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Abstract
The Zariski–van Kampen theorem allows us to provide a presentation of the fundamental
group for the complement of algebraic plane curves. However, certain computations require
arduous work, as exemplified in the case of hypocycloids. In this paper we present the
following result: Theorem 1. The fundamental group of any complex hypocycloid with N
cusps is the Artin group of the N -gon. The main idea of the proof is take advantage of the
symmetries inherent in the hypocycloid, allowing us to partition the domain to determine the
generators of the fundamental group.
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Introduction

The parametric equation of a complex hypocycloid has the form:

DN ,� =
(

� cos(kθ) + k cos(�θ)

N
,
� sin(kθ) − k sin(�θ)

N

)
,

with θ ∈ C, N , � ∈ N, N and � coprime, � < N
2 and k = N − �. Note that due to the

periodicity of sin and cos, we can consider θ ∈ [0, 2π] × iR ⊂ C which establishes a
surjection and a closed parametrization. Some examples of hypocycloids are given in Figs.
1 and 2.

Let:

XN ,� = � cos(kθ) + k cos(�θ)

N
and YN ,� = � sin(kθ) − k sin(�θ)

N
.

On the other hand, the Artin group of the N -gon has the form:
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Fig. 1 To the left N = 4 and � = 1, to the right N = 5 and � = 1

Fig. 2 To the left N = 5 and � = 2, to the right N = 13 and � = 6

〈
αi , i ∈ Z/N

αiα j = α jαi j �= i, i − 1
αiαi+1αi = αi+1αiαi+1

〉
.

Theorem 1 was first conjectured by José Ignacio Cogolludo Agustín and Enrique Artal
Bartolo in [2], in the same paper they prove the conjecture for specific cases:

• N = 3 and � = 1.
• N = 4 and � = 1.
• N = 5 and � = 2.
• N = 8 and � = 3.

In [1] Artal, Cogolludo and JorgeMartínMorales prove the conjecture for a significant family
of hypocycloids: � = k − 1; for the proof they use the Wirtinger presentation of the group.

Thepaper is organized as follows: InSect. 1we introduce theZariski–vanKampen theorem
and give the relations for cusps, nodes and tangent points. In Sect. 2 we recall some results
of [2] about the topology of the hypocycloids, and present new results about the topology as
the tangent points and the tangent cusps. We make a partition of the domain and prove our
key theorem in order to distinguish the different generators of the fundamental group, also
we relate the partition with the singular and tangent points. In Sect. 3 we prove Theorem 1.
In Sect. 4, we give two examples, deltoid and D8,1 to summarize our results.
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1 Zariski–van Kampen theorem

The Zariski–van Kampen theorem was proved by Oscar Zariski in 1929 [7]; a most recent
proof can be found in [4] by Alexandru Dimca, we refer [2] and [1] for a good introduction
of the subject. For the sake of completeness we are going to give an introduction.

Let C ⊂ C
2 be a plane algebraic curve defined by a reduced polynomial f (x, y) = 0

where the degree of f in y is d and the coefficient of yd is constant. Consider P : C2\C → C

as the projection into the first coordinate x ; let Z = {z1, . . . , zr } be the set of projections
under P of the singularities and of the points at witch the tangent to C exists and is vertical.
Note that the points tangent to the vertical lines are not singularities, but we include them for
the application of the Zariski–van Kampen theorem.

By restricting P|C2\(C∪P−1(Z)) we obtain a locally trivial fibration, where each fiber F is
Cminus d points. Let us assume that the base point in the projection spaceC\ Z and the base
point in the total space C2 \C is the same point b. Considering the fixed fiber Fb = P−1(b),
the Zariski–van Kampen theorem holds:

Theorem 2 The fundamental group of C2 \ C with base point b, is the quotient group of
π1(Fb, b) by the subgroup normally generated by {αγ j

i α−1
i }wereαi runs along the generators

of the free group π1(Fb, b), γ j runs along the generators of the free group π1(C \ Z , b) and
α

γ j
i represents the monodromy action. Stated differently, it admits the following presentation:

π1(C
2 \ C, b) =

〈
α1, . . . , αd |αγ j

i = αi

〉
.

The Zariski–van Kampen theorem operates as follows: π1(Fb, b) represents a free group
with d elements and base point b, similarly π1(C \ Z , b) represents a free group with r
elements and the same base point. By selecting two generators, namely α from π1(Fb, b) and
γ from π1(C \ Z , b), we use γ to “induce the movement” of the fiber Fb; this process can
be properly done using either the isotopy extension lemma or a pullback; the “movement” is
geometrically represented by the braid action, at the end, the element α is transformed into
a conjugate, thereby establishing a connection between the monodromy action and the braid
action onto the free group (see Fig. 3).

The most common examples are the polynomials y p − xq = 0 (see [6]). According to the
Zariski–vanKampen theorem, for each example, we choose a non-singular point b as the base
point and consider the fiber Fb. The generators correspond to the generators of π1(Fb, b).
We are particularly interested in specific cases provided in the following list. It includes the
polynomials and the relations established by the monodromy action:

• Tangent point has an equation x − y2 = 0 and gives us the relation α1 = α2.
• Ordinary node has an equation x2 − y2 = 0 and gives us the relation α1α2 = α2α1.
• Transversal cusp has an equation x3−y2 = 0 and gives us the relationα1α2α1 = α2α1α2.
• Tangent cusp has an equation x2 − y3 = 0 and gives us the relations α1α2α1 = α2α1α2

and α1 = α3.

Note that, the generators used in the last list are special generators, the base point b is
usually taken real in order to obtain convenient generators for a better understanding of the
braid action. The basic idea of these can be see in the generators α2 and α3 from Fig. 3.

In the next section, we are going to observe that these singular points are the only ones
that appear on hypocycloids.

The Zariski–vanKampen Theorem allows us to provide a presentation even in cases where
there are multiple singular points. Moreover, when all the singular points of a curve are real,
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Fig. 3 Example of the pullback of γ and Fb where π1(Fb, b) has four generators; γ represents a loop with the
same initial and endpoint. As a consequence, this yields the relations αi = α

γ
i were the monodromy actions

are: αγ
1 = α1, α

γ
2 = α2α3α

−1
2 , αγ

3 = α2 and α
γ
4 = α4

it allows a visual depiction. To illustrate this, we are going to use the deltoid example. This
example was explored by Zariski in [7] and also by Artal and Cogolludo in [2] using a
different method.

Example 3 The deltoid is represented by the affine equation:

3(x2 + y2)2 + 24x(x2 + y2) + 6(x2 + y2) − 32x3 − 1 = 0.

We can observe that it is a curve of degree 4, which means that the Zariski–van Kampen
presentation has 4 generators, namely αi for i = 1, 2, 3, 4. The curve possesses three cusps
and one tangent point as its singularities. By selecting the base point for the Zariski–van
Kampen theorem between the tangent point and the two cusps on the left (see Fig. 4), we can
identify the 4 generators.

We also have three projections of the singular points. Moving to the left, we encounter
one projection for both cusp points. Moving around a meridian of this projection, we obtain
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Fig. 4 Four generators of Deltoid

two relations. The first relation corresponds to the generators α1 and α3, while the second
relation corresponds to α2 and α4. Locally the cusps have the equation x3− y2 = 0, resulting
in the following relations:

α1α3α1 = α3α1α3 and α2α4α2 = α4α2α4.

Moving to the right, we encounter one projection for the cusp. Moving around a meridian of
this projection, we obtain one relation for the generators α1 and α2. Additionally, we have the
last projection for the tangent point. Moving around a meridian of this projection, we obtain
one relation for the generators α3 and α4. Locally, cusps have the equation x3 − y2 = 0 and
tangent points have the equation x − y2 = 0, this leads to the following relations:

α1α2α1 = α2α1α2 and α3 = α4.

Summarizing, the fundamental group can be expressed as follows:

〈
α1, α2, α3

α1α2α1 = α2α1α2

α2α3α2 = α3α2α3

α3α1α3 = α1α3α1

〉
.

Remark 4 One of the challenges in applying the Zariski–vanKampen theorem is determining
which generators are related when the curve contains complex singular points. In such cases,
a purely real picture may not be sufficient.

2 Topology and partitions of hypocycloids

In [2], the topology and singularities of complex hypocycloids were studied using Chebyshev
polynomials. The research presents results for both the projective curve and the affine curve.
The following theorem is part of their results focusing only on the affine curve:

Theorem 5 The complex hypocycloid is a curve of degree 2k with the following properties:

• The curve is invariant under the action of the dihedral group D2N .
• The singular points of the complex hypocycloid are N ordinary cusps, N (�−1) ordinary

real nodes and N (k − � − 1) ordinary complex nodes.

Some other points to remark in the proof of Proposition 2.1 which appear in [2] are:

• The cusps occur in θn = 2πn
N with n = 1, . . . , N , that is, DN ,�(

2πn
N ) is a cusp.
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• The complex line with angle πn
N with n = 1, . . . , N are the reflection lines of DN ,�.

• The nodes occur in the previous complex lines.
• If we rotate and reparametrize the hypocycloid with and angle π

N we obtain the equation:

D̃N ,� =
(

� cos(kθ) − k cos(�θ)

N
,
� sin(kθ) + k sin(�θ)

N

)
.

• If we consider the matrices:

r =
(
cos( 2πkN ) − sin( 2πkN )

sin( 2πkN ) cos( 2πkN )

)
and s =

(
1 0

0 −1

)
,

of rotation and reflection respectively, those satisfy:

r DN ,�(θ) = DN ,�

(
θ + 2π

N

)
and sDN ,�(θ) = DN ,�(−θ).

Additionally, it can be proved that:

r D̃N ,�(θ) = D̃N ,�

(
θ + 2π

N

)
and s D̃N ,�(θ) = D̃N ,�(−θ).

The next results are original and generally focus on taking advantage of the symmetries
of the hypocycloid to find the generators and relations. It is important to note that there are
two types of cusps: transversal cusps and tangent cusps. Each of these types yields different
relations, emphasizing the need to distinguish between them when analyzing hypocycloids.

Proposition 6 If N is a multiple of 4, then, the hypocycloid DN ,� has two tangent cusps.

Proof The tangent cusps have angles π
2 and 3π

2 , on the other side, for an hypocycloid DN ,�

the cusps have angles 2πn
N with n = 1, . . . , N , by selecting N = 4N ′ and n = N ′ we have:

2πn

N
= 2πN ′

N
= 4πN ′

2N
= πN

2N
= π

2
,

this is the first tangent cusp. The second one can be obtained by reflection. �	
It should be noted that even though the vertical tangent points are not singularities, they still

need to be taken into account when applying the Zariski–van Kampen theorem. Therefore,
we have the following result:

Proposition 7 Let DN ,� the complex hypocycloid, then:

• If N ismultiple of 4 there are k−�−2 tangent points. The set of points is {θn = 2nπ
k−�

+ π
k−�

}
minus the two points corresponding with tangent cusps.

• If N is not multiple of 4 there are k − � tangent points. The set of points is { 2nπ
k−�

+ π
k−�

}.
The location

Proof If we make X ′
N ,� and Y ′

N ,� equal to zero:

sin(kθ) + sin(�θ) = 0 and cos(kθ) − cos(�θ) = 0

⇒2 sin

(
k + �

2
θ

)
cos

(
k − �

2
θ

)
= 0 and 2 sin

(
k + �

2
θ

)
sin

(
k − �

2
θ

)
= 0,
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the points cos( k−�
2 θ) = 0 make X ′

�,N = 0 and Y ′
�,N �= 0, these are the tangent points:

k − �

2
θn = nπ + π

2

⇒θn = 2nπ

k − �
+ π

k − �
,

with n = 1, . . . , k − �. When N is a multiple of 4, by the preceding proposition we know
that there is some t ∈ {1, . . . , N } such that the angle of DN ,�(

2tπ
N ) is π

2 , that means:

2t�π

N
= π

2
+ 2πm, (1)

for some integer m. Observe that the tangent points coincide with the cusp points when:

(2n + 1)π

k − �
= 2tπ

N
+ 2πs

⇔N (2n + 1) = 2t(k − �) + 2N (k − �)s

⇔(2N )n = [2t(k − �) − N ] + [2N (k − �)]s.
The greatest common divisor of 2N and 2N (k − �) is 2N and, moreover:

2t(k − �) − N

2N
= 2t N − 4t� − N

2N
= 2t N

2N
− 4t�

2N
− 1

2

= t − 1

2
− 2t�

N
= t − 1

2
− (

1

2
+ 2m) by(1)

= t − 1 − 2m ∈ Z,

i.e. 2N divides 2t(k − �) − N so we have integer solutions for n and s (results related to
Diophantine equations can be found in [3]). In other words, if N is a multiple of 4, one of
the tangent points correspond with a tangent cusp, then, the number of tangent points in this
case is k − � − 2. �	

Note that we can use the Riemann–Hurwitz formula to determine the number of vertical
tangencies. However, to obtain the correct relations in the Zariski–van Kampen theorem, we
need to specify the location of these tangencies.

Remark 8 We can exclude from our analysis the consideration when N is multiple of 4 by
rotating the hypocycloids and avoiding the tangent cusps. This provides an alternative way
to establish similar results.

To distinguish the generators of the fundamental group we are going to make a partition
of the domain. Let us define:

An =
[
2π(n − 1)

N
,
2πn

N

)
× iR ⊂ C, n = 1, . . . , N .

The next theorem is the key to distinguish N of the generators of the hypocycloid DN ,�.

Theorem 9 XN ,�|An : An → C is surjective for n = 1, . . . , N.

It is equivalent to say that XN ,� − X0 = 0 has at less one solution in every An for
n = 1, . . . , N and for any X0 of C.
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Fig. 5 Region to find solutions, R
must tend to infinity

Proof Observe that:

XN ,� − X0 = � cos(kθ) + k cos(�θ)

N
− X0

= �ekiθ + �e−kiθ + ke�iθ + ke−�iθ

2N
− X0

= 1

2Nekiθ
(�e2kiθ + � + ke(k+�)iθ + ke(k−�)iθ − 2N X0e

kiθ ).

Let x = eiθ ,

= 1

2Nxk
(�x2k + � + kxN + kxk−� − 2N X0x

k),

as k > � all the indices in the polynomial are positive. We are going to consider the solutions
in A1, the rest are similar. Using the transformation x = eiθ it is enough to find the solutions
of:

h(x) = �x2k + kxN − 2N X0x
k + kxk−� + �

in the region of Fig. 5 with R → ∞.
To do this we are going to use the principle of the argument, it can be found in [5, Theorem

6.2.4]; observe that:

arg[h(x)] = arg[x2k(� + kxN−2k − 2N X0x
−k + kx−k−� + �x−2k)]

= arg[x2k ] + arg[� + kxN−2k − 2N X0x
−k + kx−k−� + �x−2k].

We let f (x) = x2k and g(x) = [� + kxN−2k − 2N X0x−k + kx−k−� + �x−2k], and we are
going to divide the curve in 3 parts:

(1) Real line.

lim
R→∞ arg[h(R)] = lim

R→∞ arg[ f (R)] + lim
R→∞ arg[g(R)]]

= lim
R→∞ arg[g(R)]

= arg[�]
= 0.

The real line does not bring any changes in the argument.
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(2) The line with angle 2π
N . In this case, using Rei

2π
N and similarly as the preceding case, it

does not bring any change in the argument.
(3) The curve γ (t) = Reit with t ∈ [0, 2π

N ]. First consider:
lim
R→∞ arg[g(γ (t))] = arg(�) = 0.

The first equality holds because all the exponents of g are negative. Also:

1

i
�arg[ f (x)] = 1

i

∫
f (γ )

dz

z
= 1

i

∫ 2π
N

0

2k(Reit )2k−1

(Reit )2k
Rieit dt

=
∫ 2π

N

0
2kdt = 2k

2π

N
= 4πk

N
> 2π,

the change in the argument is at least 2π .

By the principle of the argument there are at least one solution in A1. �	
In a similar way we can prove for YN ,�.

Theorem 10 YN ,�|An : An → C is surjective for n = 1, . . . , N.

Once we partition the domain, it becomes necessary to determine the location of singular
points, it does not need to be the exact location, only their respective regions Ai . Let’s begin
by considering the tangent points.

Proposition 11 Each Ai intersects { 2nπ
k−�

+ π
k−�

} in at most one point.

Proof If we take two consecutive points (n and n + 1), as N > k − �:∣∣∣∣ 2nπ

k − �
+ π

k − �
−

(
2(n + 1)π

k − �
+ π

k − �

)∣∣∣∣ 2π
∣∣∣∣ n

k − �
− n + 1

k − �

∣∣∣∣ = 2π

k − �
>

2π

N
.

�	
Remark 12 In the case when N is a multiple of 4, the last proposition includes the tangent
cusps.

The cusp points are easy to locate because every Ai starts in one, the remaining points are
the nodes, in these cases we need to use the reflection complex lines to locate.

Lemma 13 For every pair DN ,�(An) and DN ,�(Am) there is a reflection line such that
DN ,�(Am) is reflection of DN ,�(An).

Proof Using rotations it is enough to prove it for A1 and An ; take the middle point in the
image under DN ,� of A1 this has an angle π�

N while the middle point in the image of An has

angle 2π(n−1)�
N + π�

N , if we take the middle angle between these two, we have:

�π

N
+ 1

2

(
2π(n − 1)�

N
+ π�

N
− π�

N

)
= �π

N
+ π(n − 1)�

N
= �nπ

N
,

which, as we mention early, it’s an angle corresponding to a reflection complex line. �	
As we saw in Theorem 5, the nodes belong to the reflection complex lines, but we need to

know which Ai intersects in order to give the relations for the Zariski–van Kampen theorem.
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Theorem 14 Every pair DN ,�(An) and DN ,�(Am) intersects in a node if m �= n−1, n, n+1.

Proof If we take the complex lines of last lemma for D�,N (An) and D�,N (Am) and rotate in
such a way that agree with x axis, we can suppose, without loss of generality, that if θ ∈ An

then −θ ∈ Am . Observe that, after the rotation, the equation could be of the form DN ,� or
D̃N ,�, in both cases the proof is similar so we are only consider the case DN ,�. By Theorem
10 YN ,�(θ) = 0 has a solution in An , say θ0 and observe that, as XN ,� is an even function,
then:

DN ,�(θ0) = (XN ,�(θ0), 0) = (XN ,�(−θ0), 0) = DN ,�(−θ0)

that means, DN ,�(An) and DN ,�(Am) intersect in DN ,�(θ0). Furthermore, as m �= n −
1, n, n + 1, this point can’t be a cusp or tangent, the only option is a node. �	

The advantage of the last theorem is that it includes complex nodes, so even when we can
not see the exact location, we know how they are related. The last part is to show that the
nodes does not give us more relations, to do this it’s enough to count all the possible relations
so we need the next lemma:

Lemma 15 If DN ,�(An) and DN ,�(Am) intersects in a complex node, then DN ,�(An) and
DN ,�(Am) intersect in the conjugate node.

Proof Let θn ∈ An and θm ∈ Am such that DN ,�(θn) = DN ,�(θm) (this is a node point),
using that sin(z) = sin(z) and cos(z) = cos(z) we have:

DN ,�(θn) = (XN ,�(θn), YN ,�(θn))

= (XN ,�(θn), YN ,�(θn))

= (XN ,�(θm), YN ,�(θm))

= (XN ,�(θm), YN ,�(θm))

= DN ,�(θm).

�	
The next proposition guarantees that there are no more relations given by nodes.

Proposition 16 A node point is an intersection of DN ,�(An) and DN ,�(Am) for some n and
m.

Proof It is enough to count all the intersections of DN ,�(An) and DN ,�(Am) m �= n −
1, n, n + 1 and see that agree with the number of nodes given in Theorem 5. First we are
going to count the real intersections. For each DN ,�(An) we have (� − 1) cusp between the
two cusps corresponding for DN ,�(An), each of these cusps are related with another 2 so we
have 2(� − 1) intersections, counting the N parts and considering that the intersections are
counted twice we have:

2N (� − 1)

2
= N (� − 1),

this is exactly the number of real nodes given in Theorem 5. For the complex intersections
observe that each DN ,�(An) is related with N − 3 DN ,�(Am), if we only count one node for
each intersection we have:

N (N − 3)

2
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nodes, now we subtract the real nodes to only count the complex nodes we have:

N (N − 3)

2
− N (� − 1)

and finally we count 2 complex nodes for each intersection by Lemma 15 to obtain:

2

[
N (N − 3)

2
− N (� − 1)

]
= N (N − 3) − 2N (l� − 1)

= N (k + � − 3 − 2� + 2)

= N (k − � − 1),

this is exactly the number of complex nodes given in Theorem 5. �	

3 Fundamental group of the complement of hypocycloids

In this section we are going to prove Theorem 1; we divide the proof in several lemmas, one
for each kind of singular point. By the results of Theorem 5 we know that the hypocycloids
have degree 2k so the fundamental group has the general form:〈

βi , i ∈ {1, . . . , 2k} R
〉
,

where R represents a set of relations given by the singular and tangent points. First, we are
going to reduce the generators using equality relations.

Lemma 17 There are N among the 2k generators such that〈
βi , i ∈ {1, . . . , 2k} R

〉 = 〈
αi , i ∈ {1, . . . , N } R′ 〉

with R′ the same relations as R except for equality relations and for replacements of βi with
α j in the relations.

Proof If we take the base point b ∈ C such that it is not singular nor tangent, the vertical
complex line x = b, denoted Lb, intersects DN ,�(C) in 2k points; by Theorem 9 there
are θn ∈ An for n = 1, . . . , N such that XN ,�(θn) = b, the points DN ,�(θn) belong to
Lb∩DN ,�(C). We recall that, according to Zariski–van Kampen theorem, a loop surrounding
these points and joining the base point bwith a path represents a generator of the fundamental
group. Reordering if it was necessary, we can suppose that the first N generators of the
fundamental group π1(DN ,�) are the ones that correspond to each DN ,�(θn), we are going to
call it αn . In order to use the equality relations we must distinguish two cases: N multiple of
4 and N is not a multiple of 4. In the last one we have k − � tangent points (by Proposition
7) which correspond to equalities by the Zariski–van Kampen theorem. If N is multiple of
4 there are k − � − 2 tangent points (by Proposition 7) and 2 tangent cusps, these, by the
Zariski–van Kampen theorem, give us two types of relations, the first ones of the form α = β

and the second ones of the form αβα = βαβ; if we consider only the equality relations, in
total we have k − � equalities. In both cases, these equalities occur in ti = 2iπ

k−�
+ π

k−�
, by

the Proposition 11, these points belong to different An . To use Zariski–van Kampen theorem
and give the equality between two generators, we need a path in the x axis from b to the
projection of DN ,�(tn), we are going to suppose that θi and t j belong to the same An , if we
take An minus the singular points, it is arcwise connected so there is a path r(s) from θi to
t j , we take the projection of DN ,�(r(s)) in the x axis and this is the desired path. Following
that path, then traverse around the projection of the singular point and travel the path in the
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opposite direction, we are given a equality relation between the αi generator corresponding
to DN ,�(θi ) and one of the remaining k − � generators β j . �	

Once we finish with equality relations, the only relations that appear are given by cusps
and nodes. Now we are going to analyze the cusp points.

Lemma 18 For each cusp point, we have the relation αiαi+1αi = αi+1αiαi+1 with i mod N.

Proof Similar to the last lemma, by Theorem 9 there is θi ∈ Ai such that XN ,�(θi ) = b;
also there is ti ∈ Ai such that DN ,�(ti ) is the cusp point between DN ,�(Ai ) and DN ,�(Ai+1).
To use Zariski–van Kampen theorem and give the relation between two generators we need
a path in the x axis from b to the projection of DN ,�(ti ). If we take Ai minus the singular
points, it is arcwise connected, so there is a path r(s) from θi to ti , we take the projection
of DN ,�(r(s)) in the x axis and this is the desired path. Following that path we are given
a cusp relation between the αi generator corresponding to DN ,�(θi ) and the αi+1 generator
corresponding to DN ,�(θi+1). �	

The last lemma includes the case N multiple of 4, and together with the Lemma 17 exhaust
all the relations of the tangent cusps. Until now we have:

〈
αi , i ∈ Z/N

R′′
αiαi+1αi = αi+1αiαi+1

〉
,

with R′′ a set of relations given by the nodes. We are going to analyze the last set of relations.

Lemma 19 For each pair αi and α j with j �= i − 1, i + 1 we have the relation αiα j = α jαi .

Proof ByTheorem 14, if j �= i−1, i+1 then two different DN ,�(Ai ) and DN ,�(A j ) intersect
in a node, we can suppose that ti ∈ Ai is such that DN ,�(ti ) is this node; also, by Theorem 9
there is θi ∈ Ai such that XN ,�(θi ) = b. If we take Ai minus the singular points, it is arcwise
connected, so there is a path r(s) from θi to ti , we take the projection of DN ,�(r(s)) in the
x axis. Following that path we are given the relation αiα j = α jαi between the αi generator
corresponding to DN ,�(θi ) and α j generator corresponding to DN ,�(θ j ). �	

ByProposition 16we exhaust all the nodes so there are nomore relations.All the preceding
results prove the Theorem 1.

4 Examples

Even when the results are in general for all the hypocycloids, we are going to give a pair of
examples. The first is the deltoid but using the ideas given in this work.

Example 20 D3,1 is a curve of degree 4 so it has 4 generators, it has 3 transversal cusps, 1
tangent points and no other singularities. If we take a vertical line next to the right cusp, we
can only see 2 of the 4 points corresponding to generators (see Fig. 6). The difference with
Example 3 is that we can not see 2 of the generators, so we represent them on the same line.
We can make a partition of the domain of D3,1 into 3 parts A1, A2 and A3. By Theorem 9
we can distinguish 3 generators, one for each Ai , we are going to call it αi with i = 1, 2, 3.

By Proposition 11 we have 1 tangent point, this means that there is 1 equality relation,
this tangent point belongs to A2 so the missing generator must be equal to α2 by Lemma 17.
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Fig. 6 Dashed lines represent the
path followed by α2 to the cusp

Fig. 7 Dashed lines represent the
path followed by generators α2
and α7 to the corresponding cusp
point

By the definition of Ai we can observe that two consecutive generators go to one common
cusp, using Lemma 18 there is a cusp relation between each consecutive αi (In the Fig. 7 we
represent the path followed by α2 to the cusp), this gives the relations:

αiαi+1αi = αi+1αiαi+1,

module 3.

The second example is D8,1. This example cannot be derived from the results of [1] or
[2], so we consider it a new example.

Example 21 D8,1 is a curve of degree 14 so it has 14 generators, it has 6 transversal cusps,
2 tangent cusps, 40 complex nodes, 4 tangent points and no other singularities. If we take
a vertical line next to the right cusp, we can only see 2 of the 14 points corresponding to
generators (see Fig. 5), the other 12 are represented in the same line. We can make a partition
of the domain of D8,1 into 8 parts Ai with i = 1, .., 8 and by Theorem 9 we can distinguish
8 generators, one for each Ai , we are going to call it αi with i = 1, . . . , 8.

By Proposition 11 we have 4 tangent points and the 2 tangent cusps in different Ai (the
only ones without a tangent point are A3 and A7) this means that there are 6 equality relations,
in other words, the 6 generators missing must be equal to one αi different (the generators
without equality relation are α3 and α7). By the definition of Ai we can observe that two
consecutive generators go to one common cusp, by Lemma 18 this gives the relations:
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αiαi+1αi = αi+1αiαi+1,

module 8 (in the Fig. 5 we represent by dashed lines the paths of two of the generators to
the corresponding cusp). The forty complex nodes live in complex lines with angles πn

8 with
n = 1, . . . , 8, by Theorem 14 every pair D8,1(An) and D8,1(Am) intersects in a node if n
and m are not consecutive module 8, by Lemma 19 this gives us the relations:

αnαm = αmαn .

Finally, by Lemma 15 there are 2 intersections for each pair D8,1(An) and D8,1(Am), and
by Proposition 16 this gives us 8(8− 3) = 40 intersections, in other words, this exhausts the
relations given by nodes so there are no more relations.

Data availability The author confirm that the data supporting the findings of this study are available within
the article.
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