxygen condition in a closed-vessel. The biochar
production, properties and its application in climate change
mitigation aspects are much needed.

The three main biomass conversion technologies are (a)
thermo-chemical, (b) bio-chemical/biological, and (c) me-
chanical extraction (with esterification). When compared to
other processes, thermo-chemical conversion process is ad-
vantageous, such as complete conversion of lignin content,
breaking down of bonds in organic matter using high temper-
ature, time-saving, etc. [32]. Hence, thermo-chemical process
is commonly used for biomass utilization as biochar [33].

2.2 Thermo-chemical conversion processes
for biochar production

In thermo-chemical conversion processes, the biomass is con-
verted to solid, liquid and gaseous products and its various
conversion processes are low-temperature processes
(torrefaction, microwave hydrothermal process and hydro-
thermal liquefaction), pyrolysis (slow, intermediate, fast and
flash), gasification, and combustion processes. The operation-
al details of different thermo-chemical conversion processes
are summarized in Table 2. The above processes are mainly
differentiated based on their equivalence ratio (i.e., ratio of
actual air fuel ratio/air ratio to stoichiometric fuel/air ratio).
Biomass materials through thermo-chemical decomposition
processes are converted to syngas, bio-oil, and biochar [15,
34]. Biochar is a solid carbon material acquired in an oxygen-
limited environment from thermo-chemical conversion of bio-
mass waste [35]. Longer residence time with lower pyrolysis
temperature yields solid substance ‘biochar’ and with higher
temperature produces gas “syngas.” Moderate temperature
with short residence time produces liquid ‘bio-oil’ as present-
ed in Table 2. Production of biochar from biomass waste does
not have any remarkable life cycle–based GHGs emissions
[36]. Biochar can be produced from biomass waste by pyrol-
ysis process or gasification process and also be a co-product of
biofuel/bio-oil production [30]. The principles and reaction
mechanisms involved in various thermo-chemical conversion
processes of biochar production are as follows.

2.2.1 Torrefaction

Torrefaction is operated in absence of oxygen condition at
lower temperature range of 200 to 300 °C and an atmospheric
pressure is maintained in the process. The fundamental step in
torrefaction process is volatiles removal through different de-
composition reactions and its common biomass torrefaction
reactions are (a) devolatilization and carbonization of hemi-
celluloses, and (b) depolymerization and devolatilization of
lignin and cellulose. Deng et al. [37] has shown torrefied ag-
ricultural biomass residues at 200, 250 and 300 °C for 30 min
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in a vertical reactor which produces higher heating value than
that of raw material at 17 and 15% for rice straw and rape
stalk, respectively.

Torrefaction increases the biomass calorific value and, its
proximate/ultimate composition characteristics are enriched.
It also enhanced torrefied biomass mechanical strength, parti-
cle size/shape/distribution, grindability and pelletability prop-
erties [38, 39]. Prins et al. [40] studied wood biomass
torrefaction at 270 °C for 15 min which reduced volatile con-
tent and elevated energy density with 20.7MJ/kg than untreat-
ed willow with 17.7 MJ/kg, respectively. Usually, torrefaction
process is used as a pre-treatment of biomass for downstream
applications by chemical methods and/or combustion process.

2.2.2 Pyrolysis

Pyrolysis is a thermochemical decomposition of biomass pro-
cess operated at higher temperatures usually at 300 to 700 °C
to produce solid biochar, liquid bio-oil, and syngas in an inert
atmosphere. The pyrolysis conditions varies with respect to
temperature, residence time, heating rate and pressure as
shown in Table 2. Based on the different conditions, varying
quantities of products are obtained as mainly biochar, bio-oil
(less quantities of condensable liquid), and syngas (non-con-
densable gasses). Pyrolysis is reversible reaction and its scale-
up is flexible than incineration units. The basic reactions in
pyrolysis of biomass containing cellulose, hemicellulose and
lignin contents are cross-linking/char formation, depolymeri-
zation and fragmentation, and other secondary reactions are
usually occurred [41]. In the initial process, moisture and vol-
atile loss occurs following formation of biochar and finally,
chemical rearrangement of biochar, where it decomposes
slowly and carbon-rich residual solid formation results [21].
Slow and fast pyrolysis are the primary methods for biochar
production. Various pyrolysis reactors were used for biochar
production namely (i) fixed bed, (ii) fluidized bed, (iii) circu-
lating fluidized bed, (iv) ablative, (v) rotating cone, (vi) vacu-
um pyrolysis, and (vii) auger/screw reactors. The biochar and
bio-oil production by pyrolysis in auger reactors were studied
in detail by Brassard et al. [42].

2.2.3 Fast pyrolysis

The fast pyrolysis of biomass without oxygen condition pro-
duce bio-oils as their main product with biochar and pyrolysis
gas as co-products. Fast pyrolysis requires quicker heating
rates and much shorter residence times usually in seconds
when compared to slow pyrolysis process. The intermediate
pyrolysis also mainly produce bio-oil in less than 30 s. For
high yield in fast pyrolysis, the biomass waste samples have to
be properly homogenized, moisture content less than 10% and
sample size around 2 mm [43]. Zhang et al. [44] studied fast
pyrolysis of corncobs biomass on liquid bio-oil yield and its

composition under different pyrolysis gas atmospheres in a
fluidized bed reactor. The study showed maximum liquid
yield (58.7%) was obtained with CH4 and minimum yield
(49.6%) with CO gas atmosphere. The greater heating value
of bio-oil was acquired under H2 at 24.4 MJ/kg, followed by
CO and N2 gas atmosphere at 23.7 and 17.8 MJ/kg,
respectively.

2.2.4 Slow pyrolysis

The residence time is longer in slow pyrolysis fromminutes to
hours, sometimes even days whereas, fast pyrolysis is very
short, usually in seconds. Slow pyrolysis is favored than fast
pyrolysis for their maximum biochar yield over production of
bioenergy, economy and greater nutrient retention [24, 32].
Marculescu et al. [45] studied comparison of three thermo-
chemical processes, viz., direct combustion, pyrolysis, and
gasification for their waste to energy conversion efficiencies.
Heterogenous wastes such as cellulose-based waste, plastic
waste, food industry residue and agriculture residues were
used, which operated with low-temperature pyrolysis process
at 350–550 °C and high-temperature steam gasification at
850–1050 °C. The results showed that short pyrolysis period
is only required for achieving the complete waste carboniza-
tion within 30 to 45 min. The slow pyrolysis process is widely
used for biochar production. Li and Jiang [27] explored the
detailed review on different non-lignocellulosic biomass (sew-
age sludge, sugar, manure, algae, human/animal hair, bones,
feather, and meat) for biochar production using pyrolysis and
hydrothermal processes. Recently, microwave-assisted pyrol-
ysis is compared with conventional pyrolysis [46]. The bio-
char production from different waste biomass in various reac-
tor conditions is summarized in Table 3. Higher yield of bio-
char is produced at low temperatures and lower residence
times produce a highly functional biochar [47–51].

2.2.5 Microwave-assisted pyrolysis (MAP)

Microwave-assisted pyrolysis is an efficient selective heating
process of biomass by microwave dielectric heating effects in
the presence or absence of catalysts. When compared to con-
ventional pyrolysis, MAP gives higher energy efficiency, fast,
easy control, less operating cost, and better end quality prod-
uct [33, 46]. The main limitations of MAP are capital cost for
microwave equipment and scaling up, usually requires pre-
treatments of biomass. The two main mechanisms in MAP
are dipolar polarization and ionic conduction [46]. It produces
potential gaseous hydrocarbons and hydrocarbon oils which
are useful as chemicals or fuels. Solid product obtained in
MAP provide heat and function as a microwave absorber
and gas product is used for feedstock pretreatment (drying).
Puligundla et al. [20] have summarized in detail about the
different microwave-assisted pre-treatment technologies for
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biomass conversion to biofuels. Microwave heating pyrolysis
was explored for the conversion of various biomasses, such as
macro- and micro-algae, agriculture residue, forestry residue
such as wood, pine/fir sawdust, corn stover, wheat/rice straw
and sewage sludge into biofuels [33, 46, 52]. MAP of cotton
stalk was assessed by Wang et al. [33] in various microwave
powers (800 to 1200 W) and additives (sodium hydroxide,
sodium carbonate and phosphoric acid). 1000 W microwave
power yielded optimum bio-oil production of 26.7% with
main components of acetol, furfural, 2-methoxy-phenol and
4-methyl-2-methoxy-phenol. The additives amplified the
yield of solid residue/gas and reduced the bio-oil yield.
When compared to different production processes, pyrolysis
process increase energy recovery and produce less pollutants
[53]. Other new pyrolysis processes are laser and plasma
cracking technologies for biochar production [54].

2.2.6 Flash pyrolysis

For the flash pyrolysis process, the main desired product is
bio-oil and it operates at shorter residence time than the fast
pyrolysis with only few seconds and higher heating rates. The
main pathway of flash pyrolysis of biomass at higher temper-
ature (700–1000 °C) is depolymerization and biomass crack-
ing to produce bio-oil similar to the viscosity of the diesel oil.
Some of the flash pyrolysis are flash hydro-pyrolysis and vac-
uum flash pyrolysis (negative pressure to remove condensable
products) [43]. The flash hydro-pyrolysis operating at 350–
600 °C at a heating rate of 10–300 °C/s with residence time >
15 s in a pressure of 5–20 MPa to remove condensable prod-
ucts. The vacuum flash pyrolysis operated at 300–600 °Cwith
heating rate of 0.1 to 1.0 °C/s having low residence time of
0.001–1.0 s in a hydrogen atmosphere of 0.01–0.02MPa [15].

2.2.7 Gasification

Gasification process is the conversion of a biomass material at
atmospheric elevated temperatures above 800 °C with fast
heating rate in a gaseous medium like oxygen, air, nitrogen,
carbon dioxide and steam that results in a gaseous mixture fuel
generally known as synthesis gas (syngas) [24, 55]. It is main-
ly used for the generation of heat and electricity [56].
Gasification process yields hydrogen, carbon monoxide, car-
bon dioxide, and water by partial combustion and at low tem-
peratures also yields hydrocarbons. Gasification process gen-
erates minimal quantities of biochar in an air containing
direct-heated reaction vessel condition. It requires a low
oxygen-to-carbon ratio. Lapuerta et al. [57] studied the gasifi-
cation of biomass wastes such as forest waste (Pinus pinaster
pruning), agricultural waste (grapevine and olive tree prun-
ing), and industrial wastes (sawdust and marc of grape). The
study showed agricultural wastes could produce high gas ef-
ficiency and gas yield for fuel production to form producer gas

which can be used in combustion engines/turbine, whereas
sawdust could produce fuel to generate hydrogen rich gas.

2.2.8 Combustion

In combustion, primarily air is used as an oxidizing agent in
the process giving the flue gas having CO2 and H2O with
more than 50% of N2 in it. Even though combustion is a clean
energy production, its specific investment and global energy
efficiency (high air excess) play as a disadvantage [22, 45]. If
biomass waste generation is discontinuous, then combustion
process can be applied. Most of the cases, the direct combus-
tion of the biomass (like woody biomass) is not efficient and it
requires pretreatment such as drying or chipping. Sometimes
due to the length of woody biomass (i.e., 12 to 24 ft. long),
pretreatment is necessitated.Whereas, in some newer systems,
minimal or no pretreatment is practised. Marculescu et al. [45]
conducted combustion process for heterogeneous solid waste
such as packaging waste, agriculture waste and food industry
waste in a tubular electrically heated reactor operating at 900–
1200 °C with the excess air of 1.3–1.7. The agricultural waste
with less than 45% moisture content can recover maximum
power from 2.2 to 3.7MWe. Pyro-combustion generates pow-
er capacity of 1.4 MWe up to 2.35 MWe. Additionally, wood
boilers that provide heat and power are being retrofitted to
offer and off take of biochar. This biochar production can be
seen as a way to off-set some of the cost of biomass haul to the
power generation site.

2.2.9 Hydrothermal carbonization (HTC)

Hydrothermal Carbonization is a low-temperature thermo-
chemical pretreatment process of biomass mainly operated at
200 to 300 °C. HTC uses water as solvent medium in the
reaction to produce the end product, hydrochar [58]. HTC
homogenizes the different biomass wastes, produce better fuel
efficiency and energetically energy efficient than pyrolysis
process for carbonizing the wet biomass. Biomass containing
smaller particle size is better in HTC than pyrolysis due to its
low char yields [59]. The starting step of HTC is hydrolysis
process, followed by dehydration and decarboxylation proc-
essed products thereby undergoing condensation, polymeriza-
tion, and aromatization processes. In hydrolysis of biomass, it
reacts with water and produces vast products like oligosaccha-
rides, after breakdown of ether/ester bonds especially β-(1–4)
glycosidic bonds. The intermediate products of dehydration
and decarboxylation such as 5-HMF, anhydroglucose, furfu-
ral, erythrose, and 5-methyl furfural are formed. These inter-
mediate compounds are converted to bio-crude by condensa-
tion, polymerization and aromatization processes. This bio-
crude with or without auto-nucleation is converted into
hydrochar [58]. HTC is decomposed incompletely, produces
hydrochar, a gas (mainly CO2), water, and water-soluble
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compounds [59]. Hydrochar formed from any reaction medi-
um of liquid-liquid, liquid-solid or solid-solid reaction accord-
ingly results in liquid biocrude or/and solid lignin residue. Liu
and Balasubramanian [60] studied the HTC of coconut fiber
and eucalyptus leaves biomass at 150 to 375 °C for 30 min.
The activation energy of coconut fiber and eucalyptus leaves
at 150–300 °C gave 67.41 and 59.18 kJ/mol, respectively. At
300–375 °C, the activation energy increased for coconut fiber
and eucalyptus leaves, which was about 179.54 and
173.70 kJ/mol, respectively. Stemann et al. [61] showed
HTC of empty palm oil fruit bunches at 220 °C gave a HTC
coal having higher heating value (HHV) of 28 MJ/kg. HTC
for non-lignocellulosic wastes such as sea foodwaste (fish and
shrimp wastes) was studied by Kannan et al. [62, 63]. The
hydrochar yield for fish and shrimp waste was about 35% at
180 °C for 120 min and 29% at 186 °C for 120 min,
respectively.

3 Properties of biochar

Biochar has highly porous structure, carbon-rich, negative
surface functional groups, aromatic rings, adsorption abili-
ty, large specific area, micro-scale crystalline, macro-scale
amorphous structure and resistant to biological decomposi-
tion. Biochar is a highly heterogeneous substance with their
chemical composition largely depends on biomass charac-
teristics and pyrolysis conditions [13, 50, 64–66]. Its prop-
erties also depend upon the reactor design, gas flow rate,
and post-pyrolysis treatments [67]. Biochar is primarily
composed of carbon (C), oxygen (O), hydrogen (H) and
nitrogen (N), other compounds such as sulfur (S), calcium
(Ca), and potassium (K) are also present depending on bio-
mass properties [68–72]. The selection of appropriate py-
rolysis technology is also important for high biochar yield
and properties [73]. Lignocellulosic biomass converted into
biochar through thermo-chemical processes have a 3-
dimensional interconnected structure similar to its original
physical morphology, resulting in a high surface area (>
300 m2 g−1) and large pore size (macro-, meso-, and nano-
pores) distribution [74]. Biochar’s surface area range from
0.5 to 450 m2 g−1 [67]. Porosity, economical cost and its
high nutrient recovery capacity makes the biochar potential-
ly as a best carbon-based material. Biochar has high chem-
ical and biological stability, high cation exchange capacity,
and highly functionalized with high O/C ratio depending on
pyrolysis conditions (residence time and final temperature)
[25, 75]. It can improve soil physical properties, enlarge soil
carbon storage capacity and stabilize soil organic carbon
pools [76]. Different particle sizes of biochar have various
influences on the physical, mechanical and chemical prop-
erties of soils [77].

3.1 Property dependence on temperature

The biochar characteristics are strongly determined by pyrol-
ysis temperature and residence time for their proximate and
ultimate compositions of carbon, volatile matter, ash, and
moisture content. Several studies have been conducted for
investigating the effect of temperatures on biochar character-
istics, which is as summarized in Table 4. Most of the studies
showed as temperature increases, biochar carbon, and nitro-
gen content increases, whereas hydrogen and oxygen content
decreases. The temperature ranges for cellulose, hemicellu-
lose, and lignin degradation are at 300–400, 200–300, and
200–700 °C, respectively [67].

Angin [53] demonstrated that safflower seed-based biochar
produced at higher temperature (600 °C) gave a higher total
carbon content than biochars formed at lower temperatures
(400, 450, 500, and 550 °C). In steam gasification, biochar
generated at higher temperatures by rapid pyrolysis is more
reactive than those produced at lower temperatures [21]. Al-
Wabel et al. [78] studied the effect of pyrolysis temperature
(200–800 °C) on biochar characteristics. The biochar yield
decreases at increasing temperatures of 200, 400, 600, and
800 °C as 51.33 ± 2.38%, 31.86 ± 1.19%, 27.22 ± 0.57%,
and 23.19 ± 0.65%, respectively. It has been shown that bio-
char produced at higher temperatures (600–700 °C) have
higher content of aromatic C and porosity, lower content of
H and O functional groups, and hence lower cation exchange
capacity. Conversely, biochar produced at lower temperatures
(300–400 °C) have higher content of C-O and C-H functional
groups and surface area, leading to higher cation exchange
capacity and lower porosity [70, 79–81]. Such, a biochar char-
acteristics is suitable for agricultural applications for soil
improvements.

3.2 Property dependence on other parameters
and biochar yield

Biomass waste containing high lignin content yields maxi-
mum biochar [41]. The other biomass properties having influ-
ence on higher biochar yield are large biomass particle size,
high ash, and nitrogen content. The pyrolysis process param-
eters also play a major role for higher yield was lower pyrol-
ysis temperature generally less than 400 °C, lower heating
rate, higher pressure and residence time and long vapor/solid
interaction. A study by Demirbas [21] exhibited a difference
in particle size of olive husk and corncob resulted in varying
biochar yield evenwhen performed under same pyrolysis con-
ditions. The higher lignin content in olive husk producedmax-
imum biochar yield in comparison to corncob. A high temper-
ature and smaller particles increase heating rate resulting in a
decreased bio-char yield. Similar to biochar yield, other char-
acteristics affected by raising temperature were oxygen, hy-
drogen, sulfur, acidic functional group, water sorption
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capacity, and cation exchange capacity (CEC) [78, 82].
Whereas, parameters such as pH, ash, carbon, electrical
conductivity, phosphorus, potassium, calcium, magne-
sium, basic functional groups, BET surface area, avail-
able nutrients, and heavy metal stability have favorable
influence on increasing temperatures as shown in
Table 4 and other studies [78, 82]. High-pyrolysis tem-
perature biochar may have lower nutrient retention ca-
pability. Biochar having high porosity, large specific
surface area, low H/C ratio and low carbon content in
an ash-rich material yields a material with high nutrient
content [43, 68, 83]. Yoder et al. [84] indicated biochar
costs around $0.1/kg much lesser than the low-priced
activated carbon around $5/kg.

3.3 Hydrochar

Hydrochar is a major stable solid product of hydrother-
mal carbonization or liquefaction process, sometimes
called as HTC biochar. Hydrochar is hydrophobic in
nature that has high quantities of stable carbon and
nutrient contents, vital for soil amendment [58]. In the
comparison of hydrochar and biochar, they are typically
different from their production and properties.
Hydrochar has lower carbonization degree than biochar
by pyrolysis, higher H/C ratios and lower aromaticity
[59, 75].

HTC exhibits higher carbon efficiency (i.e., amount
of carbon in final product compared to initial carbon
content of the feedstock) than other biomass conversion
techniques. Hydrochar is a “carbon sink” that stores
total carbon present in raw material. This could be used
as an energy source directly from hydrochar without
any further treatment and which also reduces GHG
emissions.

3.4 Modifications and activation of biochar

The modification and activation of biochar are recently
becoming important due to their role in improving the
quality of biochars and expanding its applications.

3.4.1 Activation

Activation of biochar is a process for optimizing the sorp-
tion capacity through enlarging specific area and it can be
done in two ways either by one step as direct activation or
two steps by an activation after pyrolysis process. There
are biological, physical, and chemical activation of bio-
chars. Biological activation of biochar increase the water
and nutrient retention in soils that can happen naturally
(several months to years) or can be fastened by addition of
manure/compost [79]. Physical and chemical activationTa
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are carried out by using several physical/chemical activating re-
agents. The physical activation is also called as thermal activation
or gas activation of biomass which is mainly used to increase its
porosity. The common physical activating agents used are water,
steam, CO2, air/O2 [56]. The chemical activation of biochar
changes its porous structure, functional groups on biochar sur-
face, and its adsorption capacity [69]. Some of the chemical
activating agents used are KOH, H3PO4, K2CO3, NaOH,
ZnCl2, FeCl3, H2SO4, HCl, HNO3, Urea, etc.

Both physical and chemical activation have advantages and
disadvantages. The physical activation takes place at high
temperatures and produces low yields, whereas, chemical ac-
tivation takes place at low temperatures with higher yields
depending upon the activating agent used. Even, chemical
activation sometimes has demerits like causing corrosion
problems based on acidic/basic nature of chemical activating
agents involved [59]. The extent of activation depends upon
chemical used, mixing intensity, temperature, and duration.
Study by Jin et al. [69] chemically activated surface of
MSW biochar for enhanced As (V) adsorption capacity by
2 M KOH solution. The study results showed that chemically
activated MSW biochar have greater adsorption capacity than
non-activated biochar with 30.98 and 24.49 mg/g, respective-
ly. In some cases, chemical activation of biochar surfaces may
cause hazardous/unwanted by-products generation in applica-
tion to soil due to exposure to chemicals [85]. The extent of
physical activation depends upon biomass type, oxidant (or
physical activating agent), temperature and duration [56].
Borchard et al. [85], physically activated wood biochar by
steam activation for improvement in soil amendment. The
biochar activation was conducted at 900 °C for 30 min, where
hot water steam (ambient air - N2/O2 gas mixture) was intro-
duced into the reactor at every 30 s/min. The results showed
that the physical activation of biochar has increased soil nutri-
ent retention, availability and uptake by plants by a factor of 2,
when compared to non-activated biochar.

3.4.2 Modification

Modification of biochar is a process for increasing sorption
capacity for the specific sorbates. It is generally done by in-
troduction of non-carbon moieties to the biochar surface.
Modification can be done after or instead of activation [56].
Some of the recent modifications methods of biochar are met-
al impregnation, low-temperature plasma, organic matter
grafting and ozone oxidation [54]. Oxidative modification
can be done by hydrogen peroxide (H2O2) or nitric acid
(HNO3) at low temperatures to create oxidized functional
groups and sometimes ammonia/sulfur is also used. Biochar-
based composites are produced by impregnation or coating the
surface of the biochar with metal oxides, clay minerals, car-
bonaceous structures (graphene oxide or carbon nanotubes),
complex organic compounds (chitosan) or amino acids, or

inoculation with microorganisms [86]. The common metal
ions used for impregnation are iron, magnesium, silver, zinc,
etc. Akgul et al. [87] conducted a modification process in tea
biochar using metal salts for elimination of pollutants such as
PO4

3− and Cd2+. The metal impregnation on biochar was car-
ried out using metal oxides (of Mg, Fe, Mn, and Al) which
improved the adsorption capacity. The study results showed
that both biochar and metal-impregnated composites are good
and inexpensive compounds for phosphate and cadmium re-
moval, especially due to their more surface functional groups
rather than porosity. Among the different metal impregnated
biochars prepared, Mg-impregnated tea biochar is most effec-
tive composite for Cd2+ and PO4

3−removal. The possible ap-
plications of biochar are detailed below.

4 Applications of biochar

Biochar is a sustainable alternative to other carbon materials.
A schematic diagram of potential biochar applications in var-
ious fields is depicted in Fig. 1. Many authors have studied the
applications of biochar [26, 34, 88–92]. Biochar application
on soils has wide advantages for soil fertility improvement.
Biochar produced from large-scale industrial purposes to
small-scale domestic purposes [32].

4.1 Soil improvement

Several author’s have reported benefits of biochar addition
to soils [36, 91, 93–98]. The direct benefits are soil fertility
enhancement, remediation of polluted soils and increase of
soil carbon storage [25, 93]. The soil properties (pH, bulk
density, water holding capacity, or cation exchange capac-
ity), plant growth and carbon uptake are improved on ad-
dition of biochar to it. It also causes native soil organic
matter decomposition and non-CO2 greenhouse gas emis-
sions to occur due to variations in soil moisture and/or
nutrient availability [65]. Biochar on to soil is a ‘carbon
negative’ as the carbon sink is converted as a carbon stor-
age and it is present in soil for hundreds of years [24, 99].
Carbon mineralization studies of biochar addition to soils
are done [98, 100, 101]. Biochar’s diverse ability to influ-
ence nitrogen cycling processes are explained in detail
elsewhere [102]. A study by Novak et al. [70] demonstrat-
ed a sandy Ultasol soil amended with switchgrass
(Panicum virgatum L.) biochar increased water hold-
ing capacity by 6.7 to 15.9%. Non-irrigated soil field can
be used for crop production using biochar amendment as it
retains more water from rainfall than un-amended soil [93].
An indirect benefit can be improved infiltration, leading to
less field run-off (i.e., erosion potential).

A clay loam soil amended with wood-derived biochar in-
creased the soil workability (at dosages of 6 or 10%), fertility,
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texture, plasticity index, and moisture retention was demon-
strated by Ahmed and Raghavan [77]. Wardle et al. [103]
described a “priming” effect of biochar, in which biochar
amendment catalyzed decomposition of existing soil organic
carbon. Biochar amended soil studies by different authors: (i)
A meta-analysis of biochar and its effects on plant productiv-
ity and nutrient cycling was carried out by Biederman and
Harpole [104]. (ii) Positive and negative carbon mineraliza-
tion priming effects among a variety of biochar-amended soils
was observed by Zimmerman et al. [105]. (iii) The soil biota
and their microbial activity also affected by biochar addition
whichmaintains the soil health [91, 106, 107] and (iv) Biochar
commonly used as an agricultural soil amendment can im-
prove crop production in acidic soils [94].

Mukherjee et al. [108] studied oak biochar (at 650 °C) for
their effects on silt loam soil properties, greenhouse gaseous
emissions, and their global warming potential. The biochar
amendment resulted in considerable rise in soil carbon content
(7%) and surface area (15%), whereas the soil bulk density
dropped (13%) compared to control. A study by Rondon et al.
[91] showed biological nitrogen fixation by common beans
showed significant improvement when moderate rates of bio-
char additions were done. The nitrogen fixation increased
from 50% for soils without biochar additions to 72% with
90 g kg−1 biochar added soils. While total nitrogen derived
from atmosphere considerably raised by 49 and 78% with 30
and 60 g kg−1 biochar addition to soil, respectively. Ahmed
et al. [109] studied the effect of maple wood (Acer sp.) biochar

(at 500 °C) on silt loam soil. They evaluated the
compactibility and strength of biochar amended soil, which
resulted in decreased bulk density (18.1%), penetration resis-
tance (66.6%), shear strength (97.4%) and, increased moisture
content (26.8%), plastic limit (5.3%), liquid limit (13.7%),
plasticity index (8.4%) than non-amended soil.

4.2 Climate change mitigation in soil aspects
(reduction of greenhouse gaseous emissions
and carbon storage)

Biochar as soil amendment, mitigates climate change by re-
ducing greenhouse gas emissions and sequestrating carbon are
being evaluated. It also simultaneously improving the soil
properties and its functions [93]. Biochar having properties
such as C/N ratio < 30, O/Corg < 0.2 and H/Corg < 0.7 are
shown to mitigate climate change and sequester carbon in soil
[73]. The biogenic carbon is stored in soil by biochar addition
and thereby offsetting carbon emissions, which are usually
emitted during fossil fuel burning [110–113]. The biochar
addition to soil has potential to decrease CO2 emission release
back to atmosphere and substantially reduces greenhouse gas-
eous emissions (N2O and CH4) from soils which has a pre-
dominant effect on abatement of greenhouse effect [36]. The
climate impacts of biochar are studied in detail byMeyer et al.
[114]. Biochar amendment into soil has been recommended as
a key to offset the global greenhouse gas emissions by
Lucchini et al. [115]. The production processes of biochar also

Fig. 1 Applications of biochar. Source: Adapted from Novotny et al. [43]
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influence GHGs from initial biomass collection, transporta-
tion, biochar generation and until its use [65]. Biochar stability
decides its appropriateness as a climate mitigation tool.

The soil emission studies with biochar in varying soil types
world-wide are summarized in Table 5. Several studies have
reported increase/decrease of methane and/or nitrous oxide
emissions from soils amended with biochar as shown in
Table 5 [71, 101, 116–121]. From the studies, it shows that
soil properties such as carbon content, nitrogen content, and
C/N ratio played a foremost role in the emission of CH4 and
N2O. Biochar amended in soil containing higher nitrogen,
lower carbon and C/N ratio resulted in elevated N2O emis-
sions, and also sometimes reduced CH4 emissions [67].

4.2.1 Influence of biochar on CO2 and CH4 emission reduction
in soil

The biochar in soil has both positive/negative effects on CO2

emissions. In some studies, biochar CO2 emissions elevated
with heating temperature and duration [122], few studies re-
duced CO2 emissions from soil [123] and some has no signif-
icant effect or minor effect on CO2 flux [97, 120, 124]. During
biochar addition to soil, an immediate short-term rise in CO2

emission was demonstrated by many authors [105, 122, 125]
which might be due to biotic consumption or abiotic release of
some biochar particles and/or higher mineralization of native
soil organic matter [100, 126, 127]. Biochar subjected to mi-
crobial incubation were evaluated for carbon dioxide emis-
sions under combustion conditions for a year. It revealed that
biochar with abiotic incubations resulted in higher carbon re-
lease around 50 to 90% than that of microbially inoculated
incubations. Both biochar incubations reduced the amount of
emissions with their raising char temperature [122]. The car-
bon content in soil is almost 3.3-fold higher concentration
than the atmosphere and 4.5-fold more than plants/animals,
respectively [128].

Several author’s explored the effect of biochar on CH4 and
CO2 emissions in different soil types. A study by Liu et al.
[123] showed bamboo chip and rice straw biochar amended in
paddy soil reduced the CH4 and CO2 emissions, however, rice
straw biochar was very efficient. The decrease in CH4 emis-
sions is observed due to methanogenic activity inhibition and/
or methylotrophic activity stimulation. A study by Zhang et al.
[129] also showed a significant reduction in indirect CO2

emission from rice paddy field amended with biochar. In a
Mediterranean wheat crop, biochar addition (3 or 6 kg m−2)
has no significant increase of CO2 and CH4 emissions studied
by Castaldi et al. [120]. Biochar addition to boreal agricultural
soil had no effect on CO2 fluxes in short-term pilot field study.
Whereas, increased water holding capacity and CH4 uptake
(96% increase avg. cum. CH4 uptake) rate were observed in
biochar amended soil than control plots [124]. The amounts of
CH4 emissions will greatly depend on physico-chemical

properties of biochar, soil type, microbiological circum-
stances, and water/fertilizer management [123]. Yu et al.
[130] demonstrated soil moisture levels and microbial com-
munities of different soils in influencing production and con-
sumption of CH4 emission following biochar amendment.
Matovic [131] calculated that biochar production and its
amendment in soil revealed that globally 10% of net primary
productivity in a year would be offset towards annual incre-
ment of CO2 emission in atmosphere. Biochar reduces global
greenhouse gaseous emissions annually by 12% and seques-
ters 2.2 Gt C/yr by 2050 [19, 65]. Gaunt and Lehmann [132]
exhibited abatement of GHG emissions for biochar produc-
tion from corn stover and switchgrass at 10.7 and 12.6 t CO2

ha−1 yr−1, respectively. Carbon sequestration of 200 million
metric tons (0.2 Pg) annually can be achieved by incorporat-
ing biochar into soils [110]. Biochar produced at higher tem-
peratures has greater carbon sequestration capacity than pro-
duced at lower temperature [78]. Spokas et al. [133] studied
the effects of woodchip biochar addition on the greenhouse
gas emission. Study by Sheng and Zhu [134] investigated
microbial response and CO2 emissions in biochar amended
soil under varying pH (5.19; 7.81) and application rates. The
results showed CO2 emissions elevated in acidic ferralsol soil
owing to maximum biochar degradation, whereas CO2 emis-
sions reduced in alkaline phaeozems soil due to negative prim-
ing effect of soil organic carbon. The pH parameter in soil
plays an important role for CO2 emissions by increasing the
bioavailability of organic carbon. Lehmann [25] investigated
the effect of biochar amendment in arable and forest soils,
which showed that it can amplify the carbon storage in soils.
Fargione et al. [135] indicate that by 2025, biochar has the
potential to sequester 95 million tons of CO2 annually in the
USA at costs of up to $100 per ton of CO2. Increased soil
carbon sequestration by amending agricultural soils with bio-
char, which converts non-recalcitrant carbon (residue bio-
mass) to recalcitrant carbon (biochar) through pyrolysis.
79.6% of biochar carbon persists on a time scale of >
100 years.

4.2.2 Influence of biochar on N2O emission reduction in soil

Many authors’ reported effects of biochar application to soil
on nitrous oxide emissions [95–97]. Mukherjee et al. [108]
measured greenhouse gaseous emissions of a silt loam
amended with biochar obtained from the slow pyrolysis of
oak at 650 °C, at 0.5% w/w (7.5 t/ha). N2O emissions were
drastically reduced amounting to 92%. Biochar addition pro-
duced a net negative Global Warming Potential (GWP) effect.
Sun et al. [136] studied combined effect of biochar and nitro-
gen fertilizer on plant nitrogen uptake and N2O emissions in a
cereal rotation system on a sandy loam soil. Four levels of
nitrogen fertilizer, corresponding to 0, 50, 100, and 130% of
recommended fertilizer level, were applied in winter wheat
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(Triticumaestivum L.) and winter rye (Secale cereal L.)
followed by crop oil radish (Raphanus sativus L. var.
oleiformis). Without applied fertilizer, 39% higher nitrogen
uptake was found in the presence of biochar, accompanied
by higher soil NH4

+ content and elevated cumulative CO2

emissions. Biochar showed no effect on N2O emissions and
nitrogen uptake at recommended nitrogen fertilizer rate. At
130% of fertilizer level, 16% lower nitrogen uptake and lower
cumulative N2O emissions were found in biochar-mediated
treatment. Biochar amendment in a boreal agricultural soil
(9 t ha−1) showed no significant effect on N2O fluxes mea-
sured between sowing and canopy closure even under highest
N2O emissions capture period [124]. Brassard et al. [137]
showed the life cycle approach of switchgrass to biochar as
a negative emission technology from cultivation, harvesting,
transportation, pyrolysis of biochar, soil amendment till bio-
oil/syngas as energy sources.

4.2.3 Soil carbon storage

Biochar application to soils that sequester carbon is currently
being considered as one of the promising way for mitigating
climate change [93]. Biochar is a way of getting carbon into
soils as a carbon sink and it is recommended as long-term soil
carbon storage by many authors [25, 110]. Steinbeiss et al.
[138] demonstrated that biochar amendments increase the car-
bon storage in soils. They used biochar produced from hydro-
thermal pyrolysis of glucose and yeast. The study results
showed that the mean residence times of biochar in soils var-
ied between 4 and 29 years, depending on soil type and quality
of biochar. The biochar combining fertilizer and carbon stor-
age function in soils would activate the microbial community
leading to nutrient release and fertilization and would add to
the decadal soil carbon pool. Biochar contributes to refractory
soil organic C pool that can decrease atmospheric CO2 con-
centrations, thus decreasing effects of global warming [35,
100]. Wang et al. [139] described that biochar can persist in
soils on a centennial scale, has a positive effect on soil organic
matter dynamics and contributes directly to long-term C se-
questration in soils. A recent study by Minamino et al. [140]
demonstrated that biochar addition on a leaf litter decomposi-
tion in a forest soil ecosystem facilitated efficient C sequestra-
tion. The biochar from wood waste will be a good option to
increase the soil carbon. The forest soils are shown to contain
less carbon due to soil fertility loss caused by unmanaged
fertilizer application practises. So, to replenish it with carbon
from wood biomass waste or leaf litter from forests can be
converted to biochar and utilized. This will sequester carbon
in soil and carbon cycle is well maintained. Wood waste into
biochar is cheap to produce and also generates revenue
through selling it. The biochar addition in degraded forest
soils will increase soil carbon content and also mitigate the
global climate change.

Biochar proved to be an effective means to mitigating
greenhouse gaseous emissions from soils. Developing coun-
tries like India can widely use this approach for biochar pro-
duction from biomass wastes for soil amendment in forest and
agricultural soils that has potential for extremely changing
global climate scenarios. This soil amendment method will
have immense advantages, especially in increasing soil water
holding capacity and carbon content which possibly can con-
tribute towards expanding the green cover in India.
Implementation of wide awareness about the advantages on
the use of biochar for forest conservation such as increment in
soil carbon, forest land management, revenue generation from
biomass to biochar and its potential role in strategic wildfire
risk reduction has to be strongly emphasized world-wide.

4.3 Energy production

Bioenergy produced from biomass pyrolysis can replace non-
renewable energy usage [132]. The energy production is most
favored in fast pyrolysis of biomass, where its products such
as syngas (gas product) and bio-oil (liquid product) are con-
sidered as substitutes for fossil fuels. Generally, bio-oil has
lower energy content than fossil fuel; however, with subse-
quent refining processes, it can be used as an alternative ener-
gy source. The use of bio-oil for other applications is explored
in the literature. Ko et al. [141] studied pyrolysis fuel oil
(PFO) molecular structures for its utilization as a raw material
for mesophase pitch synthesis. The structural analysis (ele-
mental analysis, matrix-assisted laser desorption/ionization
time of flight mass spectrometry, 1H NMR and 13C NMR)
data revealed aromaticity of PFO. It had three aromatic rings,
one naphthenic ring fused with one pericondensed and two
catacondensed aromatic carbons and a short alkyl side chain
(with a methyl group) shown as a viable source for mesophase
pitch synthesis. PFO is also used for preparation of petroleum-
based impregnating pitches using two-step heat treatment
without a separation process studied by Choi et al. [142].
Bio-oil can soon be applied in transportation fuels, heating
oil, and for extracting some chemicals with treatments by
zeolite cracking, hydrodeoxygenation and aqueous phase pro-
cessing [44]. Electricity production in single-anode/cathode
Microbial Fuel Cell (MFC) fed with simulated synthesis gas
(syngas) as the sole electron donor has recently been demon-
strated by Hussain et al. [143]. To address the growing de-
mand, the pyrolysis of biomass to renewable energy produc-
tion is a good option and it can help in mitigating global
warming.

4.4 Waste management

The different biomass waste materials as shown in Table 1 are
widely used for the biochar, syngas and bio-oil production.
The pyrolysis of various biomass wastes is summarized in
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Tables 3 and 4. The waste materials are converted to useful
materials for combating climate change and energy
production.

4.5 Environmental remediation

The biochar is commonly used for removal of pollutants by
acting as adsorbent [26, 34, 69, 144]. The efficiency of con-
taminants removal depends on biochar’s properties like sur-
face area, pore size distribution and ion-exchange capacity
[141]. A study by Huggins et al. [145] showed that biochar
is better than activated carbon for high strength wastewater
treatment. It has significant adsorption capacity for phosphate,
ammonia, and COD at higher concentrations. The
macroporosity of biochar supports in unblocking of smaller
micropores which could contribute in higher adsorption
capacities.

4.6 Building materials

Biochar application in building materials (both concrete and
asphalt) is recently being explored. It can sequester carbon,
enhance the properties of the building materials and also re-
duce the embodied energy of such construction materials.
Gupta and Kua [146] explored the use of biochar as concrete
admixture that reduces the greenhouse gas emissions when
used in building constructions. A study by Consentino et al.
[147] demonstrated the use of biochar as nanoparticles in ce-
ment matrix composites (as filler). This improved the mechan-
ical properties of the composites and sooner has wider oppor-
tunity for creating new green building materials from it.
Biochar is also explored as a replacement for any product that
utilizes carbon black in its manufacture (such as tires, plastic,
ink, etc).

4.7 Others

The other applications of biochar, syngas, and bio-oil are fuel
cells, super capacitors, catalyst, heat generation, power pro-
duction, gas purification, water sanitation and metallurgy
[148–151]. Study by Yuan et al. [130] used sewage sludge
biochar at 900 °C as cathodic oxygen reduction reaction cat-
alyst in aMFC.Maximum power density of 500 mWm−2 was
obtained from biochar cathode. The results are comparable to
Pt cathode, hence biochar can be a potential alternative to Pt in
MFCs.

5 Limitations

Biochar has several advantages, however many authors have
also highlighted the associated limitations for its production
and application. The challenges during different production

processes are addressed in detail by Meyer et al. [114]. They
have pointed out that extensive exploration on biochar capa-
bility produced from gasification processes for soil improve-
ment and data from pilot projects is needed for biochar tech-
nology commercialization purposes. In-depth studies on the
biochar stability and its carbon perseverance in different soil
and climatic conditions [65, 111]. A study by Wardle et al.
[103] described a risk to forest (duff), surface organic matter.
Similarly, if assumed to apply for a Histisol (soil OM accu-
mulations exceed decomposition; i.e., peat soil) at the wrong
loading, the following consequences are expected to occur. It
may be possible to alter OM accumulations and change the
soil’s developmental trajectory. Also given the water holding
capacity potential, it may also be possible to alter the angle of
repose for wet soils on a slope. Therefore we need to be judi-
cious as to where biochar is placed as a treatment. The loca-
tions least likely to have a detrimental effect, are stable slopes
with low soil productivity and drought conditions. Biochar’s
adverse environmental impacts, particularly a reduction in ag-
rochemical effectiveness and introduction of soil contami-
nants are to be evaluated. Processing difficulties due to vari-
ability of biomasses, dust from fine biochar particles and prop-
er degradation mechanism of biochar in soils are not known.
Interactions among biochars, soils, microbes and plant roots
are not well understood. The impact of biochar on soil nutrient
dynamics are still not clear. The degradation rates of biochar in
soil to be known [79]. The detailed information for policy
makers and industrialists is still required to run pilot-scale
studies with biochar for soil improvement and climate change
mitigation.

6 Conclusion and future scope

Biomass wastes from different sources are used to produce
useful and renewable carbon material called Biochar. The var-
ious thermo-chemical methods for biochar production are
summarized. The biochar, syngas, and bio-oil products yield
are based upon the pyrolysis conditions such as heating rate,
temperature, chemical composition, residence time, etc.
Biochar application on soil for its impacts on soil properties
and greenhouse gaseous emission is to be well understood.
The other applications of biochar in various fields such as
waste management, soil improvement, energy production, en-
vironmental remediation, climate change mitigation is
discussed. Some limitations for application of biochar in
pilot-scale studies have to be addressed in future studies.
The policy-makers, industrialists and general public are to be
well informed about full technical details and awareness about
biochar production and its benefits.
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