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Abstract
Important probabilistic problems require to find the limit of a sequence of random variables.
However, this limit can be understood in different ways and various kinds of convergence
can be defined. Among the many types of convergence of sequences of random variables, we
can highlight, for example, that convergence in L p-sense implies convergence in probability,
which, in turn, implies convergence in distribution, besides that all these implications are
strict. In this paper, the relationship between several types of convergence of sequences of
random variables will be analyzed from the perspective of lineability theory.
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1 Preliminaries and background

Since the beginning of the twentyfirst century the study of linearity within non linear settings
(known as lineability theory nowadays) has become a sort of a trend within many areas of
mathematical research such as real and complex analysis [4, 8, 9, 24, 37], linear dynamics
[13, 22, 23], set theory [27], operator theory [14, 37], measure theory [9], and algebraic
geometry [12].

Let us recall that if V is a vector space and κ is a (finite or infinite) cardinal number, a
subset A ⊂ V is said to be κ-lineable if there exists a vector subspace M ⊂ V such that the
dimension of M is κ and M\{0} ⊂ A. In addition, if A is contained in some commutative
algebra, then A is called strongly κ-algebrable if there exists a κ-generated free algebra M
with M\{0} ⊂ A; that is, there exists a subset B of cardinality κ with the following property:
for anypositive integerm, anynonzero polynomial P inm variableswithout constant termand
any distinct elements x1, . . . , xm ∈ B,we have P(x1, . . . , xm) �= 0 and P(x1, . . . , xm) ∈ A.

Recently, in [11], it was introduced the notion of convex lineability, which will also be
explored in this work. As usual, conv(B)will denote the convex hull of a subset B of a vector
space V , that is,

conv(B) =
{

m∑
i=1

ai xi : m ∈ N, xi ∈ B, ai ∈ [0, 1],
m∑
i=1

ai = 1

}
.

We say that a subset A of a vector space V is κ-convex lineable if there exists a linearly
independent subset B ⊂ V such that B has cardinality κ and conv(B) ⊂ A.

The notion of lineability dates back to 2004 (see [4]). It was originally coined by V. I.
Gurariy and it was just recently introduced by theAmericanMathematical Society in the 2020
Mathematical Subject Classification under the references 15A03 and 46B87. The original
motivation for this concept was, probably, the inspiration that came from the famous example
of Weierstrass (also known as Weierstrass’ monster, a continuous nowhere differentiable
function on R, see [39]). In 1966, V. I. Gurariy showed that the set of Weierstrass’ monsters
contains (except for the 0 function) an infinite dimensional vector space (see [28, 29]). The
current state of the art of this area of research can be consulted, for instance, in [1, 3, 5, 10,
12, 13, 18–20, 25, 33].

In this work, we link the topic of lineability with probability theory. This paper’s goal
is to continue the ongoing research that was started in [21, 26]. On this occasion we shall
analyzed the many different types of convergence of sequences of random variables from the
perspective of lineability theory. A recent article that also studies this topic is [7].

Throughout the paper, (�,A, μ) will always denote a probability space. Any measurable
function defined on it will be called a random variable. Two random variables X and Y on
(�,A, μ) will be said to be equal if X = Y except on a set of probability zero. Given
a random variable X and a real number ε, we will frequently write μ(X > ε) instead of
μ ({ω ∈ � : X(ω) > ε}) (and similarly for other inequalities). We define below some basic
kinds of convergence considered in probability theory that will be studied in the article.

(1) A sequence {Xn}∞n=1 of random variables converges almost surely to another random
variable X if there exists a subset B ∈ A such thatμ(B) = 1 and limn→∞ Xn(ω) = X(ω)

for every ω ∈ B.

(2) The sequence {Xn}∞n=1 converges almost surely uniformly to X if there exists a set B ∈ A
such that μ(B) = 1 and limn→∞ Xn(ω) = X(ω) uniformly on B.
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(3) It is said that {Xn}∞n=1 converges in probability to X if

lim
n→∞ μ (|Xn − X | > ε) = 0

for every ε > 0.
(4) The sequence {Xn}∞n=1 converges completely to X if

∞∑
n=1

μ (|Xn − X | > ε) < ∞

for every ε > 0.
(5) Let us suppose that X and Xn, for all n ∈ N, belong to the space L p (�,A, μ) for some

p > 0. The sequence {Xn}∞n=1 converges to X in L p-sense or in p-mean if

lim
n→∞ E

(|Xn − X |p) = 0,

where E(X) denotes the expectation of the random variable X .

(6) Let F and Fn be the distribution functions of X and Xn, respectively. The sequence
{Xn}∞n=1 converges in distribution to X if limn→∞ Fn(x) = F(x) for all x ∈ R at which
F is continuous. When this property holds, it is also said that {Fn}∞n=1 converges weakly
to F .

(7) Let us suppose that F and Fn, for all n ∈ N, are absolutely continuous distribution
functions with densities f and fn, respectively. The sequence of distribution functions
{Fn}∞n=1 converges in variation to F if

lim
n→∞

∫ +∞

−∞
| fn(x) − f (x)|dx = 0.

The following diagram contains the different implications held by the modes of convergence
defined above.

complete
convergence

almost sure
convergence

convergence
in probability

convergence
in p-mean

almost sure
uniform

convergence

convergence
in distribution

convergence
in variation

2 Algebrability of sets of sequences of random variables

2.1 Almost sure uniform convergence and complete convergence

Let us suppose that {Xn}∞n=1 is a sequence of random variables on a probability space
(�,A, μ) and that Xn → 0 uniformly on a subset B with μ(B) = 1. Given ε > 0, there
exists n0 ∈ N such that |Xn(ω)| ≤ ε for every n > n0 and every ω ∈ B. As a consequence,

∞∑
n=1

μ (|Xn(ω)| > ε) ≤
n0∑
n=1

μ (|Xn(ω)| > ε) +
∞∑

n=n0+1

μ (�\B) < ∞.
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That is, {Xn}∞n=1 also converges completely to zero. However, the converse is not true. Based
on the example given in [38, Section 14.15], we will prove the strong c-algebrability of the
collection of sequences that converge completely but do not converge almost surely uniformly.
We will consider the following product of sequences of random variables:

{Xn}∞n=1 · {Yn}∞n=1 = {Xn · Yn}∞n=1 .

The symbols B and λ will denote the Borel σ -algebra in [0, 1] and the Lebesgue measure on
[0, 1], respectively, and c will denote the cardinality of the continuum.

Theorem 1 Let S be the set of all sequences {Xn}∞n=1 of random variables on ([0, 1],B, λ)

such that {Xn}∞n=1 converges to 0 completely but does not converge almost surely uniformly.
Then S is strongly c-algebrable.

Proof It is based in a general algebrability criteria that appears in [6, Proposition 7]. For each
b > 0 and each n ∈ N, the random variable Xb,n is defined as follows:

Xb,n =
{
eb/x if x ∈

(
0, 1

n2

]
,

0 otherwise.

Let H ⊂ (0,+∞) be a Hamel basis for R over the field Q. It is known that the cardinality
of such a basis is c (see [35, Theorem 4.2.3]). We will prove that if h1, . . . , hm are distinct
elements of H and P is a non-zero polynomial in m variables without constant term, then
the sequence {

P
(
Xh1,n, . . . , Xhm ,n

)}∞
n=1

is not zero and belongs to S. The polynomial P can be written as

P(x1, . . . , xm) =
k∑

i=1

ai x
si1
1 · · · xsimm ,

where k ∈ N, ai ∈ R\{0}, si j ∈ N∪ {0} for 1 ≤ i ≤ k, 1 ≤ j ≤ m, and si1 + · · ·+ sim > 0.
We can assume that all the vectors of exponents (si1, . . . , sim) are different. Let h1, . . . , hm
be distinct elements of H and note that

Xh1,n(x)
si1 · · · Xhm ,n(x)

sim =
{
e
si1h1+···+simhm

x if x ∈
(
0, 1

n2

]
,

0 otherwise.

Hence,

Xh1,n(x)
si1 · · · Xhm ,n(x)

sim = Xsi1h1+···+simhm (x).

Setting bi = si1h1 + · · · + simhm for each i ∈ {1, . . . , k}, we have

P
(
Xh1,n, . . . , Xhm ,n

) =
k∑

i=1

ai Xbi ,n .

Since H is a basis for R over Q, it follows that b1, . . . , bk are distinct. Moreover, each bi is
strictly positive because h1, . . . , hm are also positive and si1 + · · · + sim > 0. Without loss
of generality, we can suppose that 0 < b1 < · · · < bk .
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If P
(
Xh1,n, . . . , Xhm ,n

)
were zero at every point of [0, 1], then ∑k

i=1 ai e
bi /x would be

zero for every x ∈ (
0, 1/n2

]
, which is not possible because

lim
x→0+

∑k
i=1 ai e

bi /x

ebk/x
= ak + lim

x→0+

k−1∑
i=1

ai
e(bk−bi )/x

= ak �= 0.

Furthermore, if ε > 0, then

∞∑
n=1

λ

(∣∣∣∣∣
k∑

i=1

ai Xbi ,n

∣∣∣∣∣ > ε

)
≤

∞∑
n=1

λ
((
0, 1/n2

]) =
∞∑
n=1

1

n2
< ∞.

That is, the sequence
{∑k

i=1 ai Xbi ,n

}∞
n=1

converges completely to 0.

Let us suppose that
{∑k

i=1 ai Xbi ,n

}∞
n=1

also converges almost surely uniformly to 0.

Then there is some measurable set B with λ(B) = 1 and there is n0 ∈ N such that∣∣∣∑k
i=1 ai Xbi ,n(x)

∣∣∣ < 1 for all n ≥ n0 and all x ∈ B. Moreover, the fact that λ(B) = 1

implies that 0 is an accumulation point of B. Hence, fixed n ≥ n0 and A = B ∩ (
0, 1/n2

]
,

we have

0 = lim
x∈A, x→0+

1

ebk/x
≥ lim

x∈A, x→0+

∣∣∣∑k
i=1 ai Xbi ,n(x)

∣∣∣
ebk/x

= lim
x∈A, x→0+

∣∣∣∑k
i=1 ai e

bi /x
∣∣∣

ebk/x
= |ak | > 0.

This contradiction shows that
{∑k

i=1 ai Xbi ,n

}∞
n=1

does not converge almost surely uniformly

to 0. That is, the sequence
{
P
(
Xh1,n, . . . , Xhm ,n

)}∞
n=1 =

{∑k
i=1 ai Xbi ,n

}∞
n=1

belongs

to S. ��

2.2 Complete convergence and almost sure convergence

As a consequence of the Borel–Cantelli lemma, if a sequence of random variables converges
completely to 0, then it also converges almost surely (see [34, Theorem 1.27 and Proposi-
tion 5.7]). However, the converse does not hold in general (see [38, Section 14.4]). Let us
mention that both convergence modes are equivalent if the random variables {Xn}∞n=1 are
independent (see [31]). Based on these facts, we will study the set of sequences of random
variables that converge to zero almost surely but not completely.

Theorem 2 Let S be the set of all sequences {Xn}∞n=1 of random variables on ([0, 1],B, λ)

such that {Xn}∞n=1 converges to 0 almost surely but does not converge completely. Then S is
strongly c-algebrable.

Proof For each b ∈ R and n ∈ N, the random variable Xb,n is defined as follows:

Xb,n(x) =
{
eb/x if x ∈ (

0, 1
n

]
,

0 otherwise.

Let H ⊂ (0,+∞) be a Hamel basis for R over the field Q, whose cardinality is c (see
[35, Theorem 4.2.3]). Let h1, . . . , hm be distinct elements of H and let P be a non-zero

123



63 Page 6 of 24 G. Araújo et al.

polynomial in m variables without constant term. As it was shown in the proof of Theorem
1, there are positive numbers b1 < · · · < bk such that

P
(
Xh1,n, . . . , Xhm ,n

) =
k∑

i=1

ai Xbi ,n .

Following the same technique employed in the proof of Theorem 1 it can be shown that{∑k
i=1 ai Xbi ,n

}∞
n=1

is not the zero sequence. Furthermore, note that
{∑k

i=1 ai Xbi ,n

}∞
n=1

converges to 0 almost surely (in fact, this happens at every point of [0, 1]).
Finally, wewill prove that the sequence

{∑k
i=1 ai Xbi ,n

}∞
n=1

does not converge completely

to zero. Let ε > 0. Since

lim
x→0+

∣∣∣∣∣
k∑

i=1

ai e
bi /x

∣∣∣∣∣ = lim
x→0+

∣∣∣akebk/x ∣∣∣ ·
∣∣∣∣∣1 +

k−1∑
i=1

ai
ake(bk−bi )/x

∣∣∣∣∣ = +∞,

there exists n0 ∈ N such that
∣∣∣∑k

i=1 ai e
bi /x

∣∣∣ > ε for every x ∈ (0, 1/n0]. Hence, if n ≥ n0
and x ∈ (0, 1/n], then ∣∣∣∣∣

k∑
i=1

ai Xbi ,n(x)

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

ai e
bi /x

∣∣∣∣∣ > ε

and so

∞∑
n=1

λ

(∣∣∣∣∣
k∑

i=1

ai Xbi ,n

∣∣∣∣∣ > ε

)
≥

∞∑
n=n0

λ

((
0,

1

n

])
=

∞∑
n=n0

1

n
= +∞.

This proves that the sequence

{
P
(
Xh1,n, . . . , Xhm ,n

)}∞
n=1 =

{
k∑

i=1

ai Xbi ,n

}∞

n=1

belongs to S and concludes the proof of the strongly c-algebrability of this set. ��

Remark 3 Let us recall that a probability space (�,A, μ) is said to be non-atomic if for
every set B ∈ A with μ(B) > 0 there exists another set A ∈ A such that A ⊂ B and
0 < μ(A) < μ(B). By [16, Theorem 9.2.2], Theorems 1 and 2 remain valid if the space
([0, 1],B, λ) is replaced by (�,A, μ) , where � is a complete separable metric space, A is
the Borel σ -algebra in �, and μ is a non-atomic probability measure.

Remark 4 It is well known that every sequence of random variables that converges almost
surely also converges in probability (see [34, Proposition 5.10]). In [2, Theorem 7.1] it was
proved the c-lineability of the set of sequences of Lebesgue measurable functions on [0, 1]
that converge in measure (that is, in probability) but not almost surely, while the strongly
c-algebrability of that family of functions was obtained in [17, Theorem 2.2]. In the case
of a non-atomic probability space, the strong c-algebrability of the collection of sequences
of random variables that converge in probability but not almost surely was proved in [7,
Theorem 11].
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3 Lineability of sets of sequences of random variables

Before presenting the next theorems about sequences of random variables, we need to state
the following result, whose proof can be seen in [32, Lemma 9.21] and that will be applied
in Theorems 6 and 15:

Theorem 5 There exists a family � of subsets of N with the following properties:
• Each σ ∈ � is infinite.
• The elements of � are almost disjoint. That is, if σ and σ ′ are two different elements of

�, then σ ∩ σ ′ is finite or empty.
• The cardinality of � is c.

Next we prove a general result about lineability of sets of sequences.

Theorem 6 Let V be a vector space over R and let c1 and c2 be two types of convergence
defined on V such that both c1 and c2 have the following properties:
(a) If {Xn}∞n=1 ⊂ V and Xn → 0, then also λXn → 0 for all λ ∈ R.

(b) The sequence in V constantly equal to 0 converges to 0.
(c) If {Xn}∞n=1 is a sequence in V that canbe decomposed into a finite number of subsequences

converging to 0, then {Xn}∞n=1 converges to 0.
(d) If {Xn}∞n=1 is a sequence that converges to 0, then all subsequences of {Xn}∞n=1 also

converge to 0.
(e) If a finite number of terms from a sequence is deleted, the convergence or lack of con-

vergence does not change.

Let

S =
{
{Xn}∞n=1 ⊂ V : Xn

c1−→ 0 and Xn

c2�−→ 0

}
.

If S �= ∅, then S is c-lineable.

Proof Let � be a family of c almost disjoint infinite subsets of N (see Theorem 5). If σ ∈ �

and j ∈ N, σ ( j) denotes the j th element of the set σ. Let us suppose that a sequence {Xn}∞n=1
belongs to S. Given σ ∈ �, we define

{
Xσ,n

}∞
n=1 as follows:

Xσ,n =
{
X j if n ∈ σ and σ( j) = n,

0 if n /∈ σ.

The set M = {{
Xσ,n

}∞
n=1 : σ ∈ �

}
has cardinality c and every linear combination of its

elements belongs to S. Indeed, let us suppose that k ∈ N, σ1, . . . , σk are distinct ele-
ments of �, and a1, . . . , ak ∈ R\{0}. Since σ1, . . . , σk are almost disjoint, there exists
n0 ∈ N such that each n ≥ n0 belongs at most to one set σi , i ∈ {1, . . . , k}. Therefore,{∑k

i=1 ai Xσi ,n

}∞
n=n0

can be decomposed into k + 1 subsequences: the zero sequence and{
ai X j : j ∈ N, σi ( j) ≥ n0

}
with i ∈ {1, . . . , k}. By the properties (a) and (e) we have that{
ai X j : j ∈ N, σi ( j) ≥ n0

} c1−→ 0

for every i ∈ {1, . . . , k}. Moreover, the zero sequence converges to 0 by the property (b).

Then (c) implies that
{∑k

i=1 ai Xσi ,n

}∞
n=n0

converges to zero with respect to c1. Using again
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(e), it follows that

k∑
i=1

ai Xσi ,n
c1−→ 0.

Let us see that this linear combination does not converge to zero with respect to c2. Since

Xn

c2�−→ 0, by (a) we know that a1Xn

c2�−→ 0. Then (e) implies{
k∑

i=1

ai Xσi ,n : n ∈ σ1, n ≥ n0

}
= {

a1X j : j ∈ N, σ1( j) ≥ n0
} c2�−→ 0.

By (d) we deduce that

k∑
i=1

ai Xσi ,n

c2�−→ 0.

Therefore,
{∑k

i=1 ai Xσi ,n

}∞
n=1

belongs to S.

By (b), the fact that
∑k

i=1 ai Xσi ,n

c2�−→ 0 implies that
{∑k

i=1 ai Xσi ,n

}∞
n=1

cannot be the

zero sequence. Hence, we deduce that the elements of M are linearly independent and the
proof of the c-lineability of S is complete. ��
Theorem 7 The following modes of convergence of sequences of random variables satisfy
the properties (a), (b), (c), (d), and (e) given in Theorem 6: almost sure convergence, almost
sure uniform convergence, complete convergence, convergence in probability, convergence
in distribution, and convergence in L p-sense.

Proof The unique property that might not be obvious is (a) for convergence in distribution.
However, it can be deduced from Slutsky’s theorem (see [34, Theorems 5.22 and 5.23]). ��

3.1 Almost sure uniform convergence, complete convergence and almost sure
convergence

The following theorem complements the result given in Theorem 1.

Theorem 8 Let (�,A, μ) be a non-atomic probability space and let S be the set of all
sequences {Xn}∞n=1 of random variables on (�,A, μ) such that {Xn}∞n=1 converges to 0
completely but does not converge almost surely uniformly. Then S is c-lineable.

Proof Since (�,A, μ) is non-atomic, for every n ∈ N there exists a subset �n ∈ A such
that μ(�n) = 1/n2 (see [16, Corollary 1.12.10]). The random variable Xn is defined as the
characteristic function of �n :

Xn = 1�n .

Note that if ε > 0, then
∞∑
n=1

μ(|Xn | > ε) ≤
∞∑
n=1

μ(�n) =
∞∑
n=1

1

n2
< ∞.

That is, the sequence {Xn}∞n=1 converges completely to 0.
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Let us suppose that {Xn}∞n=1 also converges almost surely uniformly to 0. Then there is
some measurable set B with μ(B) = 1 and there is n0 ∈ N such that |Xn(ω)| < 1/2 for all
n ≥ n0 and all ω ∈ B. Since Xn0(ω) = 1 if ω ∈ �n0 , it follows that B ∩ �n0 = ∅ and then

0 = μ(�\B) ≥ μ
(
�n0

) = 1

n20
> 0.

This contradiction shows that the sequence {Xn}∞n=1 does not converge almost surely uni-
formly to 0. That is, {Xn}∞n=1 belongs to S. Now we just need to apply Theorem 6 to get the
result. ��

The following theorem complements the result given in Theorem 2.

Theorem 9 Let (�,A, μ) be a non-atomic probability space and let S be the set of all
sequences {Xn}∞n=1 of random variables on (�,A, μ) such that {Xn}∞n=1 converges to 0
almost surely but does not converge completely. Then S is c-lineable.

Proof By [16, Corollary 1.12.10], there exists a sequence {�n : n ∈ N} ofmeasurable subsets
of � such that �n+1 ⊂ �n and μ (�n) = 1/n for each n ∈ N. Let Xn = 1�n and note that
if ω /∈ �n0 for some n0 ∈ N, then Xn(ω) = 0 for all n ≥ n0. Therefore,

{ω ∈ � : Xn(ω) �−→ 0} ⊂
∞⋂
n=1

�n .

Since μ
(⋂∞

n=1 �n
) = 0, it follows that {Xn}∞n=1 converges to 0 almost surely. Moreover,

∞∑
n=1

μ

(
|Xn | >

1

2

)
=

∞∑
n=1

μ (�n) =
∞∑
n=1

1

n
= +∞.

Consequently, the sequence {Xn}∞n=1 does not converge completely to 0. We have proved
that {Xn}∞n=1 belongs to S, so this set is c-lineable by Theorem 6. ��

3.2 Convergence in Lp-sense and almost sure convergence

Let us recall that E(X) denotes the expectation of a random variable X . By the Lyapunov
inequality, it is known that E(|X |q)1/q ≤ E(|X |p)1/p if 0 < q < p (see [15, page 277]). As
a consequence, it follows that the convergence in L p-sense implies the convergence in Lq -
sense whenever 0 < q < p, but the converse is not true (see [38, Section 14.5]). Moreover,
it is also known that almost sure convergence and convergence in L p-sense are independent,
that is, none of them implies the other one (see [38, Sections 14.7 and 14.8]). More generally,
considering non-atomic probability spaces, Theorems 10, 11, and 12 below bring interesting
information related to these modes of convergence.

Theorem 10 Let (�,A, μ) be a non-atomic probability space and let p > 0. Let S be the
set of all sequences {Xn}∞n=1 of random variables on (�,A, μ) such that {Xn}∞n=1 converges
to 0 in Lq-sense for all q ∈ (0, p) but does not converge in L p-sense. Then S is c-lineable.

Proof Let n0 ∈ N such that n−p+1/n ≤ 1 for all n ≥ n0. For each n ≥ n0 there exists
�n ∈ A such that μ(�n) = n−p+1/n (see [16, Corollary 1.12.10]). Define

Xn(ω) =
{
n if ω ∈ �n,

0 otherwise.
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On the one hand, if 0 < q < p, then

lim
n→∞ E

(|Xn |q
) = lim

n→∞

∫
�

|Xn |q dμ = lim
n→∞ nq−p+ 1

n = 0

and so {Xn}∞n=n0 converges to 0 in Lq -sense. On the other hand, we have that

lim
n→∞ E

(|Xn |p
) = lim

n→∞ n1/n = 1.

Therefore, {Xn}∞n=n0 does not converge to zero in L
p-sense. This proves that {Xn}∞n=1 belongs

to S. By Theorem 6, we conclude that S is c-lineable. ��
Theorem 11 Let (�,A, μ) be a non-atomic probability space and let S be the set of all
sequences {Xn}∞n=1 of random variables on (�,A, μ) such that {Xn}∞n=1 converges to 0
almost surely but does not converge in L p-sense for any p > 0. Then S is c-lineable.

Proof Since the probability space is non-atomic, there exists a collection {�n : n ∈ N} of
measurable subsets of � such that μ(�n) = 1/n and �n+1 ⊂ �n for every n ∈ N. Set

Xn(ω) =
{
nn if ω ∈ �n,

0 otherwise.

On the one hand, if ω /∈ ⋂
n∈N �n, then Xn(ω) = 0 for n large enough (dependent on ω).

That is, the set of points ω for which there is no convergence of {Xn(ω)}∞n=1 is a subset of⋂
n∈N �n . Since μ (�n) = 1/n for all n, we have that μ

(⋂
n∈N �n

) = 0. Thus,

μ
({

ω ∈ � : lim
n→∞ Xn(ω) = 0

})
= 1.

On the other hand, if p > 0, then

lim
n→∞ E

(|Xn |p
) = lim

n→∞ nnp−1 = +∞

and so {Xn}∞n=1 does not converge to 0 in L p-sense. This proves that {Xn}∞n=1 belongs to S.

By Theorem 6 we conclude that S is c-lineable. ��
Theorem 12 Let (�,A, μ) be a non-atomic probability space and let S be the set of all
sequences {Xn}∞n=n0 of random variables on (�,A, μ) such that {Xn}∞n=1 converges to 0 in
L p-sense for all p > 0 but does not converge almost surely. Then S is c-lineable.

Proof Since the probability space is non-atomic, there exists a measurable set �0 such that
μ(�0) = 1/2 (see [16, Corollary 1.12.10]). Defining �1 = �\�0, we find two measurable
sets �0 and �1 such that

� = �0 ∪ �1, �0 ∩ �1 = ∅, μ(�0) = μ(�1) = 1

2
.

With the same argument, it is possible to find two measurable sets �00 and �01 such that

�0 = �00 ∪ �01, �00 ∩ �01 = ∅, μ(�00) = μ(�01) = 1

22
.

Similarly, there exist two measurable sets �10 and �11 such that

�1 = �10 ∪ �11, �10 ∩ �11 = ∅, μ(�10) = μ(�11) = 1

22
.
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If the previous argument is repeated, we obtain a family{
� j1··· jm : m ∈ N, j1, . . . , jm ∈ {0, 1}}

of measurable subsets of � with the following properties:

• � j1··· jm = � j1··· jm0 ∪ � j1··· jm1.
• � j1··· jm0 ∩ � j1··· jm1 = ∅.

• μ
(
� j1··· jm0

) = μ
(
� j1··· jm1

) = 1/2m+1.

• For each m ∈ N, � = ⋃{
� j1··· jm : j1, . . . , jm ∈ {0, 1}} .

Let X1 = 1�.Moreover, given a natural number n ≥ 2,we consider its binary expansion:

n = 2m + 2m−1 j1 + 2m−2 j2 + · · · + 2 jm−1 + jm,

where m ≥ 1 and j1, . . . , jm ∈ {0, 1} are unique for each n ≥ 2. Hence, we can define

Xn = 1� j1 ··· jm .

Let this m be denoted by n∗. The following table clarifies how each Xn is defined.

n = 1 X1 = 1�

n = 2 = 21 + 0 n∗ = 1 X2 = 1�0

n = 3 = 21 + 1 n∗ = 1 X3 = 1�1

n = 4 = 22 + 2 · 0 + 0 n∗ = 2 X4 = 1�00

n = 5 = 22 + 2 · 0 + 1 n∗ = 2 X5 = 1�01

n = 6 = 22 + 2 · 1 + 0 n∗ = 2 X6 = 1�10

n = 7 = 22 + 2 · 1 + 1 n∗ = 2 X7 = 1�11

n = 8 = 23 + 22 · 0 + 2 · 0 + 0 n∗ = 3 X8 = 1�000

n = 9 = 23 + 22 · 0 + 2 · 0 + 1 n∗ = 3 X9 = 1�001

.

.

.
.
.
.

.

.

.

Let us see that {Xn}∞n=1 belongs to S. On the one hand,

lim
n→∞ E(Xn) = lim

n→∞

∫
�

|Xn |p dμ = lim
n→∞ μ

(
� j1··· jn∗

) = lim
n→∞

1

2n∗ = 0,

which means that {Xn}∞n=1 converges to 0 in L p for all p > 0. On the other hand, for each
ω ∈ � and each m ∈ N, there exist unique j1, . . . , jm ∈ {0, 1} such that ω ∈ � j1··· jm . If
0 ≤ 	 < 2m, then

X2m+	(ω) =
{
1 if 	 = 2m−1 j1 + 2m−2 j2 + · · · + jm,

0 otherwise.

As a consequence, the sequence {Xn(ω)}∞n=1 contains infinitelymany elements equal to 0 and
infinitely many elements equal to 1.We thus conclude that {Xn(ω)}∞n=1 does not converge for
any ω ∈ �. This proves that {Xn(ω)}∞n=1 belongs to S, so this set is c-lineable by Theorem 6.

��
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3.3 Convergence in distribution and convergence in probability

Although every sequence of random variables that converges in probability also converges
in distribution, the reciprocal result does not hold in general (see [34, Proposition 5.13] and
[38, Section 14.2]). Our next result will show the lineability of the collection of sequences
converging in distribution but not in probability.

Theorem 13 Let (�,A, μ) be a probability space on which is possible to define infinitely
many independent and identically distributed different random variables. Let S be the set
of all sequences of random variables on (�,A, μ) that converge in distribution but do not
converge in probability. Then S is c-lineable.

Proof Let {Xn}∞n=1 be a sequence of independent and identically distributed different random
variables on (�,A, μ) . Since all random variables Xn have the same distribution function,
that we will call F, it follows that the sequence {Xn}∞n=1 converges in distribution to X1.

If F only took the values 0 and 1, every random variable Xn would be constant almost
surely and equal to the same value (min {x ∈ R : F(x) = 1}). Therefore, we would have that
Xn = Xm for all n,m ∈ N, which contradicts the hypothesis of the theorem. Then there
must exist x0 ∈ R such that 0 < F(x0) < 1. Since F is right-continuous, there exists δ > 0
such that if x0 ≤ x < x0 + δ, then F(x) < 1. Choose any a and b so that

x0 < a < b < x0 + δ.

Since F is non-decreasing, for all m and n we have

μ(Xm < a) · μ(Xn > b) ≥ F(x0) · (1 − F(b)) > 0. (3.1)

These inequalities will be applied later on.
It is known that convergence in probability is metrizable (see [15, Exercise 21.15]). In

fact, convergence in probability is equivalent to convergence with respect to the following
metric in the space of all random variables on (�,A, μ):

d(X , Y ) = E

( |X − Y |
1 + |X − Y |

)
=

∫
�

|X − Y |
1 + |X − Y |dμ.

Let us estimate the distance between Xm and Xn for two natural numbersm �= n. To do that,
we will use that the function f (t) = t

1+t is increasing on [0,+∞) and that the variables Xm

and Xn are independent:

d(Xm, Xn) =
∫

�

f (|Xm − Xn |) dμ ≥
∫

(Xm<a)∩(Xn>b)
f (|Xm − Xn |) dμ

≥ μ ((Xm < a) ∩ (Xn > b)) · f (b − a)

= μ (Xm < a) · μ (Xn > b) · f (b − a).

By (3.1), if m �= n, then

d(Xm, Xn) ≥ F(x0) · (1 − F(b)) · f (b − a) > 0.

We conclude that {Xn}∞n=1 is not a Cauchy sequence, which implies that {Xn}∞n=1 cannot
converge in probability. Therefore, {Xn}∞n=1 belongs to S. By Theorem 6, we obtain the
c-lineability of the set S. ��
Remark 14 The existence of a probability space and a collection of independent random
variables on it with prefixed distributions, as required in Theorems 13 and 15, is guaranteed
by [15, Theorem 20.4].
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4 Convergence of sums of sequences of random variables

Let X , Y , Xn, and Yn (with n ∈ N) be random variables and suppose that {Xn}∞n=1 converges
in distribution to X and {Yn}∞n=1 converges in distribution to Y , which will be denoted by

Xn
d−→ X and Yn

d−→ Y . In general, it is not possible to guarantee the convergence
of {Xn + Yn}∞n=1 to X + Y , as it can be seen [38, Section 14.10]. Inspired by the cited
counterexample, we will prove a stronger result:

Theorem 15 Let us suppose that (�,A, μ) is a probability space such that there are two
subsets�1 ∈ A and�2 ∈ Awith� = �1∪�2, �1∩�2 = ∅, andμ(�1) = μ(�2) = 1/2.
For each i ∈ {1, 2}, let Ai be the elements of A contained in �i and let μi (B) = 2μ(B) for
all B ∈ Ai . In addition, suppose that there is a sequence {Xn}∞n=1 of independent random
variables defined on (�1,A1, μ1) and there is another sequence {Yn}∞n=1 of independent
random variables defined on (�2,A2, μ2) such that the distribution function of every Xn

and every Yn is

F(x) =

⎧⎪⎨
⎪⎩
0 if x < −1,
1+x
2 if − 1 ≤ x ≤ 1,

1 if x ≥ 1.

Under these conditions, there exist two vector spaces, V1 and V2, of sequences of random
variables on (�,A, μ) with the following properties:
(1) The dimension of both spaces V1 and V2 is c.
(2) If {Zn}∞n=1 ∈ V1\{0} and {Tn}∞n=1 ∈ V2\{0}, then there are random variables Z and T

on (�,A, μ) satisfying Zn
d−→ Z , Tn

d−→ T , and Zn + Tn
d�−→ Z + T .

Proof Given a ∈ R\{0} and n ∈ N, let Fa denote the distribution function of aXn . On the
one hand, if a > 0, then

Fa(x) = μ1 ({ω ∈ �1 : aXn(ω) ≤ x}) = F
( x
a

)
=

⎧⎪⎨
⎪⎩
0 if x < −a,
1+ x

a
2 if − a ≤ x < a,

1 if x ≥ a.

On the other hand, if a < 0, then

Fa(x) = μ1 ({ω ∈ �1 : aXn(ω) ≤ x}) = μ1

({
ω ∈ �1 : Xn(ω) ≥ x

a

})

= 1 − μ1

({
ω ∈ �1 : Xn(ω) <

x

a

})
=

⎧⎪⎨
⎪⎩
1 if x/a ≤ −1,

1 − 1+ x
a

2 if − 1 < x/a ≤ 1,

0 if x/a > 1,

=

⎧⎪⎨
⎪⎩
1 if x ≥ −a,
1− x

a
2 if a ≤ x < −a,

0 if x < a.

That is, for every a ∈ R\{0} and every n ∈ N, the distribution function of aXn is

Fa(x) =

⎧⎪⎨
⎪⎩
0 if x < −|a|,
1+ x

|a|
2 if − |a| ≤ x < |a|,

1 if x ≥ |a|.
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As a consequence, the density function of aXn is

fa(x) =
{

1
2|a| if − |a| < x < |a|,
0 otherwise.

For each n ∈ N, we define the following extension of Xn to the whole space (�,A, μ):

X∗
n(ω) =

{
Xn(ω) if ω ∈ �1,

0 if ω ∈ �2.

If n1, . . . , nk are distinct positive integers and a1, . . . , ak are non-zero real numbers, then
the variables a1Xn1 , . . . , ak Xnk are independent, so the density function of

∑k
i=1 ai Xni is

the following convolution:

ga1,...,ak = fa1 ∗ · · · ∗ fak (4.1)

(see [15, page 267]). Therefore, the distribution function of
∑k

i=1 ai Xni is

Ga1,...,ak (x) =
∫ x

−∞
ga1,...,ak (t)dt . (4.2)

If S is defined as

S(x) =
{
0 if x < 0,

1 if x ≥ 0,

then the distribution function of the extension
∑k

i=1 ai X
∗
ni is

(
Ga1,...,ak + S

)
/2. Indeed, since∑k

i=1 ai X
∗
ni = 0 on �2, if x < 0, then

μ

(
k∑

i=1

ai X
∗
ni ≤ x

)
= μ

({
ω ∈ �1 :

k∑
i=1

ai X
∗
ni (ω) ≤ x

})

= 1

2
μ1

({
ω ∈ �1 :

k∑
i=1

ai Xni (ω) ≤ x

})

= 1

2
Ga1,...,ak (x) = Ga1,...,ak (x) + S(x)

2
.

On the other hand, if x ≥ 0, then

μ

(
k∑

i=1

ai X
∗
ni ≤ x

)
= μ(�2) + μ

({
ω ∈ �1 :

k∑
i=1

ai X
∗
ni (ω) ≤ x

})

= 1

2
+ 1

2
μ1

({
ω ∈ �1 :

k∑
i=1

ai Xni (ω) ≤ x

})

= 1

2
+ 1

2
Ga1,...,ak (x) = Ga1,...,ak (x) + S(x)

2
.

This proves that

Ha1,...,ak = Ga1,...,ak + S

2
(4.3)
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is the distribution function of
∑k

i=1 ai X
∗
ni whenever n1, . . . , nk are distinct positive integers

and a1, . . . , ak are non-zero real numbers.
Let � be a family of c almost disjoint subsets of N (see Theorem 5). Given n ∈ N and

σ ∈ �, the symbol σ(n) denotes the nth element of σ. The space V1 is defined as the linear
span of the set {{

X∗
σ(n)

}∞
n=1

: σ ∈ �
}

.

Let us see that any non-zero element of V1 is convergent in distribution. Let{∑k
i=1 ai X

∗
σi (n)

}∞
n=1

∈ V1, where σ1, . . . , σk are distinct elements of � and a1, . . . , ak ∈
R\{0}. Since σ1, . . . , σk are almost disjoint sets, there exists n0 such that σi (n) �= σ j (n) for
all n ≥ n0 and i �= j . By Eq. (4.3), if n ≥ n0, the distribution function of

∑k
i=1 ai X

∗
σi (n) is

Ha1,...,ak . Moreover, since the distribution function of
∑k

i=1 ai X
∗
i is also Ha1,...,ak , we can

conclude that

k∑
i=1

ai X
∗
σi (n)

d−→
k∑

i=1

ai X
∗
i .

Note that if i ∈ {1, . . . , k}, then
sup

{
x ∈ R : fai (t) = 0 for all t ∈ (−∞, x)

} = −|ai |.
Using that ga1,...,ak = fa1 ∗ · · · ∗ fak and the Titchmarsh convolution theorem (see [36]), we
obtain

sup
{
x ∈ R : ga1,...,ak (t) = 0 for all t ∈ (−∞, x)

} =
k∑

i=1

(−|ai |) < 0.

Since Ga1,...,ak (x) = ∫ x
−∞ ga1,...,ak (t)dt, it follows that

sup
{
x ∈ R : Ga1,...,ak = 0 on (−∞, x)

}
< 0.

Hence,

sup
{
x : Ha1,...,ak = 0 on (−∞, x)

} = sup
{
x : Ga1,...,ak = 0 on (−∞, x)

}
< 0 = sup {x : S = 0 on (−∞, x)} .

Therefore, Ha1,...,ak �= S. Since S is the distribution function of the random variable
which is equal to zero everywhere, we deduce that

∑k
i=1 ai X

∗
σi (n) �= 0 if n ≥ n0, so{∑k

i=1 ai X
∗
σi (n)

}∞
n=1

is not the zero sequence. That is, the set

{{
X∗

σ(n)

}∞
n=1

: σ ∈ �
}

is linearly independent and the dimension of V1 is c.
For each n ∈ N, the random variable Yn defined on �2 is extended to the whole space �

as follows:

Y ∗
n (ω) =

{
Yn(ω) if ω ∈ �2,

0 if ω ∈ �1.
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The space V2 is defined as the linear span of{{
Y ∗

σ(n)

}∞
n=1

: σ ∈ �
}

.

Similar arguments to those used previously imply that the dimension of V2 is c and that any
non-zero element of V2 is convergent in distribution. In particular, if ϕ1, . . . ϕ	 are distinct
elements of� and b1, . . . , b	 ∈ R\{0}, then there is n1 ∈ N such that if n ≥ n1, the distribu-
tion functions of

∑	
i=1 biYϕi (n) and

∑	
i=1 biY

∗
ϕi (n) are Gb1,...,b	

and Hb1,...,b	
, respectively.

By Eq. (4.3), the distribution function of
∑	

i=1 bi X
∗
k+i is also Hb1,...,b	

, so we deduce that

	∑
i=1

biY
∗
ϕi (n)

d−→
	∑

i=1

bi X
∗
k+i .

To conclude the proof, we have to prove that the sum of both sequences does not converge
in distribution to the sum of the limits. Setting

Zn =
k∑

i=1

ai X
∗
σi (n), Tn =

	∑
i=1

biY
∗
ϕi (n), L =

k∑
i=1

ai X
∗
i +

	∑
i=1

bi X
∗
k+i ,

we have to prove that Zn +Tn
d�−→ L. Let n ≥ max{n0, n1}. Since Zn = 0 on�2 and Tn = 0

on �1, if x ∈ R, then

μ (Zn + Tn ≤ x) = μ ({ω ∈ �1 : Zn(ω) ≤ x}) + μ ({ω ∈ �2 : Tn(ω) ≤ x})

= 1

2
μ1

({
ω ∈ �1 :

k∑
i=1

ai Xσi (n)(ω) ≤ x

})

+ 1

2
μ2

({
ω ∈ �2 :

	∑
i=1

biYϕi (n)(ω) ≤ x

})

= 1

2
Ga1,...,ak (x) + 1

2
Gb1,...,b	

(x),

where we have applied Eq. (4.2) (and a similar one for
∑	

i=1 biYϕi (n)). This proves that if
n ≥ max{n0, n1}, then the distribution function of Zn + Tn is

Ga1,...,ak + Gb1,...,b	

2
.

Moreover, by Eq. (4.3), the distribution function L is

Ha1,...,ak ,b1,...,b	
= Ga1,...,ak ,b1,...,b	

+ S

2
.

Let us see that these two distribution functions are not equal. On the one hand, by the
Titchmarsh convolution theorem (see [36]), we have

sup
{
x ∈ R : ga1,...,ak = 0 on (−∞, x)

} =
k∑

i=1

(−|ai |).

Since Ga1,...,ak (x) = ∫ x
−∞ ga1,...,ak (t)dt, we deduce that

sup
{
x ∈ R : Ga1,...,ak = 0 on (−∞, x)

} =
k∑

i=1

(−|ai |).
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Similarly,

sup
{
x ∈ R : Gb1,...,b	

= 0 on (−∞, x)
} =

	∑
i=1

(−|bi |).

Since Ga1,...,ak and Gb1,...,b	
are non-negative at every point, it follows that

sup

{
x : Ga1,...,ak + Gb1,...,b	

2
= 0 on (−∞, x)

}
= min

{
k∑

i=1

(−|ai |),
	∑

i=1

(−|bi |)
}

.

On the other hand, applying again the Titchmarsh convolution theorem, we obtain

sup
{
x ∈ R : ga1,...,ak ,b1,...,b	

= 0 on (−∞, x)
} = −

k∑
i=1

|ai | −
	∑

i=1

|bi |,

which implies

sup
{
x ∈ R : Ga1,...,ak ,b1,...,b	

= 0 on (−∞, x)
} = −

k∑
i=1

|ai | −
	∑

i=1

|bi |

and then

sup
{
x ∈ R : Ha1,...,ak ,b1,...,b	

= 0 on (−∞, x)
}

= sup
{
x ∈ R : Ga1,...,ak ,b1,...,b	

= 0 on (−∞, x)
}

= −
k∑

i=1

|ai | −
	∑

i=1

|bi | < min

{
k∑

i=1

(−|ai |),
	∑

i=1

(−|bi |)
}

.

Therefore,

Ga1,...,ak + Gb1,...,b	

2
�= Ha1,...,ak ,b1,...,b	

,

which proves that {Zn + Tn}∞n=1 does not converge in distribution to L. ��

5 Convex lineability of sets of sequences of random variables

5.1 Convergence of distribution functions and convergence of densities

Let us suppose that F and Fn (with n ∈ N) are absolutely continuous distribution functions
with densities f and fn, respectively. By the Scheffé theorem, if limn→∞ fn(x) = f (x) for
almost all x ∈ R, then {Fn}∞n=1 converges to F at every point ofR (see [15, Theorem 16.12]).
However, the converse result does not hold in general (see [38, Section 14.9]). In this sense,
we have the following result that relates both modes of convergence from the point of view
of lineability:

Theorem 16 Let S be the set of all sequences {Fn}∞n=1 of absolutely continuous distribution
functions such that {Fn}∞n=1 converges at every point ofR, but the sequence of their densities
{ fn}∞n=1 does not converge at almost any point of [0, 1]. Then S is c-convex lineable.
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Proof For each b ∈ (0,+∞) and n ∈ N, define

Fb,n(x) =

⎧⎪⎪⎨
⎪⎪⎩
0 if x < 0,(
x − sin(2πnx)

2πn

)
eb(x−1) if x ∈ [0, 1],

1 if x > 1.

In order to prove that Fb,n is a distribution functions, we only need to show that Fb,n is
nondecreasing. To do that, we will study its derivative on (0, 1), which will be denoted by
fb,n . Thus, if 0 < x < 1, then

fb,n(x) =
(
1 − cos(2πnx) + b

(
x − sin 2πnx

2πn

))
eb(x−1).

Let gn(x) = x − sin(2πnx)
2πn and observe that g′

n(x) = 1 − cos(2πnx) > 0 for all x ∈ (0, 1),
whichmeans that gn is strictly increasing on (0, 1).Since gn(0) = 0, it follows that gn(x) > 0
for all x ∈ (0, 1). Therefore, fb,n(x) > 0 for all x ∈ (0, 1), which implies that Fb,n is
increasing on (0, 1) and, consequently, it is a distribution function. We also consider another
distribution function:

Gb(x) =

⎧⎪⎨
⎪⎩
0 if x < 0,

xeb(x−1) if x ∈ [0, 1],
1 if x > 1.

The setM = {{
Fb,n

}∞
n=1 : b ∈ (0,+∞)

}
is linearly independent. Indeed, let us suppose

that 0 < b1 < · · · < bk and a1, . . . , ak ∈ R\{0}. If for some n ∈ N we had

k∑
i=1

ai Fbi ,n(x) =
k∑

i=1

ai

(
x − sin(2πnx)

2πn

)
ebi (x−1) = 0

for every x ∈ [0, 1], the Identity Theorem for holomorphic functions would imply that

k∑
i=1

ai

(
x − sin(2πnx)

2πn

)
ebi (x−1) = 0

at every point x of the complex plane. As a consequence, it would follow that

0 = lim
x→+∞

∑k
i=1 ai

(
x − sin(2πnx)

2πn

)
ebi (x−1)

akebk (x−1)

= lim
x→+∞

(
x − sin(2πnx)

2πn

)
+ lim

x→+∞

k−1∑
i=1

ai
(
x − sin(2πnx)

2πn

)
ake(bk−bi )(x−1)

= +∞.

This contradiction shows that, for every n ∈ N,
∑k

i=1 ai Fbi ,n is not identically zero on

[0, 1]. Therefore,
{∑k

i=1 ai Fbi ,n
}∞
n=1

is not the zero sequence and then the elements of M
are linearly independent.

Next we will prove that every convex combination of elements of M belongs to S. Let
us suppose again that 0 < b1 < · · · < bk, a1, . . . , ak ∈ [0, 1], and ∑k

i=1 ai = 1. The sum
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∑k
i=1 ai Fbi ,n is a new distribution function such that

lim
n→∞

k∑
i=1

ai Fbi ,n(x) =
k∑

i=1

aiGbi (x)

for all x ∈ R.

Now let us see that the sequence of densities
{∑k

i=1 ai fbi ,n
}∞
n=1

does not converge at any

point of (0, 1). If x ∈ (0, 1), then

k∑
i=1

ai fbi ,n(x) =
k∑

i=1

ai

(
1 + bi

(
x − sin(2πnx)

2πn

))
ebi (x−1) − cos(2πnx)

k∑
i=1

ai e
bi (x−1).

Note that

lim
n→∞

k∑
i=1

ai

(
1 + bi

(
x − sin(2πnx)

2πn

))
ebi (x−1) =

k∑
i=1

ai (1 + bi x) e
bi (x−1).

Moreover,
∑k

i=1 ai e
bi (x−1) is strictly positive and does not depend on n. Hence, if{∑k

i=1 ai fbi ,n(x)
}∞
n=1

were convergent, the sequence {cos(2πnx)}∞n=1 should be conver-

gent as well, which is not possible. On the one hand, if x ∈ Q, then that sequence is
periodic. On the other hand, if x /∈ Q, then {(cos(2πnx), sin(2πnx))}∞n=1 is dense in the unit
circle and so {cos(2πnx)}∞n=1 is dense in [−1, 1] (see [30, Proposition 4.1.1]). Therefore,{∑k

i=1 ai fbi ,n
}∞
n=1

does not converge at any point of (0, 1). The densities are unique almost

everywhere, which implies that any other sequence of densities will not converge at almost
any point of (0, 1). ��

5.2 Convergence in distribution and convergence in variation

Let us suppose again that F and Fn (with n ∈ N) are absolutely continuous distribution
functions with density functions f and fn, respectively. If {Fn}∞n=1 converges in variation to
F, for each x ∈ R we have

lim
n→∞ |Fn(x) − F(x)| = lim

n→∞

∣∣∣∣
∫ x

−∞
fn(t)dt −

∫ x

−∞
f (t)dt

∣∣∣∣
≤ lim

n→∞

∫ +∞

−∞
| fn(t) − f (t)|dt = 0.

Therefore, {Fn}∞n=1 converges weakly to F . However, the converse is not true in general (see
[38, Section 14.12]). The next result shows that the set of sequences of absolutely continuous
distribution functions converging weakly but not in variation contains a large convex space
in the lineability sense.

Theorem 17 Let F denote the function on R defined as follows:

F(x) =

⎧⎪⎨
⎪⎩
0 if x ≤ 0,

x if 0 < x < 1,

1 if x ≥ 0.
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Let S denote the set of all sequences of absolutely continuous distribution functions that
converge to F at every point of R but do not converge to F in variation. Then S is c-convex
lineable.

Proof We will work restricted to [0, 1], since all the distribution functions considered in this
proof will take the value 0 on (−∞, 0] and the value 1 on [1,+∞). Given b ∈ (0, 1) and
n ∈ N, the function gb,n is defined as follows:

gb,n(t) =
{

1
b if t ∈

[
j
n ,

j+b
n

]
for some j ∈ {0, . . . , n − 1} ,

0 otherwise.

Note that
∫ 1
0 gb,n(t)dt = 1. Let Gb,n be the distribution function associated to the density

gb,n . For each x ∈ [0, 1] there exists j ∈ {0, . . . , n − 1} such that either x ∈
[
j
n ,

j+b
n

]
or

x ∈
[
j+b
n ,

j+1
n

]
. On the one hand, if x ∈

[
j
n ,

j+b
n

]
for some j ∈ {0, . . . , n − 1}, then

Gb,n(x) =
∫ x

0
gb,n(t)dt =

j−1∑
i=0

1

b
· b
n

+
∫ x

j/n

1

b
dt = j

n
− j

nb
+ x

b
. (5.1)

Hence,

Gb,n(x) − x = j

n
− j

nb
+ 1 − b

b
x ≤ j

n
− j

nb
+ 1 − b

b
· j + b

n
= 1 − b

n

and

Gb,n(x) − x = j

n
− j

nb
+ 1 − b

b
x ≥ j

n
− j

nb
+ 1 − b

b
· j

n
= 0.

On the other hand, if x ∈
[
j+b
n ,

j+1
n

]
for some j ∈ {0, . . . , n − 1}, then

Gb,n(x) =
∫ x

0
gb,n(t)dt =

∫ j+b
n

0
gb,n(t)dt =

j∑
i=0

1

b
· b
n

= j + 1

n
. (5.2)

Hence,

Gb,n(x) − x = j + 1

n
− x ≤ j + 1

n
− j + b

n
= 1 − b

n

and

Gb,n(x) − x = j + 1

n
− x ≥ j + 1

n
− j + 1

n
= 0.

Therefore, we obtain that

0 ≤ Gb,n(x) − x ≤ 1 − b

n
<

1

n
(5.3)

for every x ∈ [0, 1].
Let us prove that the set

{
Gb,1 : b ∈ (0, 1)

}
is linearly independent. Let k ∈ N, 0 < b1 <

· · · < bk < 1, and a1, . . . , ak ∈ R\{0}. If n = 1 and x ∈ [
bk−1, bk

]
, then the equalities in
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(5.2) imply that Gbi ,1(x) = 1 for every i ∈ {1, . . . , k − 1}, while Gbk ,1(x) = x
bk

by (5.1).
Therefore, for x ∈ [bk−1, bk], we have

k∑
i=1

aiGbi ,1(x) = a1 + · · · + ak−1 + x

bk
.

Consequently, it cannot happen that
∑k

i=1 aiGbi ,1(x) = 0 for all x ∈ [bk−1, bk]. This proves
the set of functions

{
Gb,1 : b ∈ (0, 1)

}
is linearly independent, which in turn implies that the

set of sequences

M = {{
Gb,n

}∞
n=1 : b ∈ (0, 1)

}
is linearly independent as well.

Next we will prove that every convex combination of elements of the set M belongs to
S. Let k ∈ N, 0 < b1 < · · · < bk < 1, and a1, . . . , ak ∈ R\{0} such that

∑k
i=1 ai = 1. By

the inequalities in (5.3), if x ∈ [0, 1], then∣∣∣∣∣
k∑

i=1

aiGbi ,n(x) − x

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

aiGbi ,n(x) −
k∑

i=1

ai x

∣∣∣∣∣
≤

k∑
i=1

ai |Gbi ,n(x) − x | <
1

n
.

Therefore,
{∑k

i=1 aiGbi ,n

}∞
n=1

converges to F at every point.

Finally, the variation between F and
∑k

i=1 aiGbi ,n is equal to∫ 1

0

∣∣∣∣∣1 −
k∑

i=1

ai gbi ,n(x)

∣∣∣∣∣ dx .
Since b1 < · · · < bk, we have that[

j + bk
n

,
j + 1

n

]
⊂

[
j + bi
n

,
j + 1

n

]

for every i ∈ {1, . . . , k} and every j ∈ {0, . . . , n − 1}. Therefore, if i ∈ {1, . . . , k} and

j ∈ {0, . . . , n − 1}, then gbi ,n(x) = 0 for all x ∈
[
j+bk
n ,

j+1
n

]
. Hence,

∫ 1

0

∣∣∣∣∣1 −
k∑

i=1

ai gbi ,n(x)

∣∣∣∣∣ dx ≥
n−1∑
j=0

∫ j+1
n

j+bk
n

∣∣∣∣∣1 −
k∑

i=1

ai gbi ,n(x)

∣∣∣∣∣ dx

=
n−1∑
j=0

∫ j+1
n

j+bk
n

dx = 1 − bk > 0.

Consequently,
{∑k

i=1 aiGbi ,n

}∞
n=1

does not converge to F in variation and the proof is

complete. ��
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