
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. (2024) 118:100
https://doi.org/10.1007/s13398-024-01602-2

ORIG INAL PAPER

Modular differential equations and algebraic systems

Hicham Saber1 · Abdellah Sebbar2

Received: 4 August 2023 / Accepted: 5 April 2024 / Published online: 28 April 2024
© The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2024

Abstract
This paper investigates the modular differential equation y′′ + sE4y = 0 on the upper
half-plane H, where E4 is the weight 4 Eisenstein series and s is a complex parameter.
This is equivalent to studying the Schwarz differential equation {h, τ } = 2sE4, where the
unknown h is a meromorphic function on H. On the other hand, such a solution h must
satisfy h(γ τ) = �(γ )h(τ ) for τ ∈ H, γ ∈ SL2(Z) and � being a 2−dimensional complex
representation of SL2(Z). Moreover, in order for h to be meromorphic or to have logarithmic
singularities at the SL2(Z)-cusps of H, it is necessary to have s = π2r2 with r being a
rational number. For r = m/n in reduced form, it turns out that � is irreducible with finite
image if and only if 2 ≤ n ≤ 5 and in this case h is a modular function for the genus zero
torsion-free principal congruence group �(n), while � is reducible if and only if n = 6. By
Solving an explicit algebraic system, we prove that solutions for any r = m/n can be built
from a solution corresponding to r = 1/n, for 2 ≤ n ≤ 6, by integrating certain weight 2
meromorphic modular forms. Together with the earlier work by the authors for r being an
integer [20], this provides the solutions to the above-mentioned differential equations for all
r = m/n with 1 ≤ n ≤ 6.

Keywords Modular differential equations · Schwarz derivative · Modular forms ·
Eisenstein series · Equivariant functions · Representations of the modular group

Mathematics Subject Classification 11F03 · 11F11 · 34M05

1 Introduction

The theory of modular differential equations, which are linear differential equations with
coefficients in the ring of modular forms, have been considered by early automorphic forms
experts such as Klein [10], Hurwitz [6] and Van der Pol [26, 27]. There has been a lot of
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interest in these differential equations in recent decades starting with the pioneering work by
Kaneko and Zagier [7]. The subject developed into a fertile research area with applications
in many areas of mathematics and mathematical physics. A great deal of literature has been
produced on the subject, including the works [1, 4, 5, 8, 9, 11, 14, 15]. We shall be concerned
with modular differential equations in connection with the Schwarz differential equation and
the theory of equivariant functions as we now explain.

Let � be a discrete subgroup of SL2(R) acting on the upper half-plane H, and denote
by � its projection in PSL2(R). We consider the following differential equation with an
automorphic potential

y′′ + Q(τ ) y = 0, τ ∈ H,

where Q(τ ) is a weight 4 automorphic form for �. If f1 and f2 are linearly independent
solutions, then h = f2/ f1 satisfy the Schwarz differential equation

{h, τ } = 2Q(τ ),

where {h, τ } is the Schwarz derivative defined by

{h, τ } =
(
h′′(τ )

h′(τ )

)′
− 1

2

(
h′′(τ )

h′(τ )

)2

.

The Schwarz derivative has many projective, geometric and analytic properties that can be
found in [16, 22]. On the other hand, for a meromorphic function h on H, one can show
that {h, τ } is a weight 4 automorphic form for � if and only if there exists a 2-dimensional
representation � of � such that

h(γ · τ) = �(γ ) · h(τ ), τ ∈ H, γ ∈ �.

Here, both γ and �(γ ) act by linear fractional transformation. We call such a function h a
�−equivariant function for �. This class of functions has been studied extensively in [2, 3,
24, 25] with interesting applications in [18–21, 23]. The automorphic functions (of weight
zero) are �−equivariant with � = 1; the constant representation. If � = I d , the defining
representation, then h is simply called an equivariant function (it commutes with action of
�). As an example, if f is a weight k automorphic form for �, then

h f (τ ) = τ + k
f (τ )

f ′(τ )

is an equivariant function for �. This also includes the case f being a non-constant
automorphic function which leads to the trivial equivariant function h(τ ) = τ .

In this paper, we focus on the case of the modular group � = SL2(Z). A holomorphic
weight 4 modular form Q(τ ) is thus a scalar multiple of the weight 4 Eisenstein series E4(τ ).
Therefore, we consider the modular differential equation

y′′ + s E4(τ ) y = 0, (1.1)

and the corresponding Schwarz differential equation

{h, τ } = 2 s E4(τ ) . (1.2)

It should be noted that themodular differential equations studied in [8] and [7] can be reduced
to the equation (1.1), [21]. According to [18], any solution h to (1.2) is necessarily locally
univalent and leads to solutions y1 = 1/

√
h′ and y2 = h/

√
h′ to (1.1). Moreover, for a
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solution to (1.2) to be meromorphic or to have a logarithmic singularity at ∞, the parameter
s must satisfy s = π2r2 where r is a rational number.

In [18], we investigated solutions to (1.2) that are �−equivariant with Ker � having a finite
index in SL2(Z), in other words, that are modular functions for a finite index subgroup of
SL2(Z). It turns out that necessarily ρ is an irreducible representation of SL2(Z) and that
s = π2r2 with a rational number r = n/m, 2 ≤ m ≤ 5 and gcd(m, n) = 1. Furthermore, the
solution h is a modular function for the principal congruence subgroup �(m). The integers
m and n have the following interpretation: We have the two coverings of compact Riemann
surfaces

π : X(ker �) −→ X(SL2(Z)) ∼= P1(C)

induced by the natural inclusion ker � ⊆ SL2(Z), and

h : X(ker �) −→ X(SL2(Z)) ∼= P1(C)

induced by the solution h. Here X(�) is the modular curve attached to the subgroup �. Then
m and n are the respective ramification indices above ∞ for the two coverings.

When r is an integer (m = 1), the situation is completely different. There are always
solutions to (1.2) that are simply equivariant, that is, when � = I d , while the solutions to
(1.1) are constructed from quasi-modular forms [20].

In [19], we investigated the case when solutions to (1.2) correspond to reducible represen-
tation � of SL2(Z). It turns out that necessarily r = n/6with gcd(n, 6) = 1. The denominator
6 occurs because it is the level of the commutator group of SL2(Z) over which the characters
of SL2(Z) are trivial. In addition, the solutions to (1.2) are integrals of weight 2 meromorphic
modular forms with a character. For the case n = 1, the weight 2 form in question is η4. We
then constructed solutions for every n = 1 + 12k, k ∈ N, by integrating the modular form

fn = η4∏k
i=1(J − ai )2

,

where the numbers ai are solution to the algebraic system

4

xi
+ 3

xi − 1
+

∑
j 
=i

12

x j − xi
= 0, 1 ≤ i ≤ k,

which turns out to admit a solution in (0, 1)k . The idea is to adjoin double poles to η4 in H

with zero residues. In this case, the double poles are not elliptic points.
In this paper, we show that this method extends nicely to the remaining cases of residues

modulo 12, namely, for n coprime to 6 such that n ≡ 5, 7 or 11 mod 12. More precisely,
starting from a fundamental solution fα to (1.2) with s = π2(α/6)2 for each α = 5, 7 or
11, one can construct a solution for each m in the residue class of α modulo 12 by adjoining
double poles to f ′

α and integrating. In these cases, the double poles are allowed to include
one of the elliptic points i or ρ or both. However, it is shown that the whole construction can
be carried out by solving the algebraic system

a

xi
+ b

xi − 1
+

∑
j 
=i

c

x j − xi
= 0, 1 ≤ i ≤ k,

where a, b and c vary with α. These systems are a result of some nice identities involving
special values of higher derivatives of classical modular forms.
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Furthermore, we revisit the cases where the level m ∈ {2, 3, 4, 5} studied in [18] and we
show that our method can be applied to construct the solutions to (1.1) and (1.2). Indeed,
starting from a solution tm corresponding to r = 1/m, which turns out to be a Hauptmodul
for �(m), we can construct a solution corresponding to r = n/m with n coprime to m by
adjoining to t ′m double zeros and double poles that arise from solutions to the above algebraic
system with an appropriate choice of the parameters a, b and c.

It is yet to be fully understood why solutions to a simple algebraic system would lead to
solutions to infinite families of modular differential equations.

2 Special values of higher derivatives of modular forms

In this section we recall some classical elliptic modular forms. We also establish some
interesting identities involving special values of their higher derivatives at elliptic fixed points.

The Eisenstein series E2, E4 and E6 are defined by their q−expansions:

E2(τ ) = 1 − 24
∑
n≥1

σ1(n) qn ,

E4(τ ) = 1 + 240
∑
n≥1

σ3(n) qn ,

E6(τ ) = 1 − 504
∑
n≥1

σ5(n) qn .

Here τ is a variable in the upper half-plane H = {τ ∈ C|Im(τ ) > 0} and q = exp(2π iτ) is
the uniformizer at ∞. The arithmetical function σk is defined on positive integers by

σk(n) =
∑

0<d | n
dk .

The function E2 is a quasi-modular form of weight 2 and E4 and E6 are modular forms of
respective weights 4 and 6 for the full modular group SL2(Z).

We also define the Dedekind eta-function by

η(τ) = q
1
24

∏
n≥1

(1 − qn),

and the weight 12 cusp form � (the modular discriminant)

�(τ) = η(τ)24 = 1

1728
(E4(τ )3 − E6(τ )2).

We also have the elliptic modular function J (J−invariant)

J (τ ) = 1

1728

E4(τ )3

�
,

and the Klein elliptic modular function λ for �(2)

λ(τ) =
(

η(τ/2)

η(2τ)

)8

.

The following relations will be used below [17, Chapter 6]:

E4 = J ′2

(2π i)2 J (J − 1)
, (2.1)
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E6 = J ′3

(2π i)3 J 2(J − 1)
, (2.2)

� = −1

(48π2)3

J ′6

J 4(J − 1)3
. (2.3)

Let us recall that � does not vanish in H, while E6 (resp. E4) has a simple zero at i (resp. at
ρ = exp(2π i/3)) and its SL2(Z)− orbit. Meanwhile, J − 1 has a double zero at i and J has
a zero of order 3 at ρ.

The following propositions will be very useful in the next sections.

Proposition 2.1 We have

12
η′(i)
η(i)

= 3

7

E ′′
6 (i)

E ′
6(i)

= J ′′′(i)
J ′′(i)

= 3i .

Proof Taking the logarithmic derivative in (2.3) yields

24
η′

η
= 6

J ′′

J ′ − 4
J ′

J
− 3

J ′

J − 1
. (2.4)

Using the expansion of J near i

J (τ ) = 1 + 1

2
J ′′(i)(τ − i)2 + 1

6
J ′′′(i)(τ − i)3 + O(τ − i)4

we get

J ′′(τ )

J ′(τ )
= 1

τ − i
+ 1

2

J ′′′(i)
J ′′(i)

+ O(τ − i),

J ′(τ )

J (τ ) − 1
= 2

τ − i
+ 1

3

J ′′′(i)
J ′′(i)

+ O(τ − i)

and

J ′(τ )

J (τ )
= O(τ − i).

Therefore,

24
η′(τ )

η(τ )
= 2

J ′′′(i)
J ′′(i)

+ O(τ − i),

that is

12
η′(i)
η(i)

= J ′′′(i)
J ′′(i)

.

In the meantime, differentiating J (−1/τ) = J (τ ) trice yields

6

τ 4
J ′(−1/τ) − 6

τ 5
J ′′(−1/τ) + 1

τ 6
J ′′′(−1/τ) = J ′′′(τ ).

Since J ′(i) = 0, we get

J ′′′(i)
J ′′(i)

= 3i .

Finally, using

E6(τ ) = (τ − i)E ′
6(i) + 1

2
(τ − i)2E ′′

6 (i) + O(τ − i)3
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and

E ′
6(τ ) = E ′

6(i) + (τ − i)E ′′
6 (i) + O(τ − i)2,

we obtain
E ′
6(τ )

E6(τ )
= 1

τ − i
+ 1

2

E ′′
6 (i)

E ′
6(i)

+ O(τ − i)2. (2.5)

On the other hand, taking the logarithmic derivative in (2.2) yields

E ′
6(τ )

E6(τ )
= 3

J ′′(τ )

J ′(τ )
− 2

J ′(τ )

J (τ )
− J ′(τ )

J (τ ) − 1

= 1

τ − i
+ 7

6

J ′′′(i)
J ′′(i)

+ O(τ − i)

using the expansions of J ′′/J ′, J ′/J etc. cited in the beginning of this proof. Now, comparing
with (2.5), we get

E ′′
6 (i)

E ′
6(i)

= 7

3

J ′′′(i)
J ′′(i)

,

which concludes the proof. �
Proposition 2.2 We have

24
η′(ρ)

η(ρ)
= J (4)(ρ)

J ′′′(ρ)
= 6

5

E ′′
4 (ρ)

E ′
4(ρ)

= 12
1 + ρ

1 − ρ
.

Proof Write

E4(τ ) = (τ − ρ)E ′
4(ρ) + 1

2
(τ − ρ)2E ′′

4 (ρ) + O(τ − ρ)3,

E ′
4(τ ) = E ′

4(ρ) + (τ − ρ)E ′′
4 (ρ) + O(τ − ρ)2,

so that
E ′
4(τ )

E4(τ )
= 1

τ − ρ
+ 1

2

E ′′
4 (ρ)

E ′
4(ρ)

+ O(τ − ρ). (2.6)

Now write

J (τ ) = 1

6
J ′′′(ρ)(τ − ρ)3 + 1

24
J (4)(ρ)(τ − ρ)4 + O(τ − ρ)5,

J ′(τ ) = 1

2
J ′′′(ρ)(τ − ρ)2 + 1

6
J (4)(ρ)(τ − ρ)3 + O(τ − ρ)4,

J ′′(τ ) = J ′′′(ρ)(τ − ρ) + 1

2
J (4)(ρ)(τ − ρ)2 + O(τ − ρ)3.

It follows that

J ′′(τ )

J ′(τ )
= 2

τ − ρ
+ 1

3

J (4)(ρ)

J ′′′(ρ)
+ O(τ − ρ),

J ′(τ )

J (τ )
= 3

τ − ρ
+ 1

4

J (4)(ρ)

J ′′′(ρ)
+ O(τ − ρ)

and

J ′(τ )

J (τ ) − 1
= O(τ − ρ)2.
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Now, using (2.1), we have

E ′
4(τ )

E4(τ )
= 2

J ′′(τ )

J ′(τ )
− J ′(τ )

J (τ )
− J ′(τ )

J (τ ) − 1
. (2.7)

Therefore,

E ′
4(τ )

E4(τ )
= 1

τ − ρ
+ 5

12

J (4)(ρ)

J ′′′(ρ)
+ O(τ − ρ).

Comparing with (2.6), we obtain

E ′′
4 (ρ)

E ′
4(ρ)

= 5

6

J (4)(ρ)

J ′′′(ρ)
.

On the other hand, using (2.4), we get

24
η′(τ )

η(τ )
= J (4)(ρ)

J ′′′(ρ)
+ O(τ − ρ),

which proves that

24
η′(ρ)

η(ρ)
= J (4)(ρ)

J ′′′(ρ)
= 6

5

E ′′
4 (ρ)

E ′
4(ρ)

.

Furthermore, differentiating twice the identity

E4

( −1

τ + 1

)
= (τ + 1)4E4(τ )

and taking τ = ρ yields the last equality in the proposition. �

3 Level 6 modular differential equations and algebraic systems

Suppose we are given a ρ−equivariant function for a finite index subgroup � of SL2(Z).
If ρ is a reducible representation of �, then it can be conjugated to an upper triangular
representation, i.e. there exists σ ∈ GL2(C) such that ρ1 = σρσ−1 is upper triangular.
Moreover h1 = σ · h is ρ1−equivariant and shares the same Schwarz derivative with h.
Thus, if we are looking for a solution to (1.2) corresponding to a reducible representation, we
may suppose, without loss of generality, that ρ is upper-triangular. According to Theorem 4.3
in [19], a meromorphic function h is ρ−equivariant for a triangular representation ρ of � if
and only if the derivative h′ is a meromorphic weight 2 modular form for � with a character.
Now, for the Schwarz derivative {h, τ } to be holomorphic, h′ must be nonvanishing where h
is holomorphic and, elsewhere, h should have only simple poles, which is equivalent to say
that h′ has only double poles with zero residues. Therefore, if we seek a solution h to (1.2),
then we have to integrate nonvanishing weight 2 modular forms for SL2(Z) with a character
and having double poles (if any) with vanishing residues. The characters in question are
trivial on the commutator group of SL2(Z) which is a level 6 and index 12 in SL2(Z), and
therefore these modular forms have a q−expansion where q = exp(2π iτ/6).

According to [19], a holomorphic weight 2 modular form for SL2(Z) with a character
must be equal to cη4 where c is a constant. If we set

h(τ ) =
∫ τ

i
η4(τ ) dτ,
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then we have

{h, τ } = 2π2

36
E4(τ ).

In other words, h is a solution to (1.2) with s = π2

62
. It follows that y = 1/

√
h′ = η−2 is a

solution to y′′ + π2

36
y = 0; a differential equation that was first mentioned by Klein in [10],

and it was Hurwitz who first gave η−2 as a solution to this equation [6].
In order to find other solutions, we should look for weight 2 modular forms with double

poles and zero residues. To this end, for each triplet of parameters (a, b, c), we introduce the
following algebraic system En

a,b,c of n equations in n variables xi :

a

xi
+ b

xi − 1
+

∑
j 
=i

c

x j − xi
= 0 , 1 ≤ i ≤ n. (3.1)

Notice that for α 
= 0, the system En
a,b,c is equivalent to the system En

αa,αb,αc. According
to [19, Theorem 6.2], if a, b and c are positive real numbers, then the system En

a,b,c has a
solution in (0, 1)n . Let (xi )1≤i≤n be a solution to the algebraic system En

4,3,12 and set

fn = η4∏n
i=1 (J − xi )2

.

Also, write xi = J (wi ), wi ∈ H. Then, as 0 < xi < 1, the wi ’s are not elliptic fixed
points and fn is a weight 2 modular form with a character and has a double pole at each wi ,
1 ≤ i ≤ n, and is holomorphic elsewhere. Moreover, the fact that the xi ’s satisfy the system
En
4,3,12 is equivalent to the vanishing of the residues of fn at eachwi . One of the main results

in [19] is that hn(τ ) =
∫ τ

i
fn(z) dz is a solution to (1.2) with s = π2

(
12n + 1

6

)2

, while

the solutions to (1.1) are given by y1 = η−2
∏n

i=1
(J − xi ) and y2 = hn y1; generalizing

Hurwitz’s solution when n = 0. This solves the modular differential equations (1.1) and
(1.2) with s = π2(m/6)2 with m ≡ 1 mod 12. We now focus on finding the solutions for
the remaining residues classes modulo 12, that is, when m ≡ 5, 7 or 11 mod 12. The idea
is to allow the nonvanishing weight 2 modular forms to have double poles at elliptic points.

Theorem 3.1 Let n ∈ N and (xi )1≤i≤n ∈ (0, 1)n be a solution to the algebraic system En
4,9,12

and let wi ∈ H such that xi = J (wi ). Then

fn = η4

(J − 1)
∏n

i=1(J − xi )2
= η28

E2
6

∏n
i=1(J − xi )2

is a nonvanishing weight 2 modular form with double poles at i and at each wi with zero

residues. Moreover, if hn(τ ) =
∫ τ

i
fn(z)dz, then

{hn, τ } = 2π2 (12n + 7)2

62
E4(τ ).

Proof As i is a double zero of J − 1 and each wi is not in the SL2(Z)−orbit of i , it is clear
that i is a double pole of fn . Write gn = η4/

∏n

i=1
(J − xi )

2 so that fn = gn/(J − 1). Also
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write

J (τ ) − 1 = 1

2
J ′′(i)(τ − i)2 + 1

6
J ′′′(i)(τ − i)3 + O(τ − i)4.

Then

J ′′(i)
2

(τ − i)2

J (τ ) − 1
= 1 − 1

3

J ′′′(i)
J ′′(i)

(τ − i) + O(τ − i)2.

It follows that

d

dτ
((τ − i)2 fn(τ )) = d

dτ

gn(τ )(τ − i)2

J (τ ) − 1

= g′
n(τ )

(τ − 1)2

J (τ ) − 1
+ gn(τ )

d

dτ

(τ − i)2

J (τ ) − 1
.

Therefore,

Res( fn, i) = lim
τ→i

d

dτ
((τ − i)2 fn(τ )) = 2gn(i)

J ′′(i)

(
g′
n(i)

gn(i)
− J ′′′(i)

3J ′′(i)

)
.

In the meantime, taking the logarithmic derivative of gn yields

g′
n(i)

gn(i)
= 4

η′(i)
η(i)

−
n∑

i=1

2J ′(i)
J (i) − xi

= 4
η′(i)
η(i)

.

Hence, using Proposition 2.1,

Res( fn, i) = 2gn(i)

J ′′(i)

(
4
η′(i)
η(i)

− J ′′′(i)
3J ′′(i)

)
= 0.

Now, fix i , 1 ≤ i ≤ n, and write fn(τ ) = φn(τ )/(J (τ ) − J (wi ))
2. A similar calculation

as above shows that

Res( fn, wi ) = φ′
n(wi )

J ′(wi )2
− φn(wi )

J ′′(wi )

J ′(wi )3
= φn(wi )

J ′(wi )2

(
φ′
n(wi )

φn(wi )
− J ′′(wi )

J ′(wi )

)
.

Meanwhile,

φ′
n

φn
= 4η′

η
− J ′

J − 1
−

∑
j 
=i

2J ′

J − J (w j )
.

Therefore

Res( fn, wi ) = φn(wi )

J ′(wi )2

⎛
⎝4η′(wi )

η(wi )
− J ′(wi )

J (wi ) − 1
−

∑
j 
=i

2J ′(wi )

J (wi ) − J (w j )
− J ′′(wi )

J ′(wi )

⎞
⎠ .

Using (2.4), we have

4η′

η
− J ′′

J ′ = J ′

6

(
3

1 − J
− 4

J

)
,

and hence

Res( fn, wi ) = −φn(wi )

6J ′(wi )

⎛
⎝ 4

J (wi )
+ 9

J (wi ) − 1
+

∑
j 
=i

12

J (wi ) − J (w j )

⎞
⎠ = 0
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because the xi = J (wi )were chosen to be a solution to the algebraic system En
4,9,12. Therefore

fn has only double poleswith zero residues and is nonvanishing elsewhere. Thus its integralhn
has only simple poles and it is locally univalent elsewhere. It follows that the Schwarz deriva-
tive {hn, τ } is a holomorphicweight 4modular form for SL2(Z) and hence a scalarmultiple of

E4. Finally, notice that the leading coefficient of the q−expansion of fn is q
1
6+1+2n = q

12n+7
6

and consequently the leading coefficient of {hn, τ } = ( f ′
n/ fn)

′ − 1
2 ( f

′
n/ fn)

2 is easily seen

to be 2π2 (12n + 7)2

62
. �

We now seek a similar solution but with a double at the other elliptic fixed points, namely
τ = ρ.

Theorem 3.2 Let n ∈ N and (xi )1≤i≤n ∈ (0, 1)n be a solution to the algebraic system En
8,3,12

and let wi ∈ H such that xi = J (wi ). Then

fn = η20

E2
4

∏n
i=1(J − xi )2

is a nonvanishing weight 2 modular forms with double poles at ρ and at each wi with zero

residues. Moreover, if hn(τ ) =
∫ τ

i
fn(z)dz, then

{hn, τ } = 2π2 (12n + 5)2

62
E4(τ ).

Proof Write fn = ψn/E2
4 and

E4(τ ) = (τ − ρ)E ′
4(ρ) + 1

2
(τ − ρ)2E ′′

4 (ρ) + O(τ − ρ)3

so that

E2
4(τ ) = (τ − ρ)2E ′2

4 (ρ)

(
1 + (τ − ρ)

E ′′
4 (ρ)

E ′
4(ρ)

+ O(τ − ρ)2
)

.

Hence,

(τ − ρ)2ψn(τ )

E2
4(τ )

= ψn(τ )

E ′2
4 (ρ)

(
1 − (τ − ρ)

E ′′
4 (ρ)

E ′
4(ρ)

+ O(τ − ρ)2
)

.

It follows that

lim
τ→ρ

d

dτ

(τ − ρ)2ψn(τ )

E2
4(τ )

= ψ ′
n(ρ)

E ′2
4 (ρ)

− ψn(ρ)E ′′
4 (ρ)

E ′3
4 (ρ)

= ψn(ρ)

E ′2
4 (ρ)

(
ψ ′
n(ρ)

ψn(ρ)
− E ′′

4 (ρ)

E ′
4(ρ)

)

= ψn(ρ)

E ′2
4 (ρ)

(
20

η′(ρ)

η(ρ)
−

n∑
i=1

2J ′(ρ)

J (ρ) − xi )
− E ′′

4 (ρ)

E ′
4(ρ)

)

= ψn(ρ)

E ′2
4 (ρ)

(
20

η′(ρ)

η(ρ)
− E ′′

4 (ρ)

E ′
4(ρ)

)

= 0.
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The last equality follows from Proposition 2.2. Therefore, the residue of fn at the double
pole ρ is zero. In a similar manner to the previous theorem and using both (2.4) and (2.7), it
is easily seen that the residues of fn at each wi is precisely zero because the xi ’s satisfy the

algebraic system En
8,3,12. Finally, the leading coefficient of the q−expansion of fn is q

12n+5
6

and thus the leading coefficient of {hn, τ } is 2π2 (12n + 5)2

62
. �

Finally, we seek a solution which has both elliptic points i and ρ as double poles.

Theorem 3.3 Let n ∈ N and (xi )1≤i≤n ∈ (0, 1)n be a solution to the algebraic system En
8,9,12

and let wi ∈ H such that xi = J (wi ). Then

fn = η20

E2
4(J − 1)

∏n
i=1(J − xi )2

= η44

E2
4E

2
6

∏n
i=1(J − xi )2

is a nonvanishing weight 2 modular forms with double poles at i , ρ and at each wi with zero

residues. Moreover, if hn(τ ) =
∫ τ

i
fn(z)dz, then

{hn, τ } = 2π2 (12n + 11)2

62
E4(τ ).

Proof This can be shown in the same way as the previous two theorems with the use of
both Proposition 2.1 and Proposition 2.2. At the same time, the exponent of q in the leading

coefficient of fn is
5

6
+ 1 + 12n = 12n + 11

6
. �

4 Modular solutions and algebraic systems

We have mentioned that according to [18], the Schwarzian equation (1.2) has solutions that
are modular functions if and only if s = π2n2/m2 with m and n being positive integers
such that 2 ≤ m ≤ 5 and gcd(m, n) = 1. For each such pair (m, n), the invariance group
for the modular solution h is �(m) and n is the ramification index above ∞ in the covering
h : X(m) −→ P1(C). Here X(m) = X(�(m)). A key fact about the groups �(m) for
2 ≤ m ≤ 5 is that they are the only principal congruence groups that are genus 0 and torsion-
free. In this section, we will establish that these modular solutions are also attached to an
algebraic system in the same way the solutions in the previous section were.

Let m ∈ {2, 3, 4, 5} and let t be a Hauptmodul of �(m). Choose t so that its Fourier
expansion has the shape

t(τ ) = 1

q
+

∑
i≥0

aiq
i , q = e

2π iτ
m .

Since the Hauptmodul t takes its values only once and �(m) has no elliptic elements, then
according to [12, 13], {t, τ } is a holomorphic weight 4 modular form for the normalizer of
�(m) in SL2(Z) which is SL2(Z) itself , and thus it is a scalar multiple of E4. From the
q−expansion of t , it is clear that

{t, τ } = π2

m2 E4(τ ).
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Now let n ≥ 2 be an integer coprime tom. According to [18], there exists a modular function
h for �(m) which is solution to {h, τ } = 2π2(n/m)2E4(τ ). As n is the ramification index
of h at ∞, we can write

h(τ ) = qn + o(qn) q = e
2π iτ
m .

Now, suppose that the poles of h are given by the set {w1, w2, . . . wa, s1, . . . sb}, where, for
1 ≤ i ≤ a, wi ∈ H (if any) and the s j , 1 ≤ j ≤ b, are among the cusps of �(m). Then the
degree d of the covering h : X(m) −→ P

1(C) satisfies

d = a + nb. (4.1)

We also consider the modular function f = t ′/h′ for �(m). Since h′ can have only double
poles at the wi ’s and it is nonvanishing elsewhere in H, we see that f is holomorphic in
H. Therefore, for some polynomials P and Q, we have f = P(t)/Q(t). Moreover, as the
Hauptmodul t has a pole at ∞, it is holomorphic on H and t ′ does not vanish on H (because
t is a Hauptmodul and �(m) has no elliptic element, or because the Schwarz derivative of t
is holomorphic as we have seen above). It follows that each wi , 1 ≤ i ≤ a, is a zero of order
2 of f . In the meantime, the behaviour of f at the cusps is as follows:

• Near each si , 1 ≤ i ≤ b: we have, for some constants α, β and γ , h′(τ ) = α/qn + . . .

and t ′(τ ) = βq + . . . because t has a pole at ∞ and thus it is holomorphic at any other
cusp. Therefore,

f (τ ) = γ qn+1 + . . . .

• Near ∞:

f (τ ) = α/q + . . .

βqn + . . .
= γ

qn+1 + . . . .

• Near each cusp s /∈ {s1, . . . , sb,∞}: we have

f (τ ) = αq + . . .

βqn + . . .
= γ

qn−1 + . . . .

Therefore, we have

P(t) =
a∏

i=1

(t − t(wi ))
2

b∏
i=1

(t − t(si ))
n+1

and

Q(t) =
∏

s /∈{s1,...,sb,∞}
(t − t(s))n−1.

Furthermore, comparing the order of ∞ in h′/t ′ = Q(t)/P(t) yields

(n + 1) = 2a + (n + 1)b − (n − 1)(ν∞ − (b + 1)),

where ν∞ is the number of inequivalent cusps for �(m). Hence, using (4.1), we get

2d − 2 = (n − 1)ν∞.

Notice that this is simply the Riemann-Hurwitz formula for the covering h : X(m) −→
P
1(C).
We can have a more precise information on a and b for a given level m.
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Proposition 4.1 With the notation as above, for each positive integer n, we have

(1) If m = 2, then

(a, b) ∈
{(

3n − 1

2
, 0

)
,

(
n − 1

2
, 1

)}
.

(2) If m = 3, then

(a, b) ∈ {(2n − 1, 0), (n − 1, 1)}.
(3) If m = 4, then

(a, b) ∈ {(3n − 2, 0), (2n − 2, 1), (n − 2, 2)}.
(4) Finally, if m = 5, then

(a, b) ∈ {(n(6 − k) − 5, k), 0 ≤ k ≤ 5}.
Proof If m = 2, there are 3 inequivalent cusps and the Riemann-Hurwitz formula reads
2d = 3n−1 which implies that n is odd. Since a+nb = d , we have then 2a+1 = n(3−2b).
It follows that either b = 0 which gives a = (3n − 1)/2 or b = 1 which corresponds to
a = (n−1)/2. Similarly, form = 3, ν∞ = 4 and then a+nb = 2n−1 which we can rewrite
as a + 1 = n(2 − b). It follows that b ∈ {0, 1} and (a, b) ∈ {(2n − 1, 0), (n − 1, 1)}. The
other cases follow similarly knowing that for n ≥ 3, ν∞ = 1

2
n2

∏
p|n,p prime

(1 − 1/p2). �

Finally, the solution to {h, τ } = 2π2(n/m)2E4 is thus obtained by integrating the weight
2 modular form h′ = t ′Q(t)/P(t) by choosing the adequate pair (a, b) given in the above
proposition. Clearly t ′Q(t) does not vanish onH and the poles inH are thewi ’s which should
have a zero residue. Hence, xi = t(wi ), 1 ≤ i ≤ a, are a solution to a system of type (3.1).

Let us illustrate this construction in the case m = 2. The group �(2) has 3 cusps, namely
0, 1 and ∞. We take t = 1/λ which sends the triple (0, 1,∞) to the triple (1, 0,∞).

Case 1: If a = (3n − 1)/2 and b = 0, then

h′ = t ′tn−1(t − 1)n−1∏a
j=1(t − t(w j ))2

. (4.2)

Fix i ∈ {1 . . . a}, and write h′ = g/(t − t(wi ))
2. Then

Res(h′, wi ) = g(wi )

t ′(wi )2

(
g′(wi )

g(wi )
− t ′′(wi )

t ′(wi )

)
.

Meanwhile,

g′

g
= t ′′

t ′
+ (n − 1)

t ′

t
+ (n − 1)

t ′

t − 1
−

∑
j 
=i

2t ′

t − t(w j )
.

It follows that

Res(h′, wi ) = g(wi )

t ′(wi )

⎛
⎝n − 1

t(wi )
− n − 1

t(wi ) − 1
−

∑
j 
=i

2

t(wi ) − t(w j )

⎞
⎠ .

Thus, if we set xi = t(wi ), then (xi )1≤i≤a is a solution to the algebraic system Ea
n−1,1−n,−2.
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Case 2: If a = (n − 1)/2 and b = 1, then we have two sub-cases depending on whether
we take the cusp 0 or the cusp 1 in the polynomial P(t). We have the two possibilities for h′:

h′
1 = t ′tn−1

(t − 1)n+1
∏a

j=1(t − x j )2
and h′

2 = t ′(t − 1)n−1

tn+1
∏a

j=1(t − x j )2
, (4.3)

where the (xi )1≤i≤a are solution to Ea
1−n,n+1,2 and Ea

n+1,1−n,2 respectively. Notice that
both functions have qn as a leading term and their integrals are solution to {h, τ } =
π2(n/2)2E4(τ ). This mean that h1 and h2 are linear fraction of one another.

Example 4.2 For m = 2 and n = 3, we have three solutions for h′:

(1) With one pole in H and one pole at the cusp 0:

h′
1 = t ′t2

(t − x)2(t − 1)4
.

The residue at the pole in H is zero lead to x = −1. Thus, we have the solution

h1 = −1

6

2t − 1

(t − 1)3(t + 1)
.

(2) With one pole in H and one pole at the cusp 1:

h′
2 = t ′(t − 1)2

(t − x)2t4
.

The residue at the pole in H vanishes when x = 2. The primitive is given by

h2 = −1

6

2t − 1

t3(t − 2)
.

(3) With four poles in H and none at the cusps:

h′
3 = t ′t2(t − 1)2∏4

i=1(t − xi )
,

where x1, . . . , x4 are solutions to

1

xi
+ 1

xi − 1
−

∑
j 
=i

1

xi − x j
, 1 ≤ i ≤ 4.

This algebraic system has as solutions (up to a permutation):

1 − √
3

2
±

(
3

4

) 1
4 1 + √

3

2
± i

(
3

4

) 1
4

.

These solutions are the roots of the irreducible polynomial

P(x) = x4 − 2x3 + 4x − 2.

Therefore we can write

h′
3 = t ′t2(t − 1)2

(t4 − 2t3 + 4t − 2)2
h3 = 1

12

t3(t − 2)

t4 − 2t3 + 4t − 2
.
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Remark 4.3 We expect that for each 1 ≤ m ≤ 5, every choice of the pair (a, b) gives arise
to a solution of the same Schwarz differential equation {h, τ } = 2π2(n/m)2E4, and hence
these solutions should be linear fractions of each others. This is illustrated in the case of
m = 2 and n = 3, where it can be easily checked that

h2 = h1
6h1 + 1

and h3 = 6h1 + 1

−72h1 + 12
.

Remark 4.4 The lambda function and its derivative can be expressed in terms of Jacobi theta
functions. Indeed, according to [17, Chapter 7], we have

λ = θ42

θ43
λ′ = iπθ44λ = iπ

θ42 θ44

θ43
.

Hence

t = θ43

θ42
t ′ = −iπ

θ43 θ44

θ42
.

Therefore, we can see that in the general case for the level 2, the derivatives in (4.2) and in
(4.3) are readily squares since n is odd. This allows to easily write down a square root of h′
whose reciprocal is a solution to the modular differential equation y′′ + π2(n/2)2E4 y = 0.
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