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Abstract
In this article we present some additional and complementary remarks to an earlier paper
on finite trigonometric power sums. First, we extend the results to include an offset angle in
the trigonometric power in the summand. Next we include more complicated phase factors
accompanying the trigonometric powers. Despite their more intricate nature, we find that
these trigonometric power sums are still rational. Finally, we not only prove the conjecture
raised in the earlier paper, but also generalize it.
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1 Introduction

A few years ago, two of us in conjunction with L. Glasser were responsible for producing a
paper that dealt with basic trigonometric power sums [12]. These were defined as finite sums
of the form

S =
g(n)∑

k=0

(±1)k f (k)

{
cos2m

sin2m

}(
qkπ

n

)
,

wherem, q and n are positive integers, g(n) is dependent upon n such as n−1 or even �m/n�,
and f (k) is a relatively simple function of k, such as unity or cos(kπ/p), for p, an integer.
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In this paper, �x� denotes the floor function or the greatest integer less than or equal to x .
Not only were new results derived for various interesting versions of these sums, but also
important applications were studied, e.g., the determination of the number of closed walks
of length 2m with n − 1 vertices. Although there was already an extensive bibliography on
trigonometric power sums covering many decades [2, 6–11, 14, 16, 17, 19, 21, 23–25, 31,
33], the new work attracted much attention resulting in related subject areas being studied
over the interim [1, 3–5, 13, 15, 18, 22, 26, 32]. In this paper, however, we aim to indicate
how the material in [12] can be extended or generalized to more complex basic trigonometric
power sums in addition to presenting the proof and generalization of the conjecture given in
[12].

2 Another extension

In Section 2 of [12] the following pivotal results were proved

C(m, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

21−2m n

((
2m − 1

m − 1

)
+

�m/n�∑

p=1

(
2m

m − pn

))
, if m ≥ n ,

21−2m n

(
2m − 1

m − 1

)
, if m < n ,

(2.1)

and

S(m, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

21−2m n

((
2m − 1

m − 1

)
+

�m/n�∑

p=1

(−1)pn
(

2m

m − pn

))
, if m ≥ n ,

21−2m n

(
2m − 1

m − 1

)
, if m < n ,

(2.2)

where

C(m, n) :=
n−1∑

k=0

cos2m
(
kπ

n

)
, (2.3)

and

S(m, n) :=
n−1∑

k=0

sin2m
(
kπ

n

)
. (2.4)

These results formed the basis upon which the various results in [12] were obtained, but it
should be pointed out that the above results can be extended to the situation where an offset
angle such as απ appears in the argument of the trigonometric powers. That is, for m and n,
positive integers, we aim to study here:

Cα(m, n) :=
n−1∑

k=0

cos2m
(( k

n
+ α

)
π

)
, (2.5)

and its sine analogue, Sα(m, n). Note that we have avoided using the notation C(m, n, α)

and S(m, n, α) here since C(m, n, q) and S(m, n, q) in [12] denoted the cases where the
argument in the trigonometric powers possessed an extra factor of q in the numerator.

In [12], we proved the above results using No. 4.4.2.1 from [28]. Notwithstanding, more
general versions of these results are given in (15.1.1) and (18.1.1) in [20]. These can be
expressed as
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n∑

k=1

cosm(kx + y) = nm!(1 + (−1)m)

2m+1((m/2)!)2 + 21−m
�(m−1)/2�∑

k=0

(
m

k

) sin
((
m/2 − k

)
nx

)

sin
((
m/2 − k

)
x
)

× cos
((
m/2 − k

)(
2y + (n + 1)x

))
(2.6)

and

n∑

k=1

sinm(kx + y) = nm!(1 + (−1)m)

2m+1((m/2)!)2 + 21−m
�(m−1)/2�∑

k=0

(
m

k

) sin
((
m/2 − k

)
nx

)

sin
((
m/2 − k

)
x
)

× cos
((
m − 2k

)(
y + (n + 1)x/2 − π/2

))
. (2.7)

The identities (2.6)–(2.7) can be derived by

(1) replacing the trigonometric functions on the left-hand side (lhs) by their exponential
forms,

(2) applying the binomial theorem,
(3) interchanging the order of the summations and
(4) re-combining the exponentials into trigonometric functions.

After more algebra and using the double angle formulas for trigonometric functions, one
eventually arrives at (2.6) and (2.7). Note that the first term on the right-hand side (rhs) of
the above results only yields a contribution when m is even (the main case of interest here)
since an odd number of terms arises when the binomial theorem is applied.

With m replaced by 2m, x = π/n and y = απ , (2.6) becomes

n∑

k=1

cos2m
(( k

n
+ α

)
π

)
= 21−2mn

(
2m − 1

m

)
+ 21−2m

m∑

k=1

(−1)k
(

2m

m − k

)
sin (kπ)

sin (kπ/n)

× cos
((
2α + 1/n

)
kπ

)
. (2.8)

Comparing this result with (2.5) in [12], we observe that the ratio of the sine functions denoted
there by R(k) remains the same. The only difference is that cos(kπ/n) has been replaced by
cos

((
2α + 1/n

)
kπ

)
here. As stated in [12], the ratio of the sines vanishes for all values of k

except when k = pn, where p = 1, 2, . . . , �m/n�. Then we find that R(k) = (−1)(n−1)pn
and cos

((
2α + 1/n

)
kπ

) = (−1)p cos(2α pnπ). Consequently, (2.8) becomes

n∑

k=1

cos2m
(( k

n
+ α

)
π

)
= 21−2mn

(
2m − 1

m

)
+ 21−2mn

�m/n�∑

p=1

(
2m

m − pn

)
cos (2α pnπ) .

(2.9)
Similarly, using (2.7) yields

n∑

k=1

sin2m
(( k

n
+ α

)
π

)

= 21−2mn

(
2m − 1

m

)
+ 21−2mn

�m/n�∑

p=1

(−1)pn
(

2m

m − pn

)
cos (2α pnπ) . (2.10)

In both cases, if m < n, then the sums on the rhs’s vanish. Moreover, the summations from
k = 1 to n in both results can be altered so the limits become k = 0 to n − 1. From these
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results we observe that both basic trigonometric power sums are even functions in α. In
addition, because the sums over k on the lhs’s of (2.9) and (2.10) are effectively over the n
roots of unity, which under multiplication represent a cyclic group of order n [30], and the
power of the trigonometric function is even, we can introduce an arbitrary integer a, without
affecting the results. The power being even counters phase changes due to the introduction
of a. Therefore, for any non-zero integer a, but co-prime to n, (2.9) can be expressed as

n∑

k=1

cos2m
((ka

n
+ α

)
π

)
= 21−2mn

(
2m − 1

m

)
+21−2mn

�m/n�∑

p=1

(
2m

m − pn

)
cos (2α pnπ) ,

(2.11)
while a similar situation applies to (2.10). If a is not co-prime to n, then one must divide
out the common factors and treat the resulting sum over the roots of unity as a finite cyclic
group, n/bi , where bi are the common factors of a and n.

As expected, when α = 0, the above results reduce to (2.1) and (2.2). These results are
also obtained by putting α = 1/2. Moreover, if cos(2α pnπ) is rational for all values of p,
then the modified basic trigonometric power sums will yield rational values, but this is not
necessary for obtaining rational values as exemplified by the case below.

The preceding results allow us to consider basic trigonometric power sums where the
power of the trigonometric function is no longer even in special cases. For example, suppose
we wish to evaluate the following sum

n−1∑

k=0

sinm
((2k

n
+ α

)
π

)
.

By shifting the argument by π/2 and applying the double angle formula for cosine, we can
express the above sum as

n−1∑

k=0

sinm
((2k

n
+ α

)
π

)
=

n−1∑

k=0

(
2 cos2

(( k
n

+ β

2

)
π

)
− 1

)m

,

where β = α − 1/2 and n is odd since it has to be co-prime with 2. Expanding the summand
via the binomial theorem yields

n−1∑

k=0

sinm
((2k

n
+ α

)
π

)
=

m∑

j=0

(−1) j2m− j
(
m

j

)
C β

2
(m − j, n). (2.12)

Recently, Cadavid et al. [3] discussed finite sums derived from a complex polynomial in
2d variables, namely P(x1, . . . , xd ; y1, . . . , yd), where

xi = cos
(2πkiai

mi
+ βi

)
, yi = sin

(2πkiai
mi

+ βi

)
,

and each ki is summed from 0 to mi − 1. According to the above general form, we have
d distinct sums involving powers of cos(2πki ai/mi + βi ) and sin(2πki ai/mi + βi ), while
each ki is summed from 0 to mi − 1. A closed form for these sums can also be obtained
from (2.9) and (2.10). We can shift the argument in the sine sums by π/2 as in the previous
paragraph. Next the double angle formula for cosine can be applied to all the sums. If all
the ai are co-prime to mi , then utilizing the cyclic group properties of the roots of unity we
can discard the ai , which, in turn, means that (2.10) and (2.11) can be applied to the sums.
Finally, to obtain the entire result, a computer code is required to multiply all the results for
the sums by each other.
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To elucidate this further, let us consider (4) in [3], which is given as

CSα1,α2(k, k,m1,m2) =
2m1−1∑

j=0

m2−1∑

�=0

(−1) j cosk
(( ja

m1
+ α1

)
π

)
sink

((2�b
m2

+ α2

)
π

)
.

The only difference between this result and (4) in [3] is that we have introduced a factor of π

into α1 and α2 in accordance with the sums studied here. In the above sum, m1, m2, a, b and
k are positive integers, while α1 and α2 can be real. In addition, it is assumed that a and b are,
respectively, co-prime to m1 and m2. Let us consider the first sum in CSα1,α2(k, k,m1,m2),
which can be expressed as

2m1−1∑

j=0

(−1) j cosk
(( ja

m1
+ α1

)
π

)
= 2

m1−1∑

j=0

cosk
((2 ja

m1
+ α1

)
π

)
−

2m1−1∑

j=0

cosk
(( ja

m1
+ α1

)
π

)
.

(2.13)
With the aid of the double angle cosine formula and the binomial theorem, the first sum on
the rhs of (2.13) can be expressed as

m1−1∑

j=0

cosk
((2 ja

m1
+ α1

)
π

)
=

k∑

i=0

(−1)i2k−i
(
k

i

)
C α1

2
(k − i,m1). (2.14)

The second sum on the rhs of (2.13) can be written as

2m1−1∑

j=0

cosk
(( ja

m1
+ α1

)
π

)
=

2m1−1∑

j=0

cosk
(( 2 ja

2m1
+ α1

)
π

)
.

Next, we apply the double angle formula for cosine and expand the resulting sumwith the aid

of the binomial theorem. Since the powers of cos
(( ja

2m1
+ α1

2

)
π

)
are even and a is co-prime

to m1, we can discard a by invoking the cyclic properties of the roots of unity. Hence we
arrive at

2m1−1∑

j=0

cosk
(( ja

m1
+ α1

)
π

)
=

k∑

i=0

(−1)i2k−i
(
k

i

)
C α1

2
(k − i, 2m1).

Therefore, (2.13) becomes

2m1−1∑

j=0

(−1) j cosk
(( ja

m1
+ α1

)
π

)
=

k∑

i=0

(−1)i2k−i
(
k

i

)(
2C α1

2
(k− i,m1)−C α1

2
(k− i, 2m1)

)
.

(2.15)
The basic trigonometric power sum over � inCSα1,α2(k, k,m1,m2) can be evaluated from

(2.12) since b is co-prime to m2. Hence we find that

m2−1∑

�=0

sink
((2�b

m2
+ α2

)
π

)
=

k∑

i=0

(−1)i2k−i
(
k

i

)
C α2

2 − 1
4
(k − i,m2). (2.16)

Multiplying (2.15) by (2.16) yields
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CSα1,α2(k, k,m1,m2) =
k∑

i=0

(−1)i2k−i
(
k

i

)(
2C α1

2
(k − i,m1) − C α1

2
(k − i, 2m1)

)

×
k∑

i=0

(−1)i2k−i
(
k

i

)
C α2

2 − 1
4
(k − i,m2). (2.17)

Although (2.17) appears to be complicated, it can be easily computed by creating a module
in Mathematica.

For the special case of α = 1/4, when n is even, say equal to 2N , (2.9) and (2.10) reduce
to

2N∑

k=1

cos2m
(
kπ

2N
+ π

4

)
=

2N∑

k=1

sin2m
(
kπ

2N
+ π

4

)

= 22−2mN

(
2m − 1

m

)
+ 22−2mN

�m/2N�∑

p=1

(−1)pN
(

2m

m − 2pN

)
.

(2.18)

For odd values of n, say 2N + 1, we obtain

2N+1∑

k=1

cos2m
(

kπ

2N + 1
+ π

4

)
=

2N+1∑

k=1

sin2m
(

kπ

2N + 1
+ π

4

)

= 21−2m(2N + 1)

(
2m − 1

m

)
+ 21−2m(2N + 1)

×
�m/(4N+2)�∑

p=1

(−1)p
(

2m

m − p(4N + 2)

)
.

Since α is arbitrary, we can multiply (2.9) by cos(αy) and then integrate over α between
−∞ and ∞, bearing in mind that the basic cosine power sum is even in α. Then we find that

∫ ∞

0

n∑

k=1

cos2m
(( k

n
+ α

)
π

)
cos(yα)dα

= n

2m

�m/n�∑

p=1

(
2m

m − pn

) ∫ ∞

−∞
cos(2pnπα) cos(yα)dα. (2.19)

In obtaining this result, we have used the Fourier transform representation for the delta
function, which appears as No. 1.17.12 in [27], to show that the cosine integral arising
from the first term of the rhs of (2.9) vanishes in accordance with the theory of generalized
functions. The lhs of the above equation can be regarded as the Fourier cosine transform of
Cα(m, n), while the integral on the rhs yields 2πδ(y − 2pnπ). Hence, (2.19) reduces to

FC

[
Cα(m, n)

]
(y) = 21−mπn

�m/n�∑

p=1

(
2m

m − pn

)
δ(y − 2pnπ),
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where

FC

[
f (x)

]
(y) =

∫ ∞

0
f (x) cos(xy) dx .

For m < n, the Fourier cosine transform vanishes, while for m = n, one obtains

δ(y − 2nπ) = 2n−1

πn
FC

[
Cα(n, n)

]
(y).

Similarly, we arrive at

FC

[
Sα(m, n)

]
(y) = 21−mπn

�m/n�∑

p=1

(−1)pn
(

2m

m − pn

)
δ(y − 2pnπ).

3 Extra phase factors in summands

In order to obtain results for basic trigonometric power sums with an extra trigonometric
phase factor of the form cos(2πk/q) in them, we employ the following identity:

ηq(k) =
q∑

j=1

e2π i jk/q =
{
q, k ≡ 0 (mod q),

0, otherwise.
(3.1)

The sum of the terms where j is co-prime to q is known as Ramanujan’s sum [29]. The above
identity can be introduced into basic trigonometric power sums after both the denominator
and numerator of the argument in the trigonometric power are multiplied by q as described
in [12]. In the case of the modified basic trigonometric power sums with an offset, however,
we multiply both k and n in the argument of the trigonometric power by q . According to
(2.5), the cosine version becomes

Cα(m, n) =
n−1∑

k=0

cos2m
(( k

n
+ α

)
π

)
=

n−1∑

k=0

cos2m
((qk

qn
+ α

)
π

)
.

If we replace k by kq and introduce (3.1), then we find that

qn−1∑

k=0

q−1∑

j=1

e2π i jk/q cos2m
(( k

qn
+ α

)
π

)
= q Cα(m, n) − Cα(m, qn). (3.2)

By putting q = 2, we obtain the alternating versions of the basic trigonometric power
sums. For example, (3.2) reduces to

2n−1∑

k=0

(−1)k cos2m
(( k

2n
+ α

)
π

)
= 2Cα(m, n) − Cα(m, 2n).

Thus, (3.2) in [12] has been generalized due to the inclusion of the offset, απ . More formally,
it can be expressed as
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Table 1 The first ten values of
Ramanujan’s sum, cq (k)

q cq (k)

1 1

2 cos(kπ)

3 2 cos(2kπ/3)

4 2 cos(kπ/2)

5 2 cos(2πk/5) + 2 cos(4πk/5)

6 2 cos(kπ/3)

7 2 cos(2πk/7) + 2 cos(4πk/7) + 2 cos(6πk/7)

8 2 cos(πk/4) + 2 cos(3πk/4)

9 2 cos(2πk/9) + 2 cos(4πk/9) + 2 cos(8πk/9)

10 2 cos(πk/5) + 2 cos(3πk/5)

2n−1∑

k=0

(−1)k cos2m
(( k

2n
+ α

)
π

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22−2m n

⎛

⎝
�m/n�∑

p=1

(
2m

m − pn

)
cos(2α pnπ)

−
�m/2n�∑

p=1

(
2m

m − 2pn

)
cos(4α pnπ)

)
, if m ≥ 2n ,

22−2mn
�m/n�∑

p=1

(
2m

m − pn

)
cos(2α pnπ) , if n ≤ m < 2n ,

0 , if m < n .

(3.3)
The above result generalizes (3.4) in [12]. Similarly, we can replace the cosine power in (3.2)
by the corresponding sine power. Then we arrive at

2n−1∑

k=0

(−1)k sin2m
(( k

2n
+ α

)
π

)
= 2Sα(m, n) − Sα(m, 2n). (3.4)

Hence (2.10) can be introduced into (3.4), thereby yielding the corresponding form of (3.3).
For q = 3, (3.2) reduces to

2
3n−1∑

k=0

cos
(2kπ

3

)
cos2m

(( k

3n
+ α

)
π

)
= 3Cα(m, n) − Cα(m, 3n). (3.5)

This represents the generalization of (3.11) in [12]. The cos(2kπ/3) factor in the above result
represents the term in (3.1) where the summation index j is co-prime to q , i.e., 3 in the above
case. Table 1 displays the first ten values of the sum, which are denoted by cq(k) in the
literature.

An important property of cq(k) is that it is always an integer. Moreover, for any integer
q , ηq(k) can be expressed in terms of cq(k) as

ηq(k) =
∑

d|q
cd(k),
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where the sum in the rhs is over all the divisors d of q . For q equal to a prime number greater
than 2, say r , we have ηr (k) = cr (k) + 1. Hence (3.1) reduces to

(r−1)/2∑

j=1

cos
(2π jk

r

)
=

{
(r − 1)/2, k ≡ 0 (mod r),

−1/2, otherwise.

Consequently, in this case, (3.2) can be expressed alternatively as

rn−1∑

k=0

cr (k) cos
2m

(( k

rn
+ α

)
π

)
= r Cα(m, n) − Cα(m, rn). (3.6)

Similarly, we find that

rn−1∑

k=0

cr (k) sin
2m

(( k

rn
+ α

)
π

)
= r Sα(m, n) − Sα(m, rn). (3.7)

If we put r = 3 in (3.6), then we obtain (3.5), while r = 3 in (3.7) yields

3n−1∑

k=0

c3(k) sin
2m

(( k

3n
+ α

)
π

)
= 3 Sα(m, n) − Sα(m, 3n). (3.8)

Thus, we see that (3.5) and (3.8) represent generalizations of (3.12) and (3.13) in [12],
respectively. As an aside, it should be mentioned that the term of 3 inside the brackets on the
rhs of the equation immediately above (3.17) in [12] should be removed. Consequently, the
phrase “except for the term of 3/2" in the sentence below the equation should be deleted.

If we put r = 5 in (3.6), then we arrive at

5n−1∑

k=0

c5(k) cos
2m

(( k

5n
+ α

)
π

)
= 5Cα(m, n) − Cα(m, 5n). (3.9)

Introducing the q = 5 result in Table 1 yields the generalization of (9.2) in [12]. By using
the prosthaphaeresis formula, we can express the above result as

5n−1∑

k=0

cos

(
3πk

5

)
cos

(
πk

5

)
cos2m

(( k

5n
+ α

)
π

)

=
5n−1∑

k=0

cos

(
2πk

5

)
cos

(
4πk

5

)
cos2m

(( k

5n
+ α

)
π

)

= 5

4
Cα(m, n) − 1

4
Cα(m, 5n). (3.10)

In Appendix B of [12] it was stated that it was not a simple matter to consider each
component basic trigonometric power sum comprising Ramanujan’s sum separately. For
example, in the case of η5(k) or c5(k) there are two component basic trigonometric sums,
one involving cos(2kπ/5) and the other involving cos(4πk/5). That is, the two component
sums are

2
5n−1∑

k=0

cos

(
2kπ

5

)
cos2m

(kπ
5n

)
,
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and

2
5n−1∑

k=0

cos

(
4kπ

5

)
cos2m

(kπ
5n

)
.

These sums appear to be irrational once expressions for cos(2kπ/5) and cos(4kπ/5) are
introduced into them.These expressions can be obtained by solving the equation, c5(k) = −1,
which is valid whenever k �≡ 0 (mod 5). Then one finds that

cos
(kπ

5

)
=

{
(−1)k/5, k ≡ 0 (mod 5) ,

(−1)�(k+2)/5� √
5
4 + (−1)k+1

4 , k �≡ 0 (mod 5) ,
(3.11)

cos
(2kπ

5

)
=

{
1, k ≡ 0 (mod 5) ,

(−1)�(2k+2)/5� √
5
4 − 1

4 , k �≡ 0 (mod 5) ,
(3.12)

and

cos
(4kπ

5

)
=

{
1, k ≡ 0 (mod 5) ,

(−1)�(4k+2)/5� √
5
4 − 1

4 , k �≡ 0 (mod 5) .

The first of these results is given incorrectly in No. I.11.5 of [28]. Introducing (3.12) into
the first component sum, namely that with cos(2kπ/5), yields

2
5n−1∑

k=0

cos

(
2kπ

5

)
cos2m

(kπ
5n

)
= 2C(m, n) +

√
5

2

5n−1∑

k=0
k �≡0 (mod 5)

(−1)�(2k+2)/5� cos2m
(kπ
5n

)

− 1

2

5n−1∑

k=0
k �≡0 (mod 5)

cos2m
(kπ
5n

)
. (3.13)

We cannot introduce (3.11) into the above equation because n appears in the denominator.
Thus, we are unable to determine whether all terms with

√
5 can be cancelled. A similar

situation applies to the second component sum involving cos(4kπ/5). Therefore, from these
results we cannot determine whether they are rational or not.

InAppendixB of [12]wewere able to evaluate (3.13) by usingNo. I.1.10 in [28]. Although
the result was not elegant, it nevertheless meant that the basic cosine power sums mentioned
above were rational. Here, we generalize this approach with the presentation of the following
theorem, which aims to facilitate the evaluation of the component sums when Ramanujan’s
sum appears in a basic cosine power sum.

Theorem 3.1 An expression for the basic cosine power sum

qn−1∑

k=0

cos
(2�kπ

q

)
cos2m

(kπ
qn

)
,

where q is odd, is

22�n−1C(m+ �n, qn)+ �n
�n−1∑

j=0

(−1) j+1

j + 1

(
2�n − j − 2

j

)
22�n−2 j−2C(m+ �n− j −1, qn).

(3.14)
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Proof From No. I.1.10 in [28], we can express the first cosine in the summand as

cos
(2�kπ

q

)
= 22�n−1 cos2�n

(kπ
qn

)
+ �n

�n−1∑

j=0

(−1) j+1

j + 1

(
2�n − j − 2

j

)

× 22�n−2 j−2 cos2�n−2 j−2
(kπ
qn

)
.

Next we multiply both sides by cos2m(kπ/qn) and then sum from k = 0 to qn − 1. Hence
we obtain

qn−1∑

k=0

cos
(2�kπ

q

)
cos2m

(kπ
qn

)
= 22�n−1

qn−1∑

k=0

cos2m+2�n
(kπ
qn

)

+�n
�n−1∑

j=0

(−1) j+1

j + 1

(
2�n − j − 2

j

)

× 22�n−2 j−2
qn−1∑

k=0

cos2m+2�n−2 j−2
(kπ
qn

)
.

(3.15)

The sums over k on the rhs in the above result are simple versions of the basic cosine power
sum defined by (2.3). Consequently, (3.15) reduces to (3.14). 
�

Since we have seen in [12] that C(m, n) is rational, it follows that the cosine power sums
as the ones considered in Theorem 3.1 are also rational. Moreover, for q = 5, (3.14) reduces
to

5n−1∑

k=0

cos
(2�kπ

5

)
cos2m

(kπ
5n

)
= 22�n−1C(�n + m, 5n) + �n

�n−1∑

j=0

(−1) j+1

j + 1

(
2�n − j − 2

j

)

× 22�n−2 j−2C(�n + m − j − 1, 5n).

Putting � = 1 in the above result yields (9.9) in [12], while for � = 2, we obtain

5n−1∑

k=0

cos
(4kπ

5

)
cos2m

(kπ
5n

)
= 24n−1C(m + 2n, 5n) + 2n

2n−1∑

j=0

(−1) j+1

j + 1

(
4n − j − 2

j

)

× 24n−2 j−2C(m + 2n − j − 1, 5n). (3.16)

Note that the sum over j involves 2n terms, whereas the sum over j in (9.9) in [12] involves
only n terms, which is due to the fact that r = 2 in the above result compared with r = 1
in (9.9) of [12]. When (3.16) is combined with (9.9) in [12] and multiplied by 2, we obtain
the α = 0 or zero offset form of (3.9). An interesting feature about this combination is that
C(m, n) does not appear in it, but C(m, n) does appear on the rhs of (3.9). This means that
we can obtain an expression for C(m, n) in terms of higher powers of cosine in the basic
cosine power sum. More generally, if we set q = r , a prime number greater than 2, then we
can sum for � = 1 to (r −1)/2 all the terms on both sides of (3.14) and multiply by 2. Hence
we arrive at

123



112 Page 12 of 17 Z. Du et al.

rn−1∑

k=0

cr (k) cos
2m

(kπ
rn

)
=

(r−1)/2∑

�=1

22�nC(m + �n, rn) + 2n
(r−1)/2∑

�=1

�

�n−1∑

j=0

(−1) j+1

j + 1

×
(
2�n − j − 2

j

)
22�n−2 j−2C(m + �n − j − 1, rn).

(3.17)

Replacing the lhs of (3.17) by the rhs of (3.6) with α = 0 yields

rC(m, n) =
(r−1)/2∑

�=0

22�nC(m + �n, rn) + 2n
(r−1)/2∑

�=1

�

�n−1∑

j=0

(−1) j+1

j + 1

(
2�n − j − 2

j

)

× 22�n−2 j−2C(m + �n − j − 1, rn). (3.18)

Hence we have obtained another representation for C(m, n). In particular, for r = 3, (3.18)
yields

3C(m, n) = C(m, 3n) + 22nC(m + n, 3n) + 2n
n−1∑

j=0

(−1) j+1

j + 1

(
2n − j − 2

j

)
22n−2 j−2

× C(m + n − j − 1, 3n).

Therefore, we observe that C(m, n) can be expressed as a finite sum of C(m + j, 3n), where
j takes on special integers including n and 0.

To conclude this section, it should be noted that when q is a prime of the form 2� + 1,
where � is a positive integer, cq(k) can be expressed as a product of cosines. By continually
applying the double angle formula to the sum of cosines in cq(k), one obtains the following
identity:

cq(k) = 2
2�−1∑

j=1

cos
(2π jk

q

)
= 2� cos

( (2�−1 + 1)πk

q

) �−1∏

i=1

cos
(2�−i−1πk

q

)
. (3.19)

For � = 2, we obtain (3.10), while for q = 17 or � = 4, we have

c17(k) = 16 cos
(9πk

17

)
cos

(4πk
17

)
cos

(2πk
17

)
cos

(πk

17

)
.

Consequently, by using (3.2), we arrive at

17n−1∑

k=0

cos
(9πk

17

)
cos

(4πk
17

)
cos

(2πk
17

)
cos

(πk

17

)
cos2m

(
kπ

17n

)

= 17

16
C(m, n) − 1

16
C(m, 17n).

It should be mentioned that (3.19) can be applied to integers of the form 2� + 1, which are
not prime. For these cases we replace cq(k) by ηq(k) − 1. Therefore, the modification of
(3.19) for � = 3 or q = 9 yields

η9(k) − 1 = 8 cos
(5πk

9

)
cos

(2πk
9

)
cos

(πk

9

)
. (3.20)

To obtain c9(k), we need to subtract 2 cos
(
2πk/3) from the above result, the only term

possessing a divisor of 9. Nevertheless, we can introduce the above result into (3.2), which
yields
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9n−1∑

k=0

cos
(5πk

9

)
cos

(2πk
9

)
cos

(πk

9

)
cos2m

(
kπ

9n

)
= 9

8
C(m, n) − 1

8
C(m, 9n).

After more algebra, we find that

9n−1∑

k=0

c9(k) cos
2m

(
kπ

9n

)
= 9C(m, n)−C(m, 9n)−2C(m, 3n)+C 1

9n
(m, 3n)+C 2

9n
(m, 3n),

where the last three terms on the rhs arise from the cosine power multiplied by 2 cos(2πk/3).
For q , a prime of the form 2� − 1, the equivalent of (3.19) is

cq (k) = 2
2�−1−1∑

j=1

cos
(2π jk

q

)
= 2� cos

( (2�−1 + 1)πk

q

) �−1∏

i=1

cos
(2�−i−1πk

q

)
− 2 cos

(2�πk

q

)
.

For q = 7, (3.2) or (3.6) yields

7n−1∑

k=0

cos
(5πk

7

)
cos

(2πk
7

)
cos

(πk

7

)
cos2m

(
kπ

7n

)
− 1

4

7n−1∑

k=0

cos

(
8πk

7

)
cos2m

(
kπ

7n

)

= 7

8
C(m, n) − 1

8
C(m, 7n). (3.21)

From Theorem 3.1, we find that

7n−1∑

k=0

cos

(
8πk

7

)
cos2m

(
kπ

7n

)
=

7n−1∑

k=0

(−1)k cos

(
πk

7

)
cos2m

(
kπ

7n

)

= 28n−1C(m + 4n, 7n) + 4n
4n−1∑

j=0

(−1) j+1

j + 1
(
8n − j − 2

j

)
28n−2 j−2C(m + 4n − j − 1, 7n).

Then the first sum on the lhs of (3.21) can be written as

7n−1∑

k=0

cos
(5πk

7

)
cos

(2πk
7

)
cos

(πk

7

)
cos2m

(
kπ

7n

)

= 7

8
C(m, n) − 1

8
C(m, 7n) + 28n−3C(m + 4n, 7n)

+n
4n−1∑

j=0

(−1) j+1

j + 1

(
8n − j − 2

j

)
28n−2 j−2C(m + 4n − j − 1, 7n).

Therefore, whilst some intricate examples of basic cosine power sums have been introduced
here, they are, nevertheless, combinatorial in nature or rational because C(m, n) is rational.
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4 Proof of a conjecture

It was also found in [12] that

2n−1∑

k=0

(−1)k cos2m
(
kπ

2n

)
= 2C(m, n) − C(m, 2n), (4.1)

and
4n−1∑

k=0

cos

(
kπ

2

)
cos2m

(
kπ

4n

)
= 2C(m, n) − C(m, 2n). (4.2)

As a consequence, it was conjectured in Section 3 of the paper that multiplying and dividing
by 2n in either C(m, n) or S(m, n) will not yield new results. We confirm this conjecture
with the following theorem.

Theorem 4.1 For r ≥ 1,

2r n−1∑

k=0

cos2m
(
kπ

2r n

) r−1∏

i=0

cos

(
kπ

2i

)
= 2C(m, n) − C(m, 2n). (4.3)

Proof Note that for r = 1, in particular, (4.3) reduces to (3.2) in [12] (also (4.1) above),
since cos(kπ) = (−1)k . For r = 2, we observe that since cos(kπ/2) �= 0 when k is even,
cos(kπ) cos(kπ/2) does not vanish for even values of k. In this case,

cos (kπ) cos

(
kπ

2

)
= cos

(
kπ

2

)
,

and (4.3) reduces to the above result (4.2), which is (3.2) in [12].
To prove the theorem, we shall make use of induction. Since the r = 1 case (4.1) has been

established in [12], we consider r ≥2. For the product in (4.3) not to vanish, the i = 1 term
or cos(kπ/2)must not equal zero, which, in turn, means that k must be even. For even values
of k, the product reduces to

r−1∏

i=0

cos

(
kπ

2i

)
=

r−1∏

i=1

cos

(
kπ

2i

)
. (4.4)

Then the lhs of (4.3) becomes

2r n−1∑

k=0

cos2m
(
kπ

2r n

) r−1∏

i=0

cos

(
kπ

2i

)
=

2r n−2∑

k=0,2,4,...

cos2m
(
kπ

2r n

) r−1∏

i=1

cos

(
kπ

2i

)
. (4.5)

Replacing k/2 by k on the rhs of (4.5) yields

2r n−2∑

k=0,2,4,...

cos2m
(
kπ

2r n

) r−1∏

i=1

cos

(
kπ

2i

)
=

2r−1n−1∑

k=0

cos2m
(

kπ

2r−1n

) r−1∏

i=1

cos

(
kπ

2i−1

)
.

Now we replace i by i + 1 on the rhs of the above result and observe that the rhs has become
the r−1 version of the lhs of (4.5). By replacing k/2 by k in a similar manner, we obtain the
r− 2 version of the lhs of (4.5). We continue this process until the upper limit in the sum
equals 4n − 1 (i.e., r = 2). Thus, the sum on the lhs of (4.5) can be expressed by the rhs of
(4.2) for all values up to r .
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All that remains are to show that the r + 1 version of the basic cosine power sum reduces
to the lhs of (4.3), which simply follows by substituting r by r + 1 and replacing k/2 by k in
(4.4) as above. Since we have shown that the cases of r = 1 and 2 hold, (4.3) will hold for
r = 3, 4 and so on. That is, it holds for all positive integers. 
�

From the result for S(m, n) or (2.2), it was found in [12] that the following basic sine
power sum with an alternating phase in the summand is given by

2n−1∑

k=0

(−1)k sin2m
(
kπ

2n

)
= 2S(m, n) − S(m, 2n). (4.6)

By adapting the proof of Theorem 4.1, (4.6) can be generalized to

2r n−1∑

k=0

sin2m
(
kπ

2r n

) r−1∏

i=0

cos

(
kπ

2i

)
= 2S(m, n) − S(m, 2n). (4.7)

It should be noted that both (4.3) and (4.7) vanish when m < n. Moreover, they can be
generalized further as exemplified by the following theorem.

Theorem 4.2 For a positive integer r , and any odd integer p, one finds that

2r pn−1∑

k=0

cos2m
(

kπ

2r pn

) r−1∏

i=0

cos

(
kπ

2i

)
= 2C(m, pn) − C(m, 2pn) (4.8)

and
2r pn−1∑

k=0

sin2m
(

kπ

2r pn

) r−1∏

i=0

cos

(
kπ

2i

)
= 2S(m, pn) − S(m, 2pn). (4.9)

Proof To prove the results for these basic trigonometric power sums, we make use of (4.4)
once again. Thus, they can be expressed as

2r pn−1∑

k=0

{
cos2m

sin2m

} (
kπ

2r pn

) r−1∏

i=0

cos

(
kπ

2i

)
=

2r pn−2∑

k=0,2,4,...

{
cos2m

sin2m

}(
kπ

2r pn

) r−1∏

i=1

cos

(
kπ

2i

)
.

Replacing k/2 by k and i by i + 1 on the rhs yields the r − 1 versions of (4.8) and (4.9). We
continue the process of applying (4.4) and replacing k/2 by k and i by i + 1 until we reach
either (4.1) or (4.6) with pn instead of n. 
�

On a final note, when (2.1) and (2.2) are introduced into (4.8) and (4.9), respectively, we
find that the isolated binomial terms cancel and that only the sums contribute. Hence for
m < pn, (4.8) and (4.9) vanish, while for m ≥ pn, we arrive at

2r pn−1∑

k=0

cos2m
(

kπ

2r pn

) r−1∏

i=0

cos

(
kπ

2i

)

= 22−2m pn

⎛

⎝
�m/pn�∑

k=1

(
2m

m − kpn

)
−

�m/2pn�∑

k=1

(
2m

m − 2kpn

)⎞

⎠
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and

2r pn−1∑

k=0

sin2m
(

kπ

2r pn

) r−1∏

i=0

cos

(
kπ

2i

)
= 22−2m pn

⎛

⎝
�m/pn�∑

k=1

(−1)kpn
(

2m

m − kpn

)

−
�m/2pn�∑

k=1

(
2m

m − 2kpn

)⎞

⎠ .

5 Conclusion

This article has developed the results in [12] further in different directions. It is hoped that the
various extensions and generalizations presented here will enable more sophisticated basic
trigonometric power sums to be studied in the future.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed during
the current study.
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