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Abstract
This paper is a study on effects of separation procedures on yield and characteristics of biocrude derived from hydrothermal
liquefaction (HTL) of Tetraselmis sp. microalgae. The algae was grown and cultivated in outdoor open raceway ponds. The HTL
experiments were performed using 1 l custom built high pressure–temperature reactor with inbuilt magnetic stirrer. HTL
experimental studies were conducted at reaction temperature of 350 °C and 15 min holding time using alga solids loading of
16 w/v%. HTL product mixture diluted with dichloromethane (ratio 1:1) was allowed to stand for 1 h, 3 h, 6 h, 7 h, 8 h, 9 h, 10 h,
11 h, 12 h and 15 h at room temperature. The result showed that varying stand times for product mixture separation influenced
yields in biocrude, solid residue and dissolved aqueous solids. Biocrude yields were in the range of 30 wt% to 56 wt%
characterised with higher heating value of ~ 35 to 37 MJ/kg and hydrogen to carbon atomic ratios of 1.56 to 1.95. Maximum
yield of biocrude was obtained after 9 h stand time for product mixture and dichloromethane (PM–DCM) mixture. Although,
varying PM–DCM mixture stand times showed variation in product yields, there was no clear trend in distribution of elemental
contents. Majority of alkali metals distributed in aqueous phase and solid residue, which could be used as nutrients, an alternative
to conventional fertiliser.
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1 Introduction

Biomass availability and accessibility across the World is con-
sidered as one of the main feedstocks for producing renewable
energy and value-added chemicals [1, 2]. Due to microalgae
faster growth rate, higher oil content, higher biomass produc-
tivity and its renewability, microalgae have been considered as
promising feedstocks for biofuel production when compared
to terrestrial biomass [3]. Hydrothermal liquefaction (HTL),
also referred to as direct conversion, is one of the promising
technologies for conversion of biomass to biofuels.

HTL decomposes large organic molecular-weight com-
pounds to small molecules [4]. Specifically, HTL is performed

at moderate temperature (200 to 370 °C) and high pressure
(2 MPa to 25 MPa) with or without catalyst [5] using 5 to
20 wt% algae biomass solids loading. HTL main product is an
organic liquid referred to as biocrude having an energy con-
tent in the range of 30 to 40 MJ/kg. Biocrude is produced
through different reaction pathways such as depolymerisation,
decomposition and reformation [6, 7]. The resultant biocrude
is characterised with undesired high heteroatoms such as ox-
ygen and nitrogen; hence, upgrading is necessary in order to
meet standard fuel specifications [8]. Solid residue, aqueous
and gas phases are other products derived from HTL.

A review of scientific literatures showed that several
research studies have been investigated on HTL of algae,
ranging from effects of reaction conditions, kinetic model-
ling, solvent types, algal strains, upgrading and review
papers [7, 9–16]. These studies mainly aimed at
optimising yield and properties of biocrude. These studies
have demonstrated the feasibility of future commerciali-
zation of HTL algal biorefinery. Despite these numerous
investigations, the separation methods for effective
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recovery of HTL products are still unclear [17].
Recovering of biocrude from HTL–product mixture
(HTL–PM) could be categorised into two separation
methods [17, 18]. One method is to allow the PM to
separate spontaneously into biocrude, residue and aque-
ous phases as a result of their immiscibility and differ-
ences in density [10, 18, 19]. The second method is the
addition of an organic solvent to the cooled PM, which
dissolves the biocrude and enhances its separation from
solid and aqueous phases [12, 14, 20]. Higher molecular
weight organic compounds are extracted in biocrude using
latter method [9], leading to an increase in total biocrude
yields [10, 16, 19]. Hence, almost all HTL experimental
studies in the literature applied this approach to recover
biocrude from HTL–PM [2, 11–13]. Moreover, dichloro-
methane (DCM) is the most frequently used organic sol-
vent [4, 14, 17, 18, 21], which could be due to its mod-
erate dielectric constants and capability to dissolve both
polar and non-polar chemical compounds [22]. Vlaskin
et al. [9] and Yang et al. [23] reported that DCM led to
highest yields in biocrude and of better quality compared
to other solvents such as acetone, hexane, chloroform and
tetrahydrofuran.

Typically, after the HTL reaction step, a product mixture is
produced, where an organic solvent (such as dichloromethane
(DCM)) is mixed with the product mixture. Thereafter, the
mixture of product mixture and DCM (now referred to as
PM–DCM) is allowed to stand for phase separation.
However, almost all HTL studies have not reported on the
allowed stand time for PM–DCM mixture. Although, Bi
et al. [5] reported 4 h PM–DCM stand timewhen investigating
catalytic effects on biocrude yields from treatment of partially
defatted Cryptococcus curvatus at 300 °C and 350 °C. Eboibi
et al. [11] reported 8 h PM–DCM stand time for thermal
upgrading of biocrude produced from HTL of Spirulina sp.
and Tetraselmis sp. These studies reported influence of cata-
lysts and upgrading on biocrude yields, but no report on ef-
fects of PM–DCM stand time on biocrude yield and
properties.

The reason for differences in allowed stand time for
PM–DCM mixture in previous reports is not clear; hence,
further investigations may be required. It is believed there
is transfer of molecules between layers towards formation
of biocrude phase, residue and aqueous phases. Therefore,
the allowed stand time for PM–DCM mixture to equili-
brate prior to separation of layers may influence yields
and properties of products, particularly biocrude. To the
best of my knowledge, there is no published report on this
aspect of study. If biocrude yield and properties are af-
fected by product mixture and solvent stand time, then
reported data in literature may be a concern. To a very
large extent, biocrude yields are important data used to
evaluate performance of HTL algal biorefinery [23, 24].

Thus, it is essential to examine impact of stand time of
PM–DCM on biocrude recovery from HTL product mix-
ture. This could provide more information and potentially
discover hidden effects for more economical and efficient
separation methods for HTL algal biorefinery.

Moreover, after liquefaction reaction, Boens et al. [12]
added distilled water and DCM into the reactor containing
product mixture and then stirred for 1 h 30 min. The stirred
solution was transferred to a separating funnel for phase sep-
aration. This procedure enhanced biocrude yield; however,
allowed stand time was not reported. Biller and Ross [13]
added 50 ml each of DCM and water to the product mixture,
of which two layers were obtained. Although yields in
biocrude, solid residue and aqueous phase were reported,
there was no data on stand time. Also, centrifugation tech-
nique has been used in previous HTL product and separation
procedures to extract biocrude from solid and aqueous phase
mixture [4, 14]. However, such practices may not be applica-
ble at large scale. Even after using a centrifuge, time is nor-
mally given for contents in a vial to equilibrate before using
pipette to withdraw product fractions. Hence, knowing a suit-
able time may be necessary during separation of products
from PM–DCM mixture.

Sheng et al. [14] and Wang et al. [25] after mixing DCM
with product mixture immediately filtered (using microporous
membranes 0.45 μm) the PM–DCM mixture to remove
solids. Then, the filtrate was transferred to a separating funnel
where it was allowed to stand for certain period; however,
time allowed was not reported. In related studies, Huang
et al. [26], Jindal and Jha [27] and Yang et al. [28] initially
filtered solid residue from product mixture before mixing
DCM to the filtrate (containing water and organic phase).
The filtered solid residue has been reported to contain residual
organics [16, 29]; hence, such procedure may reduce total
amount of biocrude and increase in yield of solid residue.

Based on reviewed scientific literature, it could be
agreed that different separation procedures have been
used to obtain yields after liquefaction. Also, extraction
of biocrude from product mixture has been carried out
arbitrary, in terms of product mixture and solvent stand
time. Moreover, mixing solvent with product mixture
and allowed to stand for certain period enhances disso-
lution, thereby improving recovery of hydrocarbons and
reduction in solid residue and aqueous phase by-prod-
ucts. Hence, knowledge of PM–DCM stand time is nec-
essary as it would help to formulate specific recom-
mends for HTL separation procedure. Also, it would
help for recovery of optimum yield in biocrude of better
quality during downstream processing of HTL products.
Therefore, the main aim of this reported study was to
investigate the effects of stand time for the mixture of
PM–DCM on yields and properties of biocrude after
hydrothermal liquefaction.
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2 Materials and methods

2.1 Materials

Tetraselmis sp. microalga biomass was used in the present
study. The alga was grown and cultivated in outdoor open
raceway ponds at Pilot Plant, Biotechnology Division, Aban
Infrastructure Pvt. Limited, Chennai, India. Details of the alga
biomass culturing, harvesting and characterisation have been
reported elsewhere [30]. Harvested biomass slurry having ~
16w/v% alga solids was stored (− 8 °C) in refrigerator prior to
liquefaction experiments. Dichloromethane (DCM) of 99%
purity was used as the organic solvent.

2.2 Hydrothermal liquefaction: product mixture
production

Production of product mixture was achieved by HTL of the
harvested alga using a custom built Inconel batch reactor of 1 l
capacity. The reactor has a designed capacity of 500 °C and
350 bar as operating temperature and pressure, respectively,
with an inbuilt magnetic stirrer. HTL experiment was conduct-
ed at reaction temperature of 350 °C at 15 min holding time.
Typically, in each run, 500 g alga slurry was loaded in the
reactor. Then, the reactor was sealed and heated to 350 °C
(± 4 °C) using an inbuilt electrical heating jacket. Holding
time started when reaction temperature reached 350 °C and
then maintained for 15 min. After complete holding time, the
reactor was switched off and cooled to room temperature.

2.3 Product separation and quantification procedure

The gas phase was released via the gas valve after cooling to
room temperature. Then, the reactor content now referred to as
product mixture was transferred to a beaker. About 200 ml
(50 ml of water and 150 ml DCM) was used to rinse products
stuck to the reactor wall and internal parts (magnetic stirrer)
and then transferred to the beaker containing the rest product
mixture. The water helps to wash/remove nonoil solution
while DCM for oily substance. Thereafter, DCM was mixed
with the product mixture in ratio 1:1 and then stirred at
300 rpm for 5 min. The mixed product mixture and DCM is
defined as PM–DCM. Then, equal volumes (100 ml) of PM–
DCM were transferred to separating funnels SF1, SF3, SF6,
SF7, SF8, SF9, SF10, SF11, SF12 and SF15 and sealed with
rubber cork. Separating funnel SF1, SF3, SF6, SF7, SF8, SF9,
SF10, SF11, SF12 and SF15 were allowed to stand for 1 h, 3 h,
6 h, 7 h, 8 h, 9 h, 10 h, 11 h, 12 h and 15 h, respectively, for
phase separation.

After each predefined stand time, the PM–DCM was sep-
arated into three layers, a bottom layer (residue), middle layer
(biocrude phase) and a top layer (aqueous phase or also
known as wastewater). Then, each layer was decanted into

separate beaker and labelled accordingly. The residue and
aqueous phases were rinsed with DCM three times, in order
to enhance extraction of hydrocarbons stuck to pores. The
washed fractions were allowed to stand for 3 h after decanting
and added to respective beakers containing biocrude, residue
and aqueous phases. The biocrude phase was vacuum evapo-
rated at ~ 40 °C in order to remove DCM and residual water,
and the remnant was defined as biocrude [2, 17]. The residue
was dried at ~ 100 °C, the dried fraction referred to as solid
residue [11, 29]. Similarly, the aqueous phase was dried at ~
100 °C, and dried fraction was defined as dissolved aqueous
solids [16, 24]. The experimental runs and separation proce-
dures were conducted in triplicate and average yields reported.
A schematic diagram of production and separation procedure
is shown in Fig. 1.

2.4 Analysis

The gravimetric yields in biocrude (ash free dry weight), solid
residue and aqueous phase were determined by relating the
mass of product to mass of algal slurry loaded into the reactor,
whereas yields in gas phase + loss were determined by differ-
ence using the calculated yield of remaining fractions.
Samples of biocrude, solid residue and dissolved aqueous
solids were analysed with regard to elemental content of car-
bon (C), hydrogen (H), nitrogen (N) and sulphur (S) using an
elemental analyser (VariolEL III elemental analyser system

Algae Slurry

HTL

Product Mixture

Gas phase

Transfer equal volume to 

separating funnels

B1-n SR1-n DAS1-n

SF1-n

Add DCM in ratio 1:1

Fig. 1 HTL production and separation procedures with respect to stand
time. SF1 − n : separat ing funnels at t ime intervals. DCM:
dichloromethane. B1 − n: biocrude obtained from separating funnels with
respect to time. SR1 − n: solid residue obtained from separating funnels
with respect to time. DAS1 − n: dissolved aqueous solids obtained from
separating funnels with respect to time

Biomass Conv. Bioref. (2019) 9:379–387 381



GmbH) in accordance with ASTM D5291. The elemental
content of oxygen (O) was determined by difference. Based
on CHNSO data, the higher heating value was estimated using
a unified correlation (Eq. (1)) proposed by Chinnawala and
Parikh [31]. Equation (1) has been used previously to estimate
HHVof biocrudes from HTL of algae [2, 11, 16, 24].

HHV
MJ

kg

� �
¼ 0:3491Cþ 1:1783H

þ 0:1005S−0:1034O−0:0151N−0211A ð1Þ

where C, H, S, O, N and A represent elemental carbon, hy-
drogen, sulphur, oxygen, nitrogen and ash. The amount of
energy recovered (ER) in biocrudes from SF1 − n was estimat-
ed using Eq. (2) [29, 32].

ER ¼
HHV of product

MJ

kg

� �
�Mass of product kgð Þ

HHV of algal slurry loaded
MJ

kg

� �
�Mass of algal slurry loaded kgð Þ

� 100%

ð2Þ

In Eq. (2), 19.2 MJ/kg was used as the HHVof algal slurry
[11, 24]. The H/C, N/C and O/C atomic ratios were estimated
according to the methods explained in previous report [14].

To know the compositional changes in resultant biocrudes,
sample of biocrudes (diluted with acetone to 2.5 v/v%) obtain-
ed from SF1 − n were analysed for chemical compounds using
Gas Chromatography-Mass Spectroscopy (GC-MS) (Agilent
HP-5 column of 50m x 200μm x 0.33μm) according to method
reported previously [24]. In addition, the ash fractions of

biocrudes derived from SF1 − nwere analysed for their metallic
composition using Inductively Couple Plasma Mass
Spectroscopy (ICP-MS) (Agilent 7500 Series). Ash fractions
were determined in accordance with the method explained in
previous report [11].

3 Results and discussion

3.1 HTL product yields

The obtained mass yields in biocrude, solid residue, dissolved
aqueous solids and gas + loss are presented in Fig. 2. The data
obtained showed substantial variation in fractional yields, sug-
gesting stand time could have influenced PM–DCM mixture
during phase separation. The yields in biocrude yield in-
creased from 30 to 56 wt% when stand time increased from
1 to 9 h. However, biocrude yields decreased from 56 to
42 wt% with further increased in stand time. Although there
could be several reasons behind variation in yields, one of the
reasons could be that mixture having different molecular
weights and densities needs suitable time to equilibrate.
Suitable time is important to allow molecules of similar den-
sity in a mixture to equilibrate.

The solid residue decreased from 20 to 14 wt% when
stand time increased from 1 to 9 h. Although there were
no substantial differences in solid residue with further
increase in time, the numerical differences suggest side
reactions could have occurred. Such side reactions seem
to have f avou red fo rma t i on o f so l i d r e s i due .
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Decomposition of cyclic oxygenates leads to formation of
residue. In addition, Mailallard and dehydration reactions
favour intermolecular restructuring [33]. Also, it leads to
an increase residue formation and reduction in biocrude
yield. This f inding suggests decomposit ion and
repolymerizations occur if PM–DCM mixture is main-
tained for a certain period. Moreover, the dissolved aque-
ous solids decreased from 16 to 12 wt%, whereas the gas
+ loss was between 18 and 36 wt%.

3.2 Elemental composition

The elemental composition (CHNSO) of biocrudes obtain-
ed from SF1 − n is illustrated in Fig. 3a–e. As shown in Fig. 3,
there were little variations in the elemental contents. The
carbon contents were in the range of 72 to 75 w/w%
(shown in Fig. 3a). As illustrated in Fig. 3b, hydrogen con-
tent varies between 9.80 and 10.2 w/w%, whereas nitrogen
was in range of 2 to 2.4 w/w% (Fig. 3c). Elemental sulphur

distribution is presented in Fig. 3c. As shown in Fig. 3d, the
sulphur content was between 0.6 and 0.7w/w%, and oxygen
was 12 to 15.6 w/w% (Fig. 3d). The data presented in Fig. 3
showed no clear trend in variation of elemental distribu-
tions, though there were some changes in compositions. In
addition, impact of stand time on PM–DCM mixture for
phase separation could not produce biocrude of better qual-
ity for direct use. Thus, hydrotreatment is necessary, in or-
der to improve biocrude fuel properties. Moreover, despite
variation in stand time, similar trends in elemental carbon
and distribution in biocrudes were found when compared
with previous reports [16, 20, 24, 25, 29]. Generally, carbon
content has been reported to be in the range of 67 to 79 w/
w%, 6.5 to 10.5 w/w% for hydrogen, 3.5 to 6.5 w/w% for
nitrogen, < 0.9 w/w% for sulphur and 10 to 16 w/w% for
oxygen. Although the nitrogen content in present study is
lower than 3.5 to 6 w/w%, it is still relatively high due to its
environmental implications and potentially poisonous to
catalyst used in refining process [13, 34].

Fig. 3 a Carbon content of biocrude with respect to PM–DCM stand
time. b Hydrogen content of biocrude with respect to PM–DCM stand
time. c Nitrogen content of biocrude with respect to PM–DCM stand

time. d Sulphur content of biocrude with respect to PM–DCM stand time.
e Oxygen content of biocrude with respect to PM–DCM stand time
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Fig. 4 HHVand ER of biocrudes
with respect to PM–DCM stand
time

Table 1 Biocrude chemical composition with respect to PM–DCM stand time

S/
N

Identified chemical
compounds

Chemical
formula

Molecular
weighta

(g/mol)

RT
(min)

Relative abundance (% area)

1 h 3 h 6 h 7 h 8 h 9 h 10 h 11 h 12 h 15 h

1 Eicosanoic acid C20H40O2 312 23.2 2.6 2.4 2.1 2.0 2.1 2.1 2.1 2.0 2.0 2.0

2 Egtazic C14H24N2 380 12.6 3.0 2.8 3.0 3.0 3.1 3.2 3.2 3.2 3.3 3.2

3 Heptadecene, 17-chloro C17H33Cl 272 12.2 bdl bdl 0.5 0.5 1.0 1.0 1.0 1.0 1.4 1.8

4 2-Heptacosanone C27H54O 334 14.2 1.8 1.8 1.8 1.8 1.8 1.8 2.0 2.4 2.4 2.4

5 Hexadecane C16H30 226 16.2 1.6 1.6 1.6 1.6 1.6 1.6 1.4 1.4 1.4 1.4

6 Hexadecanedioc acid,
3-methyl, dimethly ester

C17H32O 361 18.4 1.0 1.0 1.5 2.0 2.0 3.2 3.2 3.2 4 4

7 9-Hexadecenoic acid,
methyl ester

C17H34O2 270 16.2 bdl bdl 1.5 1.5 1.5 1.5 1.7 1.5 1.7 2.0

8 Indole C8H7N 117 14.2 2.6 2.4 2.5 2.4 2.4 2.1 2.0 2.0 2.4 2.4

9 Oleic acid C18H32O3 296 19.1 3.2 3.1 3.8 3.8 3.8 4.0 4.0 4.0 4.0 4.0

10 Octadec-9-enoic acid C18H34O2 282 19.8 1.0 1.3 1.6 1.6 1.6 1.6 1.4 1.4 1.4 1.4

11 Oxiraneoctanoic acid C19H36O3 312 20.6 bdl bdl bdl bdl bdl bdl 3.8 3.8 3.8 3.8

12 8-Octadecenal C18H34O2 266 16.8 bdl bdl bdl bdl bdl bdl bdl bdl bdl 1.4

13 10-Octadecenoic acid
methyl ester

C19H36O2 286 18.9 41.8 41.8 41.5 39.4 39 37.3 35.6 35 35 35

14 9-Octadecenoic acid,
methyl ester

C19H36O3 296 18.9 34 34 32 32 31.7 32 30 30.1 28.6 26.6

15 8-Octadecenoic acid
methyl
ester Glycerol sterate

C19H36O3 296 19.2 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6

16 Pentadecanoic acid,
14-methyl

C15H30O2 242 17.1 2.0 2.0 2.0` 2.0 1.7 1.7 1.7 1.7 1.7 1.7

17 Phenol,
2-cyclohexyl-4,6-dinitro

C12H14O5 234 16.1 2.0 2.4 2.8 2.8 3.0 3.0 3.0 3.0 3.0 3.0

18 Pyrrole C4H5N 137 10.2 1.7 1.7 1.8 1.6 1.6 1.8 1.8 1.8 1.8 1.8

19 Tetradecanoic acid,
2-hydroxy

C14H28O3 244 15.1 1.2 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

RT retention time, bdl below detection level
a Obtained using atomic mass of respective elements (C 12, H 1, N 14, Cl 35, O 16)
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3.3 Energy analysis

The higher heating value and energy recovered in biocrude are
presented in Fig. 4. Due to little variations in CHNSO con-
tents, there were some changes in HHVs and ER in biocrudes.
Biocrude HHVs were between ~ 35 and ~ 37 MJ/kg, whereas
the energy recovered was in the range of 54.9% and 88%. In
this study, the ER was found to be within range of previous
reports investigating hydrothermal liquefaction of microalgae.
For example, Shakya et al. [20] reported an ER of 83% from
HTL of Nannochloropsis sp., 78% from Scenedesmus sp. and
47% from Chlorella sp. at reaction temperature of 220 to
320 °C at 30 min reaction time. An ER of 43 to 61% from
liquefaction of Nannochloropsis sp. at 300 °C for 30 min was
reported byWang et al. [35], whereas Eboibi et al. [11] report-
ed up to 87% ER. This suggests that similar amount of ER
could still be recovered from PM–DCM considering stand
time.

This study has shown that PM–DCM stand time may in-
fluence product yield and properties. Based on the data pre-
sented in Fig. 4, in addition to that in Fig. 2, the optimum PM–
DCM stand time was found to be after 9 h. The hydrogen-to-
carbon ratio of biocrudes was between 1.63 and 1.65, which
was found to be similar to 1.56 to 1.95 fromHTL ofGaldieria
sulphuraria and Nannochloropsis salina [34] and 1.4 to 2.0
for petroleum [36]. Similarly, the nitrogen-to-carbon ratio of
0.2 to 0.5 was found to be within the range of 0.05 of petro-
leum. The oxygen-to-carbon ratio of 0.13 to 0.16 was substan-
tially lower than 0.67 of algae, however higher than 0.05 of
conventional petroleum. Therefore, upgrading biocrude is

necessary, in order to improve its fuel properties, as mentioned
previously.

3.4 Biocrude chemical composition: GC-MS analysis

GC-MS analysis shows that biocrude produced from HTL of
algae is a complicated mixture consisting numerous com-
pounds. The chemical compounds identified with GC-MS
having relative abundance area greater that 1% are presented
in Table 1. It should be noted that only light compounds unlike
high boiling point compounds such as asphaltene that can
vaporise through the GC column could only be identified with
the GC-MS [17].

Based on the data presented in Table 1, there were varia-
tions in composition relative to time, suggesting possibility of
reaction during extraction of biocrude from the product mix-
ture. For example, heptadecene, 17-chloro, 9-hexadecenoic
acid, methyl ester, oxiraneoctanoic acid and B8-octadecenal
were not detected at 1 h stand time but were detected with
incraese in stand time. This finding suggests that PM–DCM
mixture continuously undergoes side reactions during recov-
ery of biocrude from solid residue and aqueous phases.

3.5 Metal composition in biocrude

One of the important factors in HTL algal biorefinery is the
composition of metals in biocrude produced. Low metallic
composition in biocrude is desirable in order to improve com-
bustion and avoiding refining issues [29, 37]. Therefore, the
fate of metals during liquefaction of alga, particularly marine
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algae with high alkali metals, is a concern. The metals calcium
(Ca), potassium (K), magnessium (Mg), sodium (Na), nickel
(Ni) and zinc (Zn) were assessed, and the metal balance is
presented in Fig. 5.

Most of the metals were distributed to either the solid res-
idue and dissolved aquoeus solids. Approximately 50 wt%
Ca, 65 wt% Mg and 55 wt% Ni were recovered in the solid
residue. The aqueous fraction was high in Na (72 wt%), K
(75 wt%) and Zn (60 wt%), which are essential nutrients for
algae cultivation that can be recycled to algae pond to reduce
cost of cultivation and energy production [38]. The resultant
biocrude was found to contain 7 wt% Ca, 5 wt% K, 12 wt%
Mg, 5 wt% Na, 8 wt% Ni and 4 wt% Zn. About 11 to 18 wt%
of these metals fractionated in the gas phase. The low compo-
sition of these metals in biocrude suggests that biocrude could
be refined avoiding issues associated with fouling and slag-
ging [34, 37].

4 Conclusion

In this reported study, the effects of stand time for product
mixture and solvent on yields and properties from hydrother-
mal liquefaction of Tetraselmis sp. algal were investigated.
The first demonstration of stand time effects on PM–DCM
mixture to form layers has been shown to have effects on
yields of biocrude, solid residue and aqueous phase. PM–
DCM stand time seems to have no substantial effects on qual-
ity of biocrude. This finding suggests HTL product mixture is
unstable; hence, more attention is needful to develop effective
downstream separation methods for recovery of HTL product
fractions.
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