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Abstract
Let ν be a countably additive vector measure defined on a σ -algebra and taking values in a
Banach space. In this paper we deal with the following three properties for the Banach lattice
L1(ν) of all ν-integrable real-valued functions: the Dunford-Pettis property, the positive
Schur property and being lattice-isomorphic to an AL-space. We give new results and we
also provide alternative proofs of some already known ones.

Keywords Dunford-Pettis operator · AL-space · Positive Schur property · Asplund space ·
Vector measure
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1 Introduction

Let X be a Banach space with (topological) dual X∗, let (�,�) be a measurable space and let
ν : � → X be a (countably additive) vector measure. A �-measurable function f : � → R

is called ν-integrable if it is |x∗ν|-integrable for all x∗ ∈ X∗ and, for each A ∈ �, there is∫
A f dν ∈ X such that

x∗
(∫

A
f dν

)

=
∫

A
f d(x∗ν) for all x∗ ∈ X∗.

Here x∗ν is the signed measure obtained as the composition of ν with x∗ and |x∗ν| denotes
its variation. By identifying functions which coincide except to a ν-null set (where A ∈ � is
said to be ν-null if ν(B) = 0 for every B ∈ � with B ⊆ A), the set L1(ν) of all (equivalence
classes of) ν-integrable functions is a Banach lattice with the ν-a.e. order and the norm

‖ f ‖L1(ν) := sup
x∗∈BX∗

∫

�

| f | d|x∗ν|.
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Here BX∗ denotes the closed unit ball of X∗. Let us agree to say that L1(ν) is the L1 space
of the vector measure ν.

Every Banach lattice with order continuous norm and a weak unit is lattice-isometric
to the L1 space of a vector measure, [11, Theorem 8] (cf. [19, Proposition 2.4]). Such a
representation is not unique. For instance, the usual space L1[0, 1] is equal to L1(νi ) for each
one of the following Xi -valued vector measures νi defined on the Borel σ -algebra of [0, 1]:
• X1 := R and ν1(A) := λ(A) (the Lebesgue measure of A);
• X2 := L1[0, 1] and ν2(A) := χA (the characteristic function of A);
• X3 := c0 and ν3(A) := (

∫
A rn dλ)n∈N, where (rn)n∈N is the sequence of Rademacher

functions.

The structure of the space L1(ν) can be greatly conditioned by certain properties of ν. For
complete information on these spaces and their important role in Banach lattices and operator
theory, we refer the reader to the monograph [33] and the papers [6, 14, 15, 28, 34, 36, 38].

The inclusion map

ιν : L1(|ν|) → L1(ν)

is a well-defined injective lattice-homomorphism, where |ν| is the variation of ν (see, e.g.,
[33, Lemma 3.14]). If ιν is surjective, then it is a lattice-isomorphism and, moreover, we
have |ν|(�) < ∞. Curbera [12] addressed the question of when the L1 space of a vector
measure is lattice-isomorphic to an AL-space. Recall that a Banach lattice E is said to be an
AL-space if its norm satisfies ‖x + y‖ = ‖x‖ + ‖y‖ whenever x, y ∈ E are disjoint, which
is equivalent to saying that E is lattice-isometric to the usual space L1(μ) of a non-negative
measure μ (see, e.g., [3, Theorem 4.27]). It turns out that L1(ν) is lattice-isomorphic to an
AL-space if and only if ιν is surjective, [12, Proposition 2]. This is also equivalent to the fact
that the integration operator of ν, that is, the norm 1 operator

Iν : L1(ν) → X , Iν( f ) :=
∫

�

f dν for all f ∈ L1(ν),

is cone absolutely summing (i.e., the series
∑∞

n=1 Iν( fn) is absolutely convergent whenever∑
n∈N fn is unconditionally convergent and fn ∈ L1(ν)+ for alln ∈ N), [10, Proposition 3.1].

As usual, given a Banach lattice E , we denote by E+ its positive cone, that is, E+ := {x ∈
E : x ≥ 0}. At this point we should stress that if a Banach lattice is isomorphic (just as
a Banach space) to an AL-space, then it is lattice-isomorphic to an AL-space [1] (cf. [16,
Proposition 2.1]).

Anoperator betweenBanach spaces is said to beDunford-Pettis (or completely continuous)
if it maps weakly null sequences to norm null ones. The space L1(μ) of a non-negative mea-
sure μ has the Dunford-Pettis property, that is, every weakly compact operator from L1(μ)

to an arbitrary Banach space is Dunford-Pettis (see, e.g., [2, Theorem 5.4.5] or [3, Theo-
rem 5.85]). In general, this is not true for the L1 space of a vector measure. Indeed, reflexive
infinite-dimensional Banach spaces fail the Dunford-Pettis property and, as we have already
mentioned, spaces like 	p and L p[0, 1] for 1 < p < ∞ can be seen as L1 spaces of a vector
measure. On the other side, there are L1 spaces of a vector measure having the Dunford-Pettis
property which are not lattice-isomorphic to an AL-space, like c0. Curbera showed in [13,
Theorem 4] that L1(ν) has the Dunford-Pettis property if ν has σ -finite variation and X has
the Schur property (i.e., every weakly null sequence in X is norm null). In fact, he proved
that:

(i) L1(ν) has the positive Schur property whenever X has the Schur property.

123



Dunford-Pettis type properties… Page 3 of 19 136

(ii) If L1(ν) has the positive Schur property and ν has σ -finite variation, then L1(ν) has the
Dunford-Pettis property (cf. [6, Section 3.2]).

Recall that a Banach lattice E is said to have the positive Schur property if every weakly
null sequence in E+ is norm null. Note that statement (i) can be deduced at once from the
fact that L1(ν) has the positive Schur property if and only if the integration operator Iν is
almost Dunford-Pettis (i.e., (Iν( fn))n∈N is norm null for every weakly null sequence ( fn)n∈N
in L1(ν)+), see [6, Theorem 5.12].

The integration operator is undoubtedly a key point in the theory of L1 spaces of a vector
measure. Note that its properties depend on ν rather than on the space L1(ν) itself. For
instance, going back to the example at the beginning, we have:

• Iν1 is the functional given by Iν1( f ) = ∫
[0,1] f dλ;

• Iν2 is the identity operator on L1[0, 1];
• Iν3 : L1[0, 1] → c0 is the operator given by Iν3( f ) = (

∫
[0,1] rn f dλ)n∈N, which is

strictly singular but fails to be weakly compact.

It is known that L1(ν) is lattice-isomorphic to an AL-space whenever Iν is compact (see
[30, Theorem 1], cf. [32, Theorem 2.2] and [7, Theorem 3.3]), absolutely p-summing for
1 ≤ p < ∞ (see [31, Theorem 2.2]) or, more generally, Dunford-Pettis and Asplund (see
[35, Theorem 3.3]). Recall that an operator between Banach spaces is said to be Asplund if
it factors through a Banach space which is Asplund (i.e., all of its separable subspaces have
separable dual). In particular, L1(ν) is lattice-isomorphic to an AL-space if Iν is Dunford-
Pettis and X is Asplund, [7, Theorem 1.3]. This is a partial answer to the following question
posed by Okada, Ricker and Rodríguez-Piazza [31]:

Question 1.1 Suppose that Iν is Dunford-Pettis and that X contains no subspace isomorphic
to 	1. Is L1(ν) lattice-isomorphic to an AL-space?

They showed that this is the case if, in addition, X has an unconditional Schauder basis,
[31, Theorem 1.2]. Note that any Banach space with an unconditional Schauder basis and no
subspace isomorphic to 	1 has separable dual (see, e.g., [2, Theorem 3.3.1]). To the best of
our knowledge, Question 1.1 remains open.

In this paperwe dealwith L1 spaces of a vectormeasurewith focus on the property of being
isomorphic to an AL-space, the positive Schur property and the Dunford-Pettis property. Our
aim is twofold: we include new results and we also present alternative proofs of some already
known ones which hopefully might led to a better understanding of the theory. The structure
of the paper is as follows.

In Sect. 2 we collect some known preliminary facts on L1 spaces of a vector measure that
will be needed later.

In Sect. 3we revisit the aforementioned positive answer toQuestion 1.1 forAsplund spaces
(Corollary 3.8) and the related result for integration operators which are Dunford-Pettis and
Asplund (Corollary 3.11).

In Sect. 4 we show that the positive Schur property of L1(ν) can be characterized bymeans
of a Dunford-Pettis type property with respect to the so-called “vector duality” induced by
the integration operator, that is, the continuous bilinear map

L1(ν) × L∞(ν) → X , ( f , g) 
→ Iν( f g) =
∫

�

f g dν

(Theorem 4.3). We also give another proof of the aforementioned result of [13] stating that
L1(ν) has the Dunford-Pettis property if it has the positive Schur property and ν has σ -finite
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variation (Corollary 4.5). It seems to be an open question whether the assumption on the
variation can be dropped, namely:

Question 1.2 Suppose that L1(ν) has the positive Schur property. Does L1(ν) have the
Dunford-Pettis property?

Finally, in Example 4.6 we discuss a class of vector measures ν such that L1(ν) has the
positive Schur property and the Dunford-Pettis property, but fails to be lattice-isomorphic to
an AL-space, among other interesting properties.

2 Preliminaries

All Banach spaces considered in this paper are real. An operator is a continuous linear map
between Banach spaces. Given an operator T , its adjoint is denoted by T ∗. By a subspace of
a Banach space we mean a norm closed linear subspace. Let Z be a Banach space. The norm
of Z is denoted by ‖ · ‖Z , or simply ‖ · ‖, and we write BZ := {z ∈ Z : ‖z‖ ≤ 1} (the closed
unit ball of Z ). The evaluation of z∗ ∈ Z∗ at z ∈ Z is denoted by either z∗(z) or 〈z∗, z〉. By
a projection from Z onto a subspace Y ⊆ Z we mean an operator P : Z → Z such that
P(Z) = Y and P is the identity when restricted to Y . The subspace of Z generated by a set
H ⊆ Z is denoted by span(H).

In this section we gather, for the reader’s convenience, some known facts on L1 spaces of
a vector measure. A basic reference on this topic is [33, Chapter 3].

Throughout this section X is a Banach space, (�,�) is a measurable space and ν ∈
ca(�, X). As usual, we denote by ca(�, X) the set of all countably additive X -valued vector
measures defined on �. The range of ν is the set

R(ν) := {ν(A) : A ∈ �} ⊆ X .

The variation and semivariation of ν are denoted by |ν| and ‖ν‖, respectively. The family
of all ν-null sets is denoted by N (ν). By a Rybakov control measure of ν we mean a finite
non-negative measure of the form μ = |x∗ν| for some x∗ ∈ X∗ such that N (μ) = N (ν)

(see, e.g., [18, p. 268, Theorem 2]). Throughout this section μ is a fixed Rybakov control
measure of ν.

2.1 L∞ of a vector measure

A function f : � → R is called�-simple if it is a linear combination of functions of the form
χA, where A ∈ �. Clearly, all �-simple functions are ν-integrable. The set of all �-simple
functions is norm dense in L1(ν) (see, e.g., [33, Theorem 3.7(ii)]), so one has

Iν(L1(ν)) = span(R(ν)). (2.1)

More generally, every ν-essentially bounded �-measurable function f : � → R is ν-
integrable. By identifying functions which coincide ν-a.e., the set L∞(ν) of all (equivalence
classes of) ν-essentially bounded �-measurable functions is a Banach lattice with the ν-a.e.
order and the ν-essential supremum norm ‖ · ‖L∞(ν). Of course, L∞(ν) is equal to the usual
spaces L∞(|ν|) and L∞(μ). The inclusion map

jν : L∞(ν) → L1(ν)
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is an injective operator. Moreover, it is weakly compact. Indeed, jν(BL∞(ν)) coincides with
the order interval [−χ�, χ�] in L1(ν), so it is weakly compact as L1(ν) has order continuous
norm (see, e.g., [3, Theorem 4.9]). Hence, Iν( jν(BL∞(ν))) is weakly compact in X . We
have the following characterization of relative norm compactness of R(ν) (see, e.g., [33,
Proposition 2.41]):

Proposition 2.1 The following statements are equivalent:

(i) R(ν) is relatively norm compact.
(ii) Iν( jν(BL∞(ν))) is norm compact.

2.2 Composition of a vector measure with an operator

We will use several times the following fact (see, e.g., [33, Lemma 3.27]):

Proposition 2.2 Let T : X → Y be an operator between Banach spaces. Then:

(i) The composition ν̃ := T ◦ ν : � → Y is a countably additive vector measure.
(ii) Every ν-integrable function is ν̃-integrable.

(iii) The inclusion map u : L1(ν) → L1(ν̃) is an operator and Iν̃ ◦ u = T ◦ Iν .

2.3 L-weakly compact sets and the positive Schur property

Let E be a Banach lattice. Given a set W ⊆ E , we denote by Sol(W ) its solid hull, that is, the
set of all x ∈ E such that |x | ≤ |y| for some y ∈ W . It is known that if W is relatively weakly
compact, then every disjoint sequence in Sol(W ) is weakly null (see, e.g., [3, Theorem 4.34]).
The set W is said to be L-weakly compact if it is bounded and every disjoint sequence in
Sol(W ) is norm null. Every L-weakly compact set is relatively weakly compact (see, e.g., [3,
Theorem 5.55]), but the converse does not hold in general. The following result is well-known
(see [26, Corollaries 2.3.5 and 3.6.8], [39, Theorem 1.16] and [41, Lemma 3]):

Proposition 2.3 Let E be a Banach lattice. The following statements are equivalent:

(i) E has the positive Schur property.
(ii) Every disjoint weakly null sequence in E is norm null.

(iii) Every disjoint weakly null sequence in E+ is norm null.
(iv) Every relatively weakly compact subset of E is L-weakly compact.

Proposition 2.4 below characterizes L-weakly compact sets in the L1 space of a vector
measure. We first need to introduce some terminology. Given f ∈ L1(ν), the map ν f : � →
X defined by

ν f (A) := Iν( f χA) =
∫

A
f dν for all A ∈ �

is a countably additive vectormeasure by theOrlicz-Pettis theorem (see, e.g., [18, p. 22,Corol-
lary 4]). Note that ‖ν f ‖(A) = ‖ f χA‖L1(ν) for all A ∈ �. Moreover, ν f is μ-continuous,
that is, for every ε > 0 there is δ > 0 such that ‖ν f (A)‖ ≤ ε for every A ∈ � withμ(A) ≤ δ

(see, e.g., [18, p. 10, Theorem 1]). A set F ⊆ L1(ν) is said to be equi-integrable if the set
{ν f : f ∈ F} is uniformly μ-continuous, that is, for every ε > 0 there is δ > 0 such that

sup
f ∈F

‖ν f (A)‖ ≤ ε for every A ∈ �with μ(A) ≤ δ.
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The following result can be found in [26, Proposition 3.6.2] and [33, Lemma 2.37] within a
more general framework.

Proposition 2.4 Let F ⊆ L1(ν) be a set. The following statements are equivalent:

(i) F is L-weakly compact.
(ii) F is bounded and equi-integrable.

(iii) F is approximately order bounded, i.e., for every ε > 0 there is ρ > 0 such that
F ⊆ jν(ρBL∞(ν)) + εBL1(ν).

We refer the reader to the recent works [4, 9, 22] for further results related to the positive
Schur property in Banach lattices.

2.4 Characterization of Dunford-Pettis integration operators

Proposition 2.6 below was first proved in [6, Theorem 5.8]. We include here a more direct
proof for the reader’s convenience. One part follows the argument used in [13, Theorem 4] to
show that L1(ν) has the positive Schur property if X has the Schur property. The following
auxiliary lemma will also be used later.

Lemma 2.5 Let ( fn)n∈N be a sequence in L1(ν) such that the sequence (ν fn (A))n∈N is norm
convergent for every A ∈ �. Then ( fn)n∈N is equi-integrable.

Proof This follows from the Vitali-Hahn-Saks theorem (see, e.g., [18, p. 24, Corollary 10])
applied to the sequence of μ-continuous vector measures (ν fn )n∈N. ��
Proposition 2.6 The following statements are equivalent:

(i) L1(ν) has the positive Schur property and R(ν) is relatively norm compact.
(ii) Iν is Dunford-Pettis.

Proof (i)⇒(ii): Let F ⊆ L1(ν) be a relatively weakly compact set. We will show that Iν(F)

is relatively norm compact by checking that for each ε > 0 there is a norm compact set
Kε ⊆ X such that Iν(F) ⊆ Kε + εBX . Fix ε > 0. Since F is approximately order bounded
(byPropositions 2.3 and 2.4), there isρ > 0 such that F ⊆ jν(ρBL∞(ν))+εBL1(ν). Therefore,
Iν(F) ⊆ Kε + εBX , where Kε := Iν( jν(ρBL∞(ν))) is norm compact by Proposition 2.1.

(ii)⇒(i): Since jν(BL∞(ν)) is weakly compact in L1(ν) (see the paragraph preceding
Proposition 2.1) and Iν is Dunford-Pettis, the set Iν( jν(BL∞(ν))) is norm compact and so
R(ν) is relatively norm compact (Proposition 2.1). To prove that L1(ν) has the positive
Schur property it suffices to check that every weakly convergent sequence is equi-integrable
(Propositions 2.3 and 2.4). Let ( fn)n∈N be a sequence in L1(ν) which converges weakly to
some f ∈ L1(ν). Then for each A ∈ � the sequence ( fnχA)n∈N converges weakly to f χA

in L1(ν) (bear in mind that the map h 
→ hχA is an operator on L1(ν)). Since Iν is Dunford-
Pettis, for each A ∈ � the sequence (Iν( fnχA))n∈N = (ν fn (A))n∈N converges in norm
to Iν( f χA) = ν f (A). Now, Lemma 2.5 applies to conclude that ( fn)n∈N is equi-integrable.

��

2.5 The“vector duality” induced by the integration operator

The following result (see, e.g., [33, Proposition 3.31]) shows, in particular, that we have a
continuous bilinear map

L1(ν) × L∞(ν) → X
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defined by

( f , g) 
→ Iν( f g) =
∫

�

f g dν.

Proposition 2.7 Let f ∈ L1(ν). Then:

(i) For every g ∈ L∞(ν) the product f g ∈ L1(ν) and

‖ f g‖L1(ν) ≤ ‖ f ‖L1(ν)‖g‖L∞(ν).

(ii) The norm of f in L1(ν) is

‖ f ‖L1(ν) = sup
g∈BL∞(ν)

‖Iν( f g)‖X .

There are some elements of L1(ν)∗ which admit a simple description and are helpful for
dealingwith theweak topologyof L1(ν). ByProposition 2.7, for each (g, x∗) ∈ BL∞(ν)×BX∗
we can define a functional γ(g,x∗) ∈ BL1(ν)∗ by the formula

γ(g,x∗)( f ) := x∗(Iν( f g)) =
∫

�

f g d(x∗ν) for all f ∈ L1(ν),

and the set

�ν := {γ(g,x∗) : (g, x∗) ∈ BL∞(ν) × BX∗ } ⊆ BL1(ν)∗

is norming for L1(ν), that is,

‖ f ‖L1(ν) = sup
γ∈�ν

γ ( f ) for all f ∈ L1(ν). (2.2)

Let σ(L1(ν), �ν) be the (locally convex Hausdorff) topology on L1(ν) of pointwise con-
vergence on �ν , which is weaker than the weak topology. Proposition 2.8 below was first
proved in [29, Proposition 17]. It was pointed out in [25, Section 4.7] that it can also be seen
as a corollary of the Rainwater-Simons theorem (see, e.g., [20, Theorem 3.134]) and the fact
that �ν is a James boundary for L1(ν) (i.e., the supremum in (2.2) is a maximum) whenever
R(ν) is relatively norm compact. We refer the reader to [6, Section 4] and [8, Section 2] for
more information on this topic.

Proposition 2.8 Suppose that R(ν) is relatively norm compact. Then every bounded and
σ(L1(ν), �ν)-convergent sequence in L1(ν) is weakly convergent.

3 Dunford-Pettis integration operators

Let A be an operator ideal. Following [31], a Banach space X is said to be A-variation
admissible if for every measurable space (�,�) and for every ν ∈ ca(�, X) such that
Iν ∈ A, we have |ν|(�) < ∞. The interest of this concept is based on the following result,
[31, Proposition 1.1], which provides a tool for proving that L1 is lattice-isomorphic to an
AL-space under some additional assumptions.

Proposition 3.1 Let A be an operator ideal and let X be a Banach space. If X is A-variation
admissible, then for every measurable space (�,�) and for every ν ∈ ca(�, X) such that
Iν ∈ A, the inclusion map ιν : L1(|ν|) → L1(ν) is a lattice-isomorphism.
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The next proposition is elementary.

Proposition 3.2 Let A be an operator ideal and let X and Y be Banach spaces.

(i) If X and Y are isomorphic, then X isA-variation admissible if and only if Y isA-variation
admissible.

(ii) If X is A-variation admissible, then every subspace of X is A-variation admissible.

Proof Let (�,�) be a measurable space.
(i) If T : X → Y is an isomorphism and ν ∈ ca(�, X), then we can apply Proposition 2.2

to deduce that a function is ν-integrable if and only if it is ν̃-integrable, where we write
ν̃ := T ◦ ν ∈ ca(�, Y ), and that the identity map u : L1(ν) → L1(ν̃) is an isomorphism
satisfying Iν̃ ◦ u = T ◦ Iν . Hence, Iν ∈ A if and only if Iν̃ ∈ A. Moreover, we have
‖T −1‖−1 · |ν|(�) ≤ |ν̃|(�) ≤ ‖T ‖ · |ν|(�).

(ii) Let Z ⊆ X be a subspace and let i : Z → X be the inclusionoperator. Fix ν ∈ ca(�, Z)

such that Iν ∈ A and define ν̃ := i ◦ ν ∈ ca(�, X). Then a function is ν-integrable if
and only if it is ν̃-integrable, the identity map u : L1(ν) → L1(ν̃) is an isometry and
Iν̃ = i ◦ Iν ◦ u−1 ∈ A (Proposition 2.2). Since X is A-variation admissible, we have
|ν|(�) = |ν̃|(�) < ∞. ��

In this sectionwe focus on the operator idealAcc of all Dunford-Pettis operators. Ourmain
goal is to provide a somehow simpler proof of the fact that Asplund spaces areAcc-variation
admissible, [7, Theorem 1.3], see Corollary 3.8 below.

Part (i) of the following result was already pointed out in [31]:

Proposition 3.3 Let X be a Banach space.

(i) If X is Acc-variation admissible, then X contains no subspace isomorphic to 	1.
(ii) If every separable subspace of X is Acc-variation admissible, then X is Acc-variation

admissible.

Proof (i) By Proposition 3.2, its suffices to check that 	1 is not Acc-variation admissible.
Since 	1 is infinite-dimensional, the Dvoretzky-Rogers theorem (see, e.g., [17, Theorem 1.2])
ensures the existence of an unconditionally convergent series

∑∞
n=1 xn in 	1 which is not

absolutely convergent. Now, define ν : P(N) → 	1 by ν(A) := ∑
n∈A xn for all A ∈ P(N)

(the power set of N). Then ν ∈ ca(P(N), 	1) satisfies |ν|(P(N)) = ∑∞
n=1 ‖xn‖ = ∞, while

Iν is Dunford-Pettis by the Schur property of 	1 (see, e.g., [2, Theorem 2.3.6]). Hence, 	1 is
not Acc-variation admissible.

(ii) Let (�,�) be a measurable space and let ν ∈ ca(�, X) such that Iν is Dunford-
Pettis. Then R(ν) is relatively norm compact (Proposition 2.6), so it is separable. Hence,
the subspace Z := span(R(ν)) = Iν(L1(ν)) (see (2.1) at page 4) is separable. Then Z is
Acc-variation admissible by assumption. Since ν takes values in Z and Iν is Dunford-Pettis,
we deduce that |ν|(�) < ∞. ��

3.1 Schauder decompositions and the variation of a vector measure

Let X be a Banach space. A Schauder decomposition of X is a sequence (Xn)n∈N of (non-
zero) subspaces of X such that each x ∈ X can be written in a unique way as a convergent
series of the form x = ∑∞

n=1 xn , where xn ∈ Xn for all n ∈ N. In this case, for each n ∈ N

there is a projection Sn from X onto Xn such that x = ∑∞
n=1 Sn(x) for all x ∈ X . For each

k ∈ N, the operator Pk := ∑k
n=1 Sn is a projection from X onto the subspace

⊕k
n=1 Xn ,
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we have supk∈N ‖Pk‖ < ∞ and the formula |||x ||| = supk∈N ‖Pk(x)‖ defines an equivalent
norm on X . Note that Pk′ ◦ Pk = Pk ◦ Pk′ = Pmin{k,k′} for all k, k′ ∈ N and ‖Pk(x)− x‖ → 0
as k → ∞ for every x ∈ X . Of course, if X has a Schauder basis (en)n∈N, then the sequence
of 1-dimensional subspaces generated by each en is a Schauder decomposition of X .

The following lemma will be a key tool for proving Theorem 3.6 below.

Lemma 3.4 Let X be a Banach space, let (�,�) be a measurable space and let ν ∈ ca(�, X).
Suppose that:

• |ν|(�) = ∞ and R(ν) is relatively norm compact.
• X has a Schauder decomposition (Xn)n∈N such that |Pk ◦ ν|(�) < ∞ for all k ∈ N,

where Pk is the associated projection from X onto
⊕k

n=1 Xn.

Then there exist a sequence (B j ) j∈N of pairwise disjoint elements of � \ N (ν), a strictly
increasing sequence (k j ) j∈N in N and ε > 0 such that the functions f j := 1

‖ν‖(B j )
χB j ∈

L1(ν) and the projections R j := Pk j+1 − Pk j satisfy:

(i) ‖Iν( f j g) − R j (Iν( f j g))‖ ≤ 2− j for all g ∈ BL∞(ν) and j ∈ N.
(ii) There is j0 ∈ N such that ‖Iν( f j ) − Iν( f j ′)‖ ≥ ε for all distinct j, j ′ ≥ j0.

Proof Write Qk := idX − Pk for all k ∈ N (where idX stands for the identity operator on X ).
Since supk∈N ‖Qk‖ < ∞ and ‖Qk(x)‖ → 0 as k → ∞ for every x ∈ X , the sequence
(Qk)k∈N converges to 0 uniformly on each norm compact subset of X . By renorming, we
can assume without loss of generality that ‖Pk‖ = 1 for all k ∈ N.

Since |ν|(�) = ∞, there is a sequence (Cl)l∈N of pairwise disjoint elements of � \N (ν)

such that
∑∞

l=1 ‖ν(Cl)‖ = ∞, [27, Corollary 2]. Fix ρ > 2 and, for each l ∈ N, take
Al ∈ �\N (ν) such that Al ⊆ Cl and ρ‖ν(Al)‖ ≥ ‖ν‖(Cl). Then

∑∞
l=1 ‖ν(Al)‖ = ∞ and

‖ν(Al)‖ ≥ ρ−1‖ν‖(Al) for all l ∈ N. (3.1)

Claim. There exist two strictly increasing sequences (k j ) j∈N and (l j ) j∈N in N such that
for every j ∈ N we have:

(α) ‖Pk j (Iν(χAl j+1
g))‖ ≤ 2− j−1‖ν‖(Al j+1) for all g ∈ BL∞(ν);

(β) ‖Qk j (Iν(χAl j
g))‖ ≤ 2− j‖ν‖(Al j ) for all g ∈ BL∞(ν).

Indeed, we proceed by induction. Set l1 := 1 and consider

K1 := {
Iν(χA1g) : g ∈ BL∞(ν)

} ⊆ X .

SinceR(ν) is relatively norm compact, so is K1 (Proposition 2.1) and therefore we can pick
k1 ∈ N such that

sup
x∈K1

‖Qk1(x)‖ ≤ ‖ν‖(A1)

2
.

Hence, (β) holds for j = 1. Suppose now that kN , lN ∈ N are already chosen for some
N ∈ N. Since ν̃ := PkN ◦ν satisfies |ν̃|(�) < ∞ and

∑∞
l=1 ‖ν‖(Al) = ∞, there is lN+1 ∈ N

with lN+1 > lN such that

|ν̃|(AlN+1) ≤ 2−N−1‖ν‖(AlN+1). (3.2)

Observe that for each g ∈ BL∞(ν) we have

‖PkN (Iν(χAlN+1
g))‖ (∗)= ‖Iν̃ (χAlN+1

g)‖ ≤ ‖χAlN+1
g‖L1(ν̃)

(∗∗)≤ ‖χAlN+1
‖L1(ν̃)

= ‖ν̃‖(AlN+1) ≤ |ν̃|(AlN+1)
(3.2)≤ 2−N−1‖ν‖(AlN+1),

123



136 Page 10 of 19 J. Rodríguez

where (∗) and (∗∗) follow from Propositions 2.2 and 2.7(i), respectively. Hence, (α) holds
for j = N . Now, we consider the relatively norm compact subset of X defined by

KN+1 := {
Iν(χAlN+1

g) : g ∈ BL∞(ν)

}

(apply Proposition 2.1 again) and we choose kN+1 ∈ N with kN+1 > kN such that

sup
x∈KN+1

‖QkN+1(x)‖ ≤ 2−N−1‖ν‖(AlN+1).

Therefore, (β) holds for j = N + 1. This finishes the proof of the Claim.
For each j ∈ N, define B j := Al j+1 and let f j and R j be as in the statement. To check

property (i), take j ∈ N and g ∈ BL∞(ν). Then (α) and (β) imply

‖Iν( f j g) − R j (Iν( f j g))‖ = ‖Qk j+1(Iν( f j g)) + Pk j (Iν( f j g))‖
≤ ‖Qk j+1(Iν( f j g))‖ + ‖Pk j (Iν( f j g))‖
≤ 1

2 j+1 + 1

2 j+1 = 1

2 j
.

Finally, we will check that (ii) holds for an arbitrary 0 < ε < ρ−1. Choose j0 ∈ N large
enough such that ρ−1 − 2− j0 ≥ ε. Take j ′ > j ≥ j0 in N. Then

‖Iν( f j ) − Iν( f j ′)‖ ≥ ‖Pk j+1(Iν( f j ) − Iν( f j ′))‖
(because ‖Pk j+1‖ = 1)

= ‖Iν( f j ) − Qk j+1(Iν( f j )) − Pk j+1(Iν( f j ′))‖
≥ ‖Iν( f j )‖ − ‖Qk j+1(Iν( f j ))‖ − ‖Pk j+1(Iν( f j ′))‖
= ‖Iν( f j )‖ − ‖Qk j+1(Iν( f j ))‖ − ‖Pk j+1(Pk j ′ (Iν( f j ′)))‖

(because Pk j+1 ◦ Pk j ′ = Pk j+1)

≥ ρ−1 − ‖Qk j+1(Iν( f j ))‖ − ‖Pk j ′ (Iν( f j ′))‖
(by (3.1and ‖Pk j+1‖ = 1)

≥ ρ−1 − 1

2 j+1 − 1

2 j ′+1

(by (α) and (β) with g = χ�)

> ρ−1 − 1

2 j0
≥ ε.

The proof is finished. ��

3.2 Asplund spaces areAcc-variation admissible

Let (Xn)n∈N be a Schauder decomposition of a Banach space X . By a block sequence with
respect to (Xn)n∈N we mean a sequence (x j ) j∈N in X for which there is a sequence (I j ) j∈N
of non-empty finite subsets of N such that max(I j ) < min(I j+1) and x j ∈ ⊕

n∈I j
Xn for all

j ∈ N.We say that (Xn)n∈N is shrinking if ‖P∗
k (x∗)−x∗‖ → 0 as k → ∞ for every x∗ ∈ X∗,

where Pk is the associated projection from X onto
⊕k

n=1 Xn . When X has a Schauder basis
(en)n∈N and each Xn is the subspace generated by en , then (Xn)n∈N is shrinking if and only
if (en)n∈N is shrinking in the usual sense.

The following fact belongs to the folklore and can be proved as in the case of Schauder
bases (see, e.g., [2, Proposition 3.2.7]).
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Proposition 3.5 Let (Xn)n∈N be a Schauder decomposition of a Banach space X. The fol-
lowing statements are equivalent:

(i) (Xn)n∈N is shrinking.
(ii) Every bounded block sequence with respect to (Xn)n∈N is weakly null.

Theorem 3.6 Let X be a Banach space having a shrinking Schauder decomposition (Xn)n∈N
such that Xn is finite-dimensional for all n ∈ N. Then X is Acc-variation admissible. In par-
ticular, every Banach space having a shrinking Schauder basis is Acc-variation admissible.

Proof Let (�,�) be a measurable space and let ν ∈ ca(�, X) such that Iν is Dunford-Pettis.
Then R(ν) is relatively norm compact (Proposition 2.6). Fix k ∈ N and denote by Pk the
associated projection from X onto

⊕k
n=1 Xn . Since

⊕k
n=1 Xn is finite-dimensional, we have

|Pk ◦ ν|(�) < ∞. By renorming, we can assume that ‖Pk‖ = 1 for all k ∈ N.
Suppose, by contradiction, that |ν|(�) = ∞. Let ( f j ) j∈N and (R j ) j∈N be as inLemma3.4.

Since (Iν( f j )) j∈N is not norm convergent (by property (ii) in Lemma 3.4) and Iν is Dunford-
Pettis, the sequence ( f j ) j∈N is not weakly convergent in L1(ν). In addition, ‖ f j‖L1(ν) = 1
for all j ∈ N. By Proposition 2.8, there is g ∈ BL∞(ν) such that the sequence (Iν( f j g)) j∈N
is not weakly null in X . Then (R j (Iν( f j g))) j∈N is a bounded block sequence with respect
to (Xn)n∈N which cannot be weakly null, by property (i) in Lemma 3.4. This contradicts that
(Xn)n∈N is shrinking (Proposition 3.5). ��

The last ingredient of our proof that Asplund spaces are Acc-variation admissible is the
following deep result of Zippin [43] (cf. [21, Theorem III.1] and [40]):

Theorem 3.7 (Zippin) Every Banach space having separable dual is isomorphic to a sub-
space of a Banach space having a shrinking Schauder basis.

Corollary 3.8 Every Asplund space is Acc-variation admissible.

Proof By Proposition 3.3(ii), it suffices to prove that every Banach space having separa-
ble dual is Acc-admissible. Since every Banach space having a shrinking Schauder basis
is Acc-variation admissible (Theorem 3.6), the conclusion follows from Theorem 3.7 and
Proposition 3.2(ii). ��

3.3 An application of the Davis-Figiel-Johnson-Peczyński factorization

We begin by recalling the refinement of the DFJP factorization developed by Lima, Nygaard
and Oja in [23]. Let Z and X be Banach spaces, let T : Z → X be a (non-zero) operator and
consider the set

K := 1

‖T ‖ T (BZ ) ⊆ BX .

Fix a ∈ (1,∞) and write

f (a) :=
( ∞∑

n=1

an

(an + 1)2

)1/2

.

For each n ∈ N, let ‖ · ‖n be the Minkowski functional of Kn := an/2K + a−n/2BX , that is,

‖x‖n := inf{t > 0 : x ∈ t Kn} for all x ∈ X .
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The following theorem can be found in [23, Lemmas 1.1 and 2.1, Theorem 2.2], with the
exception of part (vi), which can be obtained similarly as for the usual DFJP factorization
(see, e.g., [5, §3]).

Theorem 3.9 Under the previous assumptions, the following statements hold:

(i) Y := {x ∈ X : ∑∞
n=1 ‖x‖2n < ∞} is a Banach space with the norm

‖x‖Y :=
( ∞∑

n=1

‖x‖2n
)1/2

.

(ii) K ⊆ f (a)BY and the identity map J : Y → X is an operator.
(iii) T factors as

Z
T

S

X

Y

J

(3.3)

where S is an operator.
(iv) J is a norm-to-norm homeomorphism when restricted to K . In fact:

‖x‖2Y ≤
(1

4
+ 1

ln a

)
‖x‖ for all x ∈ K .

Therefore, if T is Dunford-Pettis, then S is Dunford-Pettis as well.
(v) If T is weakly compact, then Y is reflexive.

(vi) If T is Asplund, then Y is Asplund.
(vii) If a is the unique element of (1,∞) satisfying f (a) = 1, then ‖S‖ = ‖T ‖ and ‖J‖ = 1.

In this case, (3.3) is called the DFJP-LNO factorization of T .

In [28] the DFJP-LNO factorization was applied to the integration operator of a vector
measure. Our next proposition gathers some of the results obtained in [28, Theorems 3.7
and 4.5]:

Proposition 3.10 Let X be a Banach space, let (�,�) be a measurable space, let ν ∈
ca(�, X) and let

L1(ν)
Iν

S

X

Y

J

be the DFJP-LNO factorization of Iν . Define ν̃ : � → Y by ν̃(A) := S(χA) for all A ∈ �.
Then:

(i) ν̃ ∈ ca(�, Y ), ν = J ◦ ν̃ and N (ν) = N (ν̃).
(ii) L1(ν̃) = L1(ν), with ‖ f ‖L1(ν) = ‖ f ‖L1(ν̃) for all f ∈ L1(ν), and S = Iν̃ .

(iii) ν̃ has finite (resp., σ -finite) variation whenever ν does.
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Corollary 3.11 Let X be a Banach space, let (�,�) be a measurable space and let ν ∈
ca(�, X). If Iν is Asplund and Dunford-Pettis, then |ν|(�) < ∞ and the inclusion map
ιν : L1(|ν|) → L1(ν) is a lattice-isomorphism.

Proof Let Y , J and ν̃ be as in Proposition 3.10. Since Iν̃ is Dunford-Pettis and Y is Asplund
(Theorem 3.9, parts (iv) and (vi)), we can apply Corollary 3.8 to get |ν̃|(�) < ∞, hence
|ν|(�) = |J ◦ ν̃|(�) ≤ |ν̃|(�) < ∞. This shows that every Banach space is A-variation
admissible, whereA denotes the operator ideal of all Asplund and Dunford-Pettis operators.
The last statement follows from Proposition 3.1. ��

4 Dunford-Pettis type properties

4.1 A remark on equimeasurability

Let (�,�,μ) be a finite measure space. A set H ⊆ L∞(μ) is said to be equimeasurable
if for every ε > 0 there is A ∈ � with μ(�\A) ≤ ε such that {hχA : h ∈ H} is relatively
norm compact in L∞(μ). Theorem 4.1 below is a particular case of [5, Theorem 5.5.4]. We
include a direct proof for the sake of completeness.

Theorem 4.1 Let (�,�,μ) be a finite measure space. If H ⊆ L∞(μ) is relatively weakly
compact, then it is equimeasurable.

Proof By the Davis-Figiel-Johnson-Pełczyński factorization (see, e.g., [3, Theorem 5.37]),
there exist a reflexive Banach space Y and an operator T : Y → L∞(μ) such that T (BY ) ⊇
H . Let i : L1(μ) → L∞(μ)∗ be the inclusion operator and let S := T ∗ ◦ i : L1(μ) → Y ∗.
Since Y ∗ is reflexive, S is representable, that is, there is g ∈ L∞(μ, Y ∗) such that

S( f ) = (Bochner)-
∫

�

f g dμ for all f ∈ L1(μ)

(see, e.g., [18, p. 75, Theorem 12]).
Fix ε > 0. Since g is strongly μ-measurable, Egorov’s theorem ensures the existence of

A ∈ � with μ(�\A) ≤ ε and a sequence gn : � → Y ∗ of �-simple Y ∗-valued functions
such that

‖g(t) − gn(t)‖ ≤ 1

n
for every t ∈ A and for every n ∈ N. (4.1)

For each n ∈ N, let us consider the operator Sn : L1(μ) → Y ∗ defined by

Sn( f ) = (Bochner)-
∫

A
f gn dμ for all f ∈ L1(μ).

Note that Sn is a finite-rank operator, because gn is the sum of finitely many functions of the
form y∗χB , where y∗ ∈ Y ∗ and B ∈ �. Hence, Sn is compact. Moreover, if PA : L1(μ) →
L1(μ) is the projection defined by PA( f ) := f χA for all f ∈ L1(μ), then the operator
S ◦ PA : L1(μ) → Y ∗ satisfies

‖S ◦ PA − Sn‖ = sup
f ∈BL1(μ)

∥
∥
∥
∥(Bochner)-

∫

A
f (g − gn) dμ

∥
∥
∥
∥

(4.1)≤ 1

n
.

It follows that (Sn)n∈N converges to S ◦ PA in the operator norm. In particular, S ◦ PA is
compact and, therefore, (S◦PA)∗ : Y → L∞(μ) is compact aswell (by Schauder’s theorem).
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For every y ∈ Y and for every f ∈ L1(μ) we have

〈(S ◦ PA)∗(y), f 〉 = 〈y, (S ◦ PA)( f )〉 = 〈y, T ∗(i( f χA))〉
= 〈T (y), f χA〉 =

∫

A
f T (y) dy = 〈T (y)χA, f 〉.

Therefore (S ◦ PA)∗(y) = T (y)χA for all y ∈ Y . It follows that

{hχA : h ∈ H} ⊆ {T (y)χA : y ∈ BY } = (S ◦ PA)∗(BY )

and so {hχA : h ∈ H} is relatively norm compact in L∞(μ). ��

4.2 A Dunford-Pettis type property for L1 of a vector measure

Recall that a Banach space Z has the Dunford-Pettis property if and only if z∗
n(zn) → 0 as

n → ∞ for all weakly null sequences (zn)n∈N and (z∗
n)n∈N in Z and Z∗, respectively (see,

e.g., [2, Theorem 5.4.4]).
We next show that the L1 space of an arbitrary vector measure enjoys a Dunford-Pettis

type property with respect to the “vector duality” induced by the integration operator (Sub-
section 2.5).

Theorem 4.2 Let X be a Banach space, let (�,�) be a measurable space and let ν ∈
ca(�, X). Let ( fn)n∈N be a sequence in L1(ν) and let (gn)n∈N be a weakly null sequence
in L∞(ν).

(i) If ( fn)n∈N is weakly null, then (Iν( fngn))n∈N is weakly null.
(ii) If ( fn)n∈N is bounded and equi-integrable, then (Iν( fngn))n∈N is norm null.

Proof (i) Fix x∗ ∈ X∗. Let hx∗ ∈ L∞(|x∗ν|) be the Radon-Nikodým derivative of x∗ν with
respect to |x∗ν|. For each n ∈ N we have

x∗(Iν( fngn)
) =

∫

�

fngn d(x∗ν) =
∫

�

fnhx∗ gn d|x∗ν|. (4.2)

Since ( fn)n∈N is weakly null in L1(ν) and the inclusion map L1(ν) → L1(|x∗ν|) is an
operator, ( fn)n∈N is weakly null in L1(|x∗ν|) and so the same holds for ( fnhx∗)n∈N. In the
same way, (gn)n∈N is weakly null in L∞(|x∗ν|), so we can apply the Dunford-Pettis property
of L1(|x∗ν|) and (4.2) to conclude that x∗(Iν( fngn)) → 0 as n → ∞. Since x∗ ∈ X∗ is
arbitrary, (Iν( fngn))n∈N is weakly null.

(ii) Define α := supn∈N ‖ fn‖L1(ν) and β := supn∈N ‖gn‖L∞(ν). Let μ be a Rybakov
control measure of ν. Fix ε > 0. Since F := { fn : n ∈ N} is equi-integrable, we can choose
δ > 0 such that

sup
f ∈F

‖ f χB‖L1(ν) ≤ ε for every B ∈ �with μ(B) ≤ δ. (4.3)

By Theorem 4.1, the set {gn : n ∈ N} is equimeasurable, so there is A ∈ � withμ(�\A) ≤ δ

such that {gnχA : n ∈ N} is relatively normcompact in L∞(ν). Since the sequence (gnχA)n∈N
is weakly null in L∞(ν) (bear in mind that the map g 
→ gχA is an operator on L∞(ν)), we
conclude that (gnχA)n∈N is norm null in L∞(ν). Choose n0 ∈ N such that

sup
n≥n0

‖gnχA‖L∞(ν) ≤ ε. (4.4)
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Now, for every f ∈ F and for every n ∈ N with n ≥ n0 we have
∥
∥Iν( f gn)

∥
∥ ≤ ∥

∥Iν( f gnχ�\A)
∥
∥ + ∥

∥Iν( f gnχA)
∥
∥

(Prop. 2.7(i))≤ ‖ f χ�\A‖L1(ν)‖gn‖L∞(ν) + ‖ f ‖L1(ν)‖gnχA‖L∞(ν)

(4.3)&(4.4)≤ (β + α)ε.

As ε > 0 is arbitrary, the sequence (Iν( fngn))n∈N is norm null. ��

4.3 The positive Schur property as a Dunford-Pettis type property

As a natural outcome of our previous work we get the following characterization:

Theorem 4.3 Let X be a Banach space, let (�,�) be a measurable space and let ν ∈
ca(�, X). The following statements are equivalent:

(i) L1(ν) has the positive Schur property.
(ii) For all weakly null sequences ( fn)n∈N and (gn)n∈N in L1(ν) and L∞(ν), respectively,

the sequence (Iν( fngn))n∈N is norm null.

Proof (i)⇒(ii): This follows fromTheorem 4.2, because the positive Schur property of L1(ν)

is equivalent to the fact that every relativelyweakly compact subset of L1(ν) is equi-integrable
(Propositions 2.3 and 2.4).

(ii)⇒(i): By Propositions 2.3 and 2.4, it suffices to prove that every disjoint weakly null
sequence ( fn)n∈N in L1(ν) is equi-integrable. Let (An)n∈N be a sequence of pairwise disjoint
elements of � such that fnχAn = fn for all n ∈ N. Observe that (χAn )n∈N is weakly null
in L∞(ν). Indeed, we can assume without loss of generality that An /∈ N (ν) for all n ∈ N.
Then (χAn )n∈N is a basic sequence in L∞(ν) which is equivalent to the usual basis of c0. In
particular, (χAn )n∈N is weakly null in L∞(ν).

Fix A ∈ �. Define f̃n := fnχA for all n ∈ N. Note that

Iν( f̃nχAn ) = Iν( f̃n) = ν fn (A) for all n ∈ N. (4.5)

Since ( f̃n)n∈N is weakly null in L1(ν) (because ( fn)n∈N is weakly null and themap h 
→ hχA

is an operator on L1(ν)) and (χAn )n∈N is weakly null in L∞(ν), condition (ii) and (4.5) imply
that the sequence (ν fn (A))n∈N is norm null. As A ∈ � is arbitrary, we can apply Lemma 2.5
to conclude that ( fn)n∈N is equi-integrable. ��

Of course, Theorems 4.2 and 4.3 provide another point of view for the positive Schur
property of the L1 space of a vector measure taking values in a Banach space with the Schur
property, [13, proof of Theorem 4].

4.4 Vector measures with�-finite variation

The analysis of the Dunford-Pettis property is simpler for L1 spaces of a vector measure with
σ -finite variation.

Proposition 4.4 Let X be a Banach space, let (�,�) be a measurable space and let ν ∈
ca(�, X) with σ -finite variation. If ( fn)n∈N is a bounded and equi-integrable sequence
in L1(ν) and (ϕn)n∈N is a weakly null sequence in L1(ν)∗, then ϕn( fn) → 0 as n → ∞.
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Proof The sequence ( fn)n∈N is approximately order bounded (Proposition 2.4). Hence, we
can assume without loss of generality that fn ∈ jν(BL∞(ν)) for all n ∈ N. Define α :=
supn∈N ‖ϕn‖L1(ν)∗ . Let (Am)m∈N be an increasing sequence in � such that � = ⋃

m∈N Am

and |ν|(Am) < ∞ for all m ∈ N. Fix ε > 0. Choose m ∈ N large enough such that

‖ν‖(� \ Am) ≤ ε. (4.6)

Define μ(A) := |ν|(A ∩ Am) for all A ∈ �, so that μ is a finite non-negative measure.
Consider the inclusion operator ι : L1(μ) → L1(ν) (see, e.g., [33, Lemma 3.14]) and
ι∗ : L1(ν)∗ → L∞(μ). Define gn := ι∗(ϕn) ∈ L∞(μ) for all n ∈ N, so that (gn)n∈N is
weakly null in L∞(μ).

The sequence ( fnχAm )n∈N is bounded and equi-integrable in L1(μ) and

〈gn, fnχAm 〉 =
∫

Am

fngn dμ = ϕn( fnχAm ) for all n ∈ N.

Therefore, the Dunford-Pettis property of L1(μ) (cf. Theorem 4.2(ii)) ensures that
ϕn( fnχAm ) → 0 as n → ∞. Take n0 ∈ N such that

|ϕn( fnχAm )| ≤ ε whenever n ≥ n0.

Since

|ϕn( fnχ�\Am )| ≤ α‖ fnχ�\Am ‖L1(ν) ≤ α‖ν‖(� \ Am) ≤ αε for all n ∈ N

(by Proposition 2.7(i) and (4.6)), we have

|ϕn( fn)| ≤ |ϕn( fnχAm )| + |ϕn( fnχ�\Am )| ≤ (1 + α)ε whenever n ≥ n0.

This shows that ϕn( fn) → 0 as n → ∞. ��
By putting together Propositions 2.3, 2.4 and 4.4, we get the already mentioned result

from [13]:

Corollary 4.5 Let X be a Banach space, let (�,�) be a measurable space and let ν ∈
ca(�, X) with σ -finite variation. If L1(ν) has the positive Schur property, then it has the
Dunford-Pettis property.

Let E be a Banach space with a normalized 1-unconditional Schauder basis, say (en)n∈N.
The E-sum of countably many copies of L1[0, 1] is the Banach lattice Z of all sequences
(hn)n∈N in L1[0, 1] such that the series∑∞

n=1 ‖hn‖L1[0,1] en converges unconditionally in E ,
equipped with the norm

‖(hn)n∈N‖Z :=
∥
∥
∥
∥
∥

∞∑

n=1

‖hn‖L1[0,1] en

∥
∥
∥
∥
∥

E

and the coordinatewise order. If E has the the Schur property, then Z has the positive Schur
property, but it is not lattice-isomorphic to an AL-space unless E is isomorphic to 	1, [42,
Section 3].

The following construction provides more examples of Banach lattices with such features:

Example 4.6 Let X be a Banach space and let
∑∞

n=1 xn be an unconditionally convergent
series in X with xn �= 0 for all n ∈ N. Let λ be the Lebesgue measure on the σ -algebra � of
all Borel subsets of [0, 1]. Write In := (2−n, 2−n+1] for all n ∈ N. Then:
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(i) The formula

ν(A) :=
∞∑

n=1

2nλ(A ∩ In)xn, A ∈ �,

defines a vector measure ν ∈ ca(�, X).
(ii) N (ν) = N (λ). Hence, ν is atomless and L1(ν) is separable.
(iii) R(ν) is relatively norm compact.
(iv) |ν| is σ -finite and |ν|([0, 1]) = ∑∞

n=1 ‖xn‖.
(v) If

∑∞
n=1 xn is not absolutely convergent, then L1(ν) is not lattice-isomorphic to an

AL-space.
(vi) If X has the Schur property, then L1(ν) has the positive Schur property and theDunford-

Pettis property.
(vii) If

∑∞
n=1 xn is not absolutely convergent and X has the Schur property, then L1(ν) is

not lattice-isomorphic to L1(ν̃) for any σ -algebra �̃ and any ν̃ ∈ ca(�̃, c0) such that
R(ν̃) is relatively norm compact.

Proof Since
∑∞

n=1 xn is unconditionally convergent, for every (an)n∈N ∈ 	∞ the series∑∞
n=1 an xn is unconditionally convergent and the map

T : 	∞ → X , T ((an)n∈N) :=
∞∑

n=1

an xn,

is a compact operator (see, e.g., [17, Theorem 1.9]). This shows that the map ν is well-defined
and has relatively norm compact range (note that 2nλ(A ∩ In) ≤ 1 for all n ∈ N). Since the
map � � A 
→ 2nλ(A ∩ In)xn ∈ X is countably additive for each n ∈ N, the Vitali-Hahn-
Saks theorem (see, e.g., [18, p. 24, Corollary 10]) ensures that ν is countably additive. This
proves parts (i) and (iii).

(ii) The equality N (ν) = N (λ) is obvious. Since λ is atomless, so is ν. Let C ⊆ � be
a countable set such that for every A ∈ � we have infC∈C λ(A�C) = 0. Then for every
A ∈ � we also have infC∈C ‖ν‖(A�C) = 0 (notice that ν is λ-continuous). This implies
that L1(ν) is separable, because the set of all �-simple functions is norm dense in L1(ν).

(iv) It is easy to check that |ν|(A) = ∑∞
n=1 2

nλ(A ∩ In)‖xn‖ for every A ∈ �.
(v) This follows from [12, Proposition 2] and (iv).
(vi) We already know that the Schur property of X implies that L1(ν) has the positive

Schur property, [13, proof of Theorem 4]. Now, (iv) and Corollary 4.5 ensure that L1(ν) has
the Dunford-Pettis property.

(vii) Suppose, by contradiction, that there exist a σ -algebra �̃ and ν̃ ∈ ca(�̃, c0) such that
R(ν̃) is relatively norm compact and L1(ν) is lattice-isomorphic to L1(ν̃). Then L1(ν̃) has the
positive Schur property (by (vi)) and we can apply Proposition 2.6 to infer that the integration
operator Iν̃ : L1(ν̃) → c0 is Dunford-Pettis. Now, Proposition 3.1 and Theorem 3.6 (the
usual basis of c0 is shrinking) imply that L1(ν̃) is lattice-isomorphic to an AL-space, which
contradicts (v). ��
Remark 4.7 Part (vii) of Example 4.6 should be compared with [12, Theorem 1]. That result
states that if X is a Banach space, (�,�) is a measurable space, the vector measure ν ∈
ca(�, X) is atomless and L1(ν) is separable, then there is ν̃ ∈ ca(�, c0) such that L1(ν)

and L1(ν̃) are lattice-isometric (cf. [24, Theorem 5] for another proof). For variants in the
non-separable setting, see [36] and [37]. In [24, Theorem 5] it was claimed that if, in addition,
R(ν) is relatively norm compact, then ν̃ can be chosen so thatR(ν̃) is relatively norm compact
as well. Unfortunately, this turns out to be false in general, as shown in Example 4.6(vii).
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22. Leśnik, K., Maligranda, L., Tomaszewski, J.: Weakly compact sets and weakly compact pointwise mul-

tipliers in Banach function lattices. Math. Nachr. 295(3), 574–592 (2022)
23. Lima,A.,Nygaard,O.,Oja, E.: Isometric factorization ofweakly compact operators and the approximation

property. Isr. J. Math. 119, 325–348 (2000)
24. Lipecki, Z.: Semivariations of a vector measure. Acta Sci. Math. (Szeged) 76(3–4), 411–425 (2010)
25. Manjabacas, G.: Topologies Associated to Norming Sets in Banach Spaces, Ph.D. Thesis (Spanish),

Universidad de Murcia (1998). http://hdl.handle.net/10201/33837
26. Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991)
27. Nygaard, O., Põldvere, M.: Families of vector measures of uniformly bounded variation. Arch. Math.

(Basel) 88(1), 57–61 (2007)

123

https://hdl.handle.net/11441/76519
http://arxiv.org/abs/2310.02196
http://hdl.handle.net/10201/33837


Dunford-Pettis type properties… Page 19 of 19 136

28. Nygaard, O., Rodríguez, J.: Isometric factorization of vector measures and applications to spaces of
integrable functions. J. Math. Anal. Appl. 508(1), Paper No. 125857 (2022)

29. Okada, S.: The dual space of L1(μ) for a vector measure μ. J. Math. Anal. Appl. 177(2), 583–599 (1993)
30. Okada, S., Ricker, W.J., Rodríguez-Piazza, L.: Compactness of the integration operator associated with

a vector measure. Studia Math. 150(2), 133–149 (2002)
31. Okada, S., Ricker, W.J., Rodríguez-Piazza, L.: Operator ideal properties of vector measures with finite

variation. Studia Math. 205(3), 215–249 (2011)
32. Okada, S., Ricker, W.J., Rodríguez-Piazza, L.: Operator ideal properties of the integration map of a vector

measure. Indag. Math. (N.S.) 25(2), 315–340 (2014)
33. Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators,

Acting in Function Spaces, Operator Theory: Advances and Applications, vol. 180. Birkhäuser Verlag,
Basel (2008)

34. Okada, S., Rodríguez, J., Sánchez-Pérez, E.A.: On vector measures with values in 	∞. Studia Math.
274(2), 173–199 (2024)

35. Rodríguez, J.: Factorization of vector measures and their integration operators. Colloq. Math. 144(1),
115–125 (2016)

36. Rodríguez, J.: On non-separable L1-spaces of a vector measure. Rev. R. Acad. Cienc. Exactas Fís. Nat.
Ser. A Mat. RACSAM 111(4), 1039–1050 (2017)

37. Rodríguez, J.: On Vector Measures with Values in c0(κ). arXiv:2404.05407
38. Rodríguez, J., Rueda Zoca, A.: On Weakly Almost Square Banach Spaces. Proc. Edinb. Math. Soc. (2)

66(4), 979–997 (2023)
39. Sánchez Henríquez, J.A.: Operadores en retículos de Banach: aplicaciones, Ph.D. Thesis (Spanish),

Universidad Complutense de Madrid (1985)
40. Schlumprecht, Th.: On Zippin’s embedding theorem of Banach spaces into Banach spaces with bases.

Adv. Math. 274, 833–880 (2015)
41. Wnuk, W.: A note on the positive Schur property. Glasgow Math. J. 31(2), 169–172 (1989)
42. Wnuk, W.: Some characterizations of Banach lattices with the Schur property. Rev. Mat. Univ. Com-

plutense Madr. 2(Suppl.), 217–224 (1989)
43. Zippin, M.: Banach spaces with separable duals. Trans. Am. Math. Soc. 310(1), 371–379 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2404.05407

	Dunford-Pettis type properties in L1 of a vector measure
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Linfty of a vector measure
	2.2 Composition of a vector measure with an operator
	2.3 L-weakly compact sets and the positive Schur property
	2.4 Characterization of Dunford-Pettis integration operators
	2.5 The ``vector duality'' induced by the integration operator

	3 Dunford-Pettis integration operators
	3.1 Schauder decompositions and the variation of a vector measure
	3.2 Asplund spaces are mathcalAcc-variation admissible
	3.3 An application of the Davis-Figiel-Johnson-Pełczyński factorization

	4 Dunford-Pettis type properties
	4.1 A remark on equimeasurability
	4.2 A Dunford-Pettis type property for L1 of a vector measure
	4.3 The positive Schur property as a Dunford-Pettis type property
	4.4 Vector measures with σ-finite variation

	Acknowledgements
	References




