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Abstract
Let M

2n
, n > 1, be a complete, noncompact Kählerian manifold, endowed with a nontrivial

closed conformal vector field ξ having at least one singular point. Under a reasonable set
of conditions, we show that ξ has just one singular point p and that M\{p} is isometric
to a one dimensional cone over a simply connected Sasakian manifold N diffeomorphic to
S
2n−1.As a straightforward consequence, we conclude that if the addition of a single point

to the Kählerian cone of a (2n − 1)-dimensional Sasakian manifold N has the structure of a
complete, noncompact, 2n-dimensional Kählerian manifold whose metric extends that of the
cone, and such that the canonical vector field of the cone extends to it having a singularity at
the extra point, then N is isometric to S2n−1, endowedwith an appropriate Sasakian structure.

Keywords Kählerian manifold · Sasakian manifold · Conformal vector field · Maximum
principle at infinity

Mathematics Subject Classification 53B35 · 53C21 · 53C25 · 53C24

1 Introduction and preliminaries

Given an m-dimensional Riemannian manifold (Mm, g) with Levi–Civita connection ∇, we
recall that a conformal vector field ξ on M is said to be closed if the 1-form ξ� is closed. This
is easily seen to be equivalent to the existence of a smooth function ψ : M → R (called the
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conformal factor of ξ ) such that

∇X ξ = ψ X ,

for all X ∈ X(M). In turn, this readily yields

ψ = 1

m
divMξ. (1)

Also in this setting, item 1 of Lemma 1 of [9] shows that, for every nontrivial closed and
conformal vector field ξ ,

|ξ |2∇ψ = −RicM (ξ)ξ, (2)

where ∇ψ stands for the gradient of ψ and

RicM (ξ) = 1

m − 1
RicM (ξ, ξ)

for the normalized Ricci curvature of (Mm, g,∇) in the direction of ξ . Moreover, if m > 2,
then item 3 of that result shows that ξ−1(0), the set of singular points of ξ , is a set of isolated
points and ψ(p) �= 0 for every p ∈ ξ−1(0). See also Lemma 1 in [5], which summarizes
some of the known results about Riemannian manifolds which admit closed and conformal
vector fields. We also refer the reader to [6] and [10] for some recent results on the structure
and geometric properties of Riemannian manifolds endowed with closed conformal vector
fields.

The standard class of examples of Riemannian manifolds equipped with closed conformal
vector fields is that of Riemannian warped products with one dimensional fibers, as we
now recall. Let I ⊂ R be an open interval with its standard metric dt2 and N m−1 be an
(m − 1)-dimensional Riemannian manifold with metric gN . We set Mm = I × N m−1 and
let πI : M → I and πN : M → N denote the projections. If h : I → (0,+∞) is a smooth
function and h̃ = h ◦ πI : M → (0,+∞), then

〈·, ·〉 = π∗
I dt2 + h̃2π∗

N gN

is a metric tensor on M , with respect to which M is said to be the warped product of I and
N , with warping function h. We summarize this by writing

Mm = I ×h N m−1.

If h̃ = h ◦ πI , ∂t denotes the canonical vector field on I and ∂̃t its horizontal lift to M , then
it is a standard fact that the vector field h̃∂̃t is a closed conformal vector field on M with no
singular points, with conformal factor h̃′ = h′ ◦ πI , where h′ is the derivative of h.

In particular, letting I = (0,+∞) and h(t) = t for every t > 0, we obtain the one
dimensional cone Mm = (0,+∞) ×t N m−1, with closed conformal vector field t ∂̃t of
conformal factor 1.

A Sasakian manifold is a Riemannian manifold (N , gN ) with Levi–Civita connection D
such that the one dimensional cone

M = (0,+∞) ×t N

is a Kählerian manifold; in particular, N is odd dimensional. In such a case, if we let J denote
the complex structure of M and ξ(t, p) = t ∂̃t the closed conformal vector field, then it can
be proved (cf. [11], for instance) that:

(a) Z := Jξ is a unit Killing vector field on N ≈ {1} × N .
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(b) For X ∈ X(N ), one has

J X = −〈X , Z〉ξ + DX Z . (3)

(c) If � ∈ End(T N ) is given by �(X) = DX Z , then
(
DX�

)
(Y ) = 〈Y , Z〉X − 〈X , Y 〉Z , (4)

for all X , Y ∈ X(N ).

Conversely, let (N , gN ) be an odd dimensional Riemannian manifold with Levi–Civita
connection D and M = (0,+∞)×t N be the one dimensional cone over N . Assume that there
exists a unit Killing vector field Z on N for which the field of endomorphisms� ∈ End(T N ),
given by �(X) = DX Z , satisfies (4). Then (see also [11]), N is a Sasakian manifold and the
restriction of the complex structure J of M to T N satisfies (3).

With notations as in the previous paragraph, warped product geometry (cf. Corollary 7.43
of [7]) readily shows that

RicM (ξ) = 0. (5)

Actually, if the Sasakian manifold N is (2n − 1)-dimensional, then, computing as suggested
above with the aid of (4), it can be shown that (N , gN ) is Einstein if, and only if, M =
(0,+∞) ×t N is Ricci flat.

In this paper, we aim at proving the following

Theorem 1.1 Let (M
2n

, g = 〈·, ·〉, J ), n > 1, be a complete, noncompact Kählerian mani-
fold, endowed with a nontrivial closed conformal vector field ξ , of conformal factor ψ and
having at least one singular point. Assume that ψ ≥ 1 on M and ψ → 1 at infinity. If the
Ricci curvature of M in the direction of ξ is nonpositive, then:

(a) ψ ≡ 1 on M and ξ has just one singular point, say p.
(b) M\{p} is isometric to a one dimensional cone over a Sasakian manifold diffeomorphic

to S
2n−1.

The fact that the conformal factorψ ≡ 1 on M implies that the Lie derivative of the metric
tensor g with respect to ξ satisfiesLξ g = 2g. Geometrically, this means that the flow {ϕt }t∈R
of the vector field ξ consists of hometheties of positive coefficient, since (ϕ∗

t g)p = e2t gp for
all p ∈ M and t ∈ R. For that reason ξ is also said to be a homothetic vector field (see, for
instance, Chapter 5 in [8]).

It is worth pointing out that this result lies in the complementary setting of the one dealt
with by the second author in [4].

For the coming corollary, given a (2n − 1)-dimensional Sasakian manifold N , we say
that the Kählerian cone M := (0,+∞) ×t N has a removable singularity if the following
condition is satisfied: for some symbol p not in M , the space M := M ∪{p} has the structure
of a complete, noncompact, 2n-dimensional Kählerian manifold whose metric and complex
structure extend that of M , and such that the closed conformal vector field t∂t of M likewise
extends to ξ ∈ X(M).

Corollary 1.2 Let N be a (2n − 1)-dimensional Sasakian manifold whose Kählerian cone
M := (0,+∞)×t N has a removable singularity. With notations as above, if p is a singular
point of ξ , then N is isometric to S

2n−1, endowed with an appropriate Sasakian structure.
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2 Proof of Theorem 1.1

First of all, as observed in the second paragraph of Sect. 1, since 2n > 2 and ξ is nontrivial,
it has isolated zeros. Recall also that we are assuming RicM (ξ) ≤ 0 on M . We divide the
subsequent analysis in several steps.

Claim 1. ψ = 1 on M and RicM (ξ) = 0 on M\ξ−1(0).
We shall need the following result.

Theorem 2.1 (Theorem 2.2 of [1]) Let (M, 〈·, ·〉) be a connected, oriented, complete non-
compact Riemannian manifold, and let η ∈ X(M) be a vector field on M. Assume that there
exists a nonnegative, non identically vanishing function f ∈ C∞(M), converging to zero at
infinity and such that 〈∇ f , η〉 ≥ 0 on M. If divMη ≥ 0 on M, then:

(a) 〈∇ f , η〉 ≡ 0 on M.
(b) divMη ≡ 0 on M\ f −1(0).

Back to the proof of Claim 1, let η = ψξ . It follows from (1) and (2) that, at every
nonsingular point of ξ , we have

divMη = 〈∇ψ, ξ 〉 + ψdivMξ = −RicM (ξ) + 2nψ2 ≥ 0. (6)

By continuity, divMη ≥ 0 on M .
Assume, for the sake of contradiction, thatψ is not identically 1 on M . Setting f = ψ −1,

we have f ≥ 0 and f �≡ 0 on M . Also from (2), we get, at the nonsingular points of ξ ,

〈∇ f , η〉 = 〈∇ψ,ψξ 〉 = −RicM (ξ)ψ ≥ 0.

Again, by continuity, 〈∇ f , η〉 ≥ 0 on M .
Item (b) of Theorem 2.1 gives divMη ≡ 0 on M\ f −1(0) = M\ψ−1(1). Back to (6), this

shows that ψ ≡ 0 on M\ψ−1(1), thus contradicting the fact that ψ ≥ 1 on M . Therefore,
ψ ≡ 1 on M , which means that

∇X ξ = X (7)

for all X ∈ X(M).
Once we know that ψ ≡ 1, Eq. (2) shows that RicM (ξ) ≡ 0 on M\ξ−1(0), and, trivially,

on ξ−1(0). Anyway, as we have already noticed, this will also follow once we show that
M\{p} is isometric to a one dimensional cone over a simply connected Sasakian manifold.

Claim 2. ξ has exactly one singular point.
Arguing once more by contradiction, assume that ξ(p) = 0 and ξ(q) = 0, for some

distinct points p, q ∈ M . Thanks to the completeness of M , we can take a normalized
geodesic γ : [0, �] → M from p to q . Letting ξ(t) denote the restriction of ξ to γ and
ϕ(t) := 〈ξ(t), γ ′(t)〉, we get ϕ(0) = ϕ(�) = 0 and

ϕ′(t) = 〈 Dξ

dt
(t), γ ′(t)〉 = 〈∇γ ′(t)ξ, γ ′(t)〉 = 〈γ ′(t), γ ′(t)〉 = 1,

whence ϕ(t) = t + ϕ(0) = t . However, this contradicts the fact that ϕ(�) = 0.
It thus follows from the previous claim and our hypotheses that ξ has exactly one singular

point.

Claim 3. If p is the singular point of ξ , then, for each q �= p, there is just one normalized
geodesic γ from p to q . Moreover, letting ξ(t) denote the restriction of ξ to γ , we have
ξ(t) = tγ ′(t).
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Let γ1, γ2 : [0, �i ] → M be two normalized geodesics from p to q . Since ξ(p) = 0,
reasoning as in the proof of Claim 2, we get 〈ξ(γi (t)), γ ′

i (t)〉 = t for every t ∈ [0, �i ] and
i = 1, 2. On the other hand,

d

dt
|ξ(γi (t))|2 = 2

〈
∇γ ′

i (t)
ξ, ξ(γi (t))

〉
= 2

〈
γ ′

i (t), ξ(γi (t))

〉
= 2t,

so that |ξ(γi (t))|2 = t2 + |ξ(0)|2 = t2 for every t ∈ [0, �i ] and i = 1, 2. Finally, Cauchy-
Schwarz inequality gives

t =
〈
ξ(γi (t)), γ

′
i (t)

〉
≤ |ξ(γi (t))||γ ′

i (t)| = t,

so that ξ(γi (t)) = tγ ′
i (t) for every t ∈ [0, �i ] and i = 1, 2. In particular, since γ1(�1) =

γ2(�2) = q and �1γ
′
1(�1) = ξ(q) = �2γ

′
2(�2) and they are both normalized geodesics, it

must be �1 = �2 = |ξ(q)| = � > 0. Therefore, γ1(�) = γ2(�) with γ ′
1(�) = γ ′

2(�), which
implies that γ1(t) = γ2(t) for every t ∈ [0, �].

From now on, we let p denote the unique singular point of ξ , and

M := M\{p}.
Claim 4. The exponential map expp : Tp M → M is a diffeomorphism.

The previous claim accounts for the injectivity of expp , and the completeness of M for

its surjectivity. On the other hand, if v ∈ Tp M is a unit vector and γv : [0,+∞) → M is
the geodesic ray issuing from p with γ ′

v(0) = v, then, also from the previous claim, γv |[0,t]
is minimizing, for every t > 0. Therefore, expp has no conjugate points along γv . Since this

happens for every unit vector v ∈ Tp M , it assures that expp is a local diffeomorphism. Being
bijective, it is actually a global diffeomorphism.

Claim 5. If E = {Y ∈ X(M); 〈Y , ξ 〉 = 0}, then E is integrable.
For Y , Z ∈ E , we have

〈
[Y , Z ], ξ

〉
=

〈
∇Y Z − ∇Z Y , ξ

〉

= Y

〈
Z , ξ

〉
−

〈
Z ,∇Y ξ

〉
− Z〈Y , ξ

〉
+ 〈Y ,∇Z ξ

〉

= −
〈

Z , Y

〉
+

〈
Y , Z

〉
= 0.

Therefore, [Y , Z ] ∈ E , as we wished to show.

Claim 6. If N = expp(S
2n−1), then ξ|N is a unit normal vector field along N .

Let v ∈ S
2n−1, γ (t) = expp(tv), t ≥ 0, and q = γ (1) ∈ N . Claim 3 gives |ξq | =

|γ ′(1)| = |γ ′(0)| = |v| = 1; together with Gauss’ lemma, it shows that ξq ∈ Tq N⊥. The
rest is immediate from the previous claim.

It follows in particular from the previous claim that N is a leaf of the distribution E and
N is diffeomorphic to S2n−1.

Claim 7. If M = M\{p}, then M is isometric to (0,+∞) ×t N .
We already know, from Claim 4, that expp : Tp M\{0} → M is a diffeomorphism. Since

(0,+∞) × N is diffeomorphic to Tp M\{0} via (t, q) �→ t(expp)
−1(q), it follows that the

map
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� : (0,+∞) × N −→ M
(t, q) �−→ expp(t(expp)

−1(q))
(8)

is also a diffeomorphism.
Thus, it suffices to show that the metric g0, induced on (0,+∞) × N by such a

diffeomorphism, is the warping metric of (0,+∞) ×t N .
To this end, first note that, from Claim 3, the integral curve of ξ through any point q ∈ M

is a pregeodesic of M . Actually, a simple computation shows that the flow of ξ|M is

� : R × M −→ M
(u, q) �−→ expp

(
eu(expp)

−1(q)
) . (9)

Actually, since

�(u, q) = �(eu, q) = γ(expp)−1(q)(e
u)

we have, by Claim 3,

∂�

∂u
(u, q) = euγ ′

(expp)−1(q)
(eu) = ξ(�(u, q)). (10)

Let α : (−ε, ε) → N be an arc length parametrized curve with α(0) = q . We shall
consider the parametrized surface in M given by the map

ϕ : R × (−ε, ε) −→ R × N −→ M
(u, s) �−→ (u, α(s)) �−→ �(t, α(s))

.

Since ξ|N ∈ T N⊥, we have
〈
∂ϕ

∂u
(u, s),

∂ϕ

∂s
(u, s)

〉

ϕ(u,s)
=

〈
ξ(ϕ(u, s)),

∂ϕ

∂s
(u, s)

〉

ϕ(u,s)
= 0.

On the other hand, (10) gives
〈
∂ϕ

∂u
(u, s),

∂ϕ

∂u
(u, s)

〉

ϕ(u,s)
= e2u .

Now, since ξ is a closed conformal vector field with conformal factor ψ ≡ 1 (see Eq. (7)),
we conclude that

D

∂s
ξ(ϕ(u, s)) = ∇ ∂ϕ

∂s
ξ = ∂ϕ

∂s
(u, s).

Set

f (u, s) :
〈
∂ϕ

∂s
(u, s),

∂ϕ

∂s
(u, s)

〉

ϕ(u,s)
.

Computing pretty much as in the proof of item (b) of Theorem 3.4 of [3] (and omitting
the point ϕ(u, s) from the computations, for the sake of clarity), we get

∂ f

∂u
(u, s) = d

du

〈
∂ϕ

∂s
(u, s),

∂ϕ

∂s
(u, s)

〉

= 2

〈
D

∂s

∂ϕ

∂u
(u, s),

∂ϕ

∂s
(u, s)

〉

= 2

〈
D

∂s
ξ(ϕ(u, s)),

∂ϕ

∂s
(u, s)

〉
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= 2

〈
∂ϕ

∂s
(u, s),

∂ϕ

∂s
(u, s)

〉

= 2 f (u, s).

Hence, f (u, s) = e2u f (0, s), which, by ϕ(0, s) = α(s) and |α′(s)| = 1, is the same as
〈
∂ϕ

∂s
(u, s),

∂ϕ

∂s
(u, s)

〉

ϕ(u,s)
= e2u

〈
∂ϕ

∂s
(0, s),

∂ϕ

∂s
(0, s)

〉

ϕ(0,s)
= e2u .

Finally, consider the parametrized surface

ψ : (0,+∞) × (−ε, ε) −→ (0,+∞) × N −→ M
(t, s) �−→ (t, α(s)) �−→ �(t, α(s))

.

Since ψ(t, s) = ϕ(log t, s), the above computations translate into
〈
∂ψ

∂t
(t, s),

∂ψ

∂s
(t, s)

〉

ψ(t,s)
= 0,

〈
∂ψ

∂t
(t, s),

∂ψ

∂t
(t, s)

〉

ψ(t,s)
= 1

and
〈
∂ψ

∂s
(t, s),

∂ψ

∂s
(t, s)

〉

ψ(t,s)
= t2.

Therefore, ((0,+∞) × N , g0) is isometric to (0,+∞) ×t N , as we wished to show.

Claim 8. (N , gN , D) is a Sasaki manifold, where gN is the induced metric on N , which
we denote also by 〈·, ·〉, and D its corresponding Levi–Civita connection.

Since� : (0,+∞)×t N → M is an isometry fromClaim 7, it follows that (0,+∞)×t N
is naturally a Kählerianmanifold: one just has to use the isometry to import, to (0,+∞)×t N ,
the complex atlas and the complex structure of M . Therefore, according to the definition of
Sasaki manifold and the discussion about that given in Sect. 1, N is a Sasaki manifold.

Remark 2.2 S
2n−1, endowed with the canonical round metric, is the simplest example of

a Sasakian manifold. Nevertheless, a sphere may, at first, be endowed with several distinct
Sasakian structures. For instance, as observed at page 353 of [2], there are 63 distinct Sasakian
structures on S5. Therefore, the conclusion of item (b) in Theorem 1.1 is, under our hypothe-
ses, the best possible one. We would like to thank professor Vicente Muñoz for calling our
attention to these examples of Sasakian structures on S5.
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