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Abstract
Themain aim of thiswork is to discuss several different approaches to the celebratedKahane–
Salem–Zygmund inequalities. In particular, we prove estimates for exponential Orlicz norms

of averages sup1≤ j≤N

∣
∣
∣

∑K
i=1 ai ( j)γi

∣
∣
∣ , where (ai ( j)) ∈ �N∞, 1 ≤ i ≤ K and the (γi ) form

a sequenceof real or complex subgaussian randomvariables. Lifting these inequalities tofinite
dimensional Banach spaces, we get some new Kahane–Salem–Zygmund type inequalities—
in particular, for spaces of subgaussian random polynomials and multilinear forms on finite
dimensional Banach spaces, and also for subgaussian random Dirichlet polynomials.
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Poznańskiego 4, 61-614 Poznań, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-022-01369-4&domain=pdf
https://orcid.org/0000-0003-2019-2284


44 Page 2 of 40 A. Defant, M. Mastyło

5.2 The K -method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 The orbit method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 The Calderón–Lozanovskii method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1 Trigonometric polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Polynomials in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Multilinear forms in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4 Randomized Dirichlet polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1 Introduction

The study of random inequalities for trigonometric polynomials in one variable goes back
to the seminal work of Salem and Zygmund in [35], and later it was Kahane who in [19]
extended these ideas to more abstract settings—including trigonometric polynomials in sev-
eral variables. In the recent decades such inequalities have been of central importance in
numerous topics of modern analysis, as, e.g., Fourier analysis, analytic number theory, or
holomorphy in high dimensions.

In this work we attempt to discuss three different approaches to Kahane–Salem–Zygmund
type inequalities—in particular for subgaussian variables. Each of these approaches is based
on different tools, and hence they have different advantages (and disadvantages). The appli-
cations we give, improve several probabilistic estimates which recently were of importance
in various multilinear settings.

Let us give a brief description of some keystones. Given a subgaussian sequence (γi )i∈N
of random variables over a probability measure space (�,A,P), and a finite sequence (ai )

of vectors in �N∞, we are interested in estimates for the expectation of
∥
∥

∑

i aiγi
∥
∥

�N∞ , which
we call abstract Kahane–Salem–Zygmund inequalities (KSZ -inequalities for short).

More generally (and more precisely), given a Banach function space X over a probability
measure space (�,A,P) and a sequence of random variables (γi )i∈N ⊂ X , we are looking
for a function ψ : N → (0,∞) and a sequence (Sn),

Sn := (Kn, ‖ · ‖n), n ∈ N

of semi-normed spaces such that, for every choice of finitely many vectors (ai ( j))N
j=1 ∈ �N∞,

1 ≤ i ≤ K ,

∥
∥
∥
∥

sup
1≤ j≤N

∣
∣
∣

K
∑

i=1

ai ( j)γi

∣
∣
∣

∥
∥
∥
∥

X
≤ ψ(N ) sup

1≤ j≤N

∥
∥(ai ( j))K

i=1

∥
∥

SK . (1)

In what follows, a sequence (γi )i∈N of random variables in X is said to satisfy the KSZ -
inequality of type (X , (Sn)n, ψ) provided that the above inequality holds.

Of special importance for the applications we have in mind, are Rademacher random
variables and the much larger class of subgaussian random variables–including real and
complex normal Gaussian as well as complex Steinhaus variables.

Let us explain why we call such estimates abstract KSZ -inequalities. Note first that if we
take a sequence (εi )i∈N of independent Rademacher random variables (that is, independent
random variables taking values +1 and −1 with equal probability 1

2 ), then for X = Lr (P)

with 1 ≤ r < ∞, Sn := �n
2 for each n ∈ N and N = 1 the estimate from (1) reduces to (the

right-hand side of) Khintchine’s inequality: There is a constant 0 < Br such that, for each
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K ∈ N and all scalars t1, . . . , tK ,

∥
∥
∥

K
∑

i=1

tiεi

∥
∥
∥

Lr (P)
≤ Br

( K
∑

i=1

|ti |2
) 1

2

. (2)

To describe results for Orlicz spaces, recall that if � : R+ → R+ is an Orlicz function
(that is, a convex, increasing and continuous positive function with �(0) = 0), then the
Orlicz space L�(ν) (L� for short) on a measure space (�,A, ν) is defined to be the space
of all (real or complex) A-measurable functions f such that

∫

�
�(λ| f |) dν < ∞ for some

λ > 0, and it is equipped with the norm

‖ f ‖L� := inf
{

λ > 0;
∫

�

�
( | f |

λ

)

dν ≤ 1
}

.

If � is a finite or countable set, A = 2�, and ν the counting measure, then we write �ϕ(ν)

instead of Lϕ(ν). For r ∈ [1,∞) we consider the (so-called) exponential Orlicz space Lϕr

generated by the Orlicz function ϕr given by ϕr (t) := etr − 1 for all t ∈ [0,∞). Observe
that for all 1 ≤ r < ∞

Lϕr ↪→ Lr , and ‖ f ‖Lr ≤ ‖ f ‖Lϕr
for all f ∈ Lϕr .

See e.g. the monograph [24] for all needed information on Orlicz functions and spaces. For
later referencewemention the following equivalent formulation of Lϕr in terms of L p-spaces:
f ∈ Lϕr if only if f ∈ L p for all 1 ≤ p < ∞ and sup1≤p<∞ p−1/r‖ f ‖p < ∞, and in this
case

‖ f ‖Lϕr
� sup

1≤p<∞
p−1/r‖ f ‖p, (3)

up to equivalence with constants which only depend on r .
In Theorem 3.6 (here only formulated for Rademacher instead of subgaussian random

variables) we prove that for every 2 ≤ r < ∞ there is a constant Cr > 0 such that, for each
K , N ∈ N and for every choice of finitely many a1, . . . , aK ∈ �N∞, with ai = (ai ( j))N

j=1,
1 ≤ i ≤ K , we have

∥
∥
∥
∥

sup
1≤ j≤N

∣
∣
∣

K
∑

i=1

εi ai ( j)
∣
∣
∣

∥
∥
∥
∥

Lϕ2

≤ C2(1 + log N )
1
2 sup
1≤ j≤N

‖(ai ( j))K
i=1‖�2 , (4)

and for r ∈ (2,∞)

∥
∥
∥
∥

sup
1≤ j≤N

∣
∣
∣

K
∑

i=1

εi ai ( j)
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr (1 + log N )
1
r sup
1≤ j≤N

‖(ai ( j))K
i=1‖�r ′,∞; (5)

here �r ′,∞ as usual indicates the classical Marcinkiewicz sequence space. Moreover, we will
see that the asymptotic behaviour of the constant Cr (1 + log N )1/r can not be improved.

Several remarks are in order. Note first that for N = 1 and r = 2 this estimate is due to
Zygmund [42]. For N = 1 and r ∈ (2,∞), Pisier in [30] proved that the Marcinkiewicz
sequence space �r ′,∞, instead of �2, comes into play. We also remark that this fact was
mentioned by Rodin and Semyonov in [34, Section 6]. Observe that in view of (3), these
estimates (still for N = 1) obviously extend (the right-hand part of) Kinchine’s inequality.

Moreover, (4) and (5) hold not only for Rademacher random variables, but even for the
much larger class of subgaussian random variables—including real and complex normal
Gaussian as well as complex Steinhaus variables.
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In fact, for subgaussian random variables we intend to give three different approaches to
(4) and (5). The first one from Sect. 3.1 is elementary, and based on Khintchine’s inequality
and extrapolation of the �N∞-norm. In Sect. 4 we extend and recover this result using the
so-called lattice M-constants. And finally in Sect. 5 we once again widen our perspective of
all this, applying various techniques from interpolation theory.

Obviously both estimates from (4) and (5) have the form discussed in (1), so let us come
back to the above questionwhywe decided to call them ’abstract’ KSZ -inequalities. Ourmain
initial intention was to derive new multidimensional KSZ -inequalities. The first estimates of
this type were studied by Kahane who proves in [19, pp. 68–69] that, given a trigonometric
Rademacher random polynomial P in n variables of degree deg(P) ≤ m, that is

P(ω, z) =
∑

|α|≤m

εα(ω)cαzα, ω ∈ �, z ∈ C
n , (6)

where the εα for α ∈ Z
n with |α| = ∑

k |αk | ≤ m are independent Rademacher variables on
the probability space (�,A,P), the expectation of the sup norm of the random polynomial
on the n-dimensional torus Tn has the following upper estimate:

E

(

sup
z∈Tn

∣
∣P(·, z)

∣
∣

)

≤ C
(

n(1 + logm)
) 1
2

(
∑

|α|≤m

|cα|2
) 1

2

, (7)

where C > 0 is a universal constant.
Let us indicate how (4) implies (7). Denote by Tm(Tn) the space of all trigonometric

polynomials P(z) = ∑

|α|≤m cαzα, z ∈ T
n with deg P ≤ m, which together with the sup

norm on T
n forms a Banach space. A well-known consequence of Bernstein’s inequality

(see, e.g., [33, Corollary 5.2.3]) is that, for all positive integers n, m there is a subset F ⊂ T
n

of cardinality card F ≤ (1 + 20m)n such that, for every P ∈ Tm(Tn), we have

sup
z∈Tn

|P(z)| ≤ 2 sup
z∈F

|P(z)|.

In other terms, for N = (1 + 20m)n the linear mapping

I : Tm(Tn) → �N∞ , I (P) := (P(z))z∈F , P ∈ Tm(Tn) (8)

is an isomorphic embedding satisfying ‖I‖‖I −1‖ ≤ 2 . We now observe as an immediate
consequence of (4) and (5) that, for each 2 ≤ r < ∞, there exists a constant Cr > 0 such
that, for any choice of polynomials P1, . . . , PK ∈ Tm(Cn), we have

∥
∥
∥
∥
sup
z∈Tn

∣
∣
∣

K
∑

i=1

εi Pi (z)
∣
∣
∣

∥
∥
∥
∥

Lϕ2

≤ C2
(

n(1 + logm)
) 1
2 sup

z∈Tn

∥
∥(Pi (z))

K
i=1

∥
∥

�2
,

and for 2 < r < ∞
∥
∥
∥
∥
sup
z∈Tn

∣
∣
∣

K
∑

i=1

εi Pi (z)
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr
(

n(1 + logm)
) 1

r sup
z∈Tn

∥
∥(Pi (z))

K
i=1

∥
∥

�r ′,∞
.

Applying this result to the Rademacher random polynomial P given by

P(ω, z) =
∑

|α|≤m

εα(ω)cαzα =
∑

|α|≤m

εα(ω)Pα(z), ω ∈ �, z ∈ T
n,

we obviously get a strong extension of (7), which can be seen as a sort of ’exponential
variant’ of the KSZ -inequality. Working out these ideas, we in Sect. 6 show that this way
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various recent KSZ -inequalities for polynomials and multilinear forms on finite dimensional
Banach spaces can be simplified, unified, and extended—in particular, recent results of Bayart
[4] and Pellegrino et. al. [28]. Finally, we in Sect. 6.4 prove KSZ -inequalities for randomized
Dirichlet polynomials. These results are heavily based on ’Bohr’s point of view’, which
shows an intimate interaction between the theory of Dirichlet polynomials and theory of
trigonometric polynomials in several variables.

2 Preliminaries

We use standard notation from Banach space theory. Let X , Y be Banach spaces. We denote
by L(X , Y ) the space of all bounded linear operators T : X → Y with the usual operator
norm. If we write X ↪→ Y , then we assume that X ⊂ Y and the inclusion map id : X → Y
is bounded. If X = Y with equality of norms, then we write X ∼= Y . We denote by BX the
closed unit ball of X , and by X∗ its dual Banach space.

We also need some definitions from the local Banach space theory. Let X and Y be Banach
spaces. An operator T : X → Y is said to be an isomorphic embedding of X into Y if there
exists C > 0 such that ‖T x‖Y ≥ C‖x‖X for every x ∈ X . In this case T −1 is a well-defined
operator from (T X , ‖·‖Y ) onto X . Given a real number 1 ≤ λ < ∞, we say that X λ-embeds
into Y whenever there exists an isomorphic embedding T of X into Y such that

‖T ‖ ‖T −1‖ ≤ λ.

In this case, we call T a λ-embedding of X into Y . Observe that this is equivalent to the
existence of a set {x∗

1 , . . . , x∗
N } of functionals in BX∗ such that for some L, M > 0 with

L M ≤ λ, we have

1

L
‖x‖X ≤ max

1≤ j≤N
|x∗

j (x)| ≤ M‖x‖X , x ∈ X .

Then the operator T : X → �N∞ given by

T x := (x∗
1 (x), . . . , x∗

N (x)), x ∈ X

induces the λ-embedding of X into �N∞.
Throughout the paper, (�,A,P) stands for a probability measure space. Given two

sequences (an) and (bn) of nonnegative real numbers we write an ≺ bn or an = O(bn),
if there is a constant c > 0 such that an ≤ c bn for all n ∈ N, while an � bn means
that an ≺ bn and bn ≺ an hold. Analogously we use the symbols f ≺ g and f � g for
nonnegative real functions.

Banach function and sequence spaces. Let (�,μ) := (�,�,μ) be a complete σ -finite
measure space and let X be a Banach space. L0(μ, X) denotes the space of all equivalence
classes of strongly measurable X -valued functions on �, equipped with the topology of
convergence in measure (on sets of finite μ-measure). In the case X = K, we write L0(μ)

for short instead of L0(μ,K) (where as usual K := C or K := R). Let E be a Banach
function lattice over (�,μ) and let X be a Banach space. The Köthe–Bochner space E(X)

is defined to consist of all f ∈ L0(μ, X) with ‖ f (·)‖X ∈ E , and is equipped with the norm

‖ f ‖E(X) := ‖ ‖ f (·)‖X‖E .

Recall that E ⊂ L0(μ) is said to be a Banach function lattice, if there exists h ∈ E with
h > 0 a.e. and E is an Banach ideal in L0(μ), that is, if | f | ≤ |g| a.e. with g ∈ E and
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f ∈ L0(μ), then f ∈ E and ‖ f ‖E ≤ ‖g‖E . If J = N or J = Z and (�,A, μ) := (

J, 2J, μ
)

where μ is the counting measure, then a Banach lattice E in ω(J) := L0
(

J, 2J, μ
)

is said to
be a Banach sequence space on J. For any such Banach lattice E and any positive sequence
w = (wn) on J, we define the weighted lattice E((wn)) on J to be the Banach space of all
scalar sequences ξ = (ξn)n∈J such that ξw := (ξnwn)n∈J ∈ E . The norm on E((wn)) is
defined in the usual way, that is, ‖x‖E((wn)) = ‖xw‖E . In what follows, we briefly write
E(wn) instead of E((wn)).

A Banach sequence space E is said to be symmetric provided that ‖(xk)‖E = ‖(x∗
k )‖E ,

where (x∗
k ) denotes the decreasing rearrangement of the sequence (|xk |). Given a Banach

sequence space E and a positive integer N ,

‖(xk)
N
k=1‖E N :=

∥
∥
∥

N
∑

k=1

|xk |ek

∥
∥
∥

E
, (xk)

N
k=1 ∈ C

N

defines a norm onCN . In what followswe identify (xk)
N
k=1 with

∑N
k=1 xkek and for simplicity

of notation, we write ‖(xk)
N
k=1‖E instead of ‖(xk)

N
k=1‖E N .

We will consider the Marcinkiewicz symmetric sequence spaces mw . Recall that if w =
(wk) is a non-increasing positive sequence, thenmw is defined to be the space of all sequences
x = (xk) ∈ ω(N) equipped with the norm

‖x‖mw := sup
n∈N

x∗
1 + · · · + x∗

n

w1 + · · · + wn
.

Note that if ψ : [0,∞) → [0,∞) is a concave function with ψ(0) = 0, then the sequence
v := (ψ(n) − ψ(n − 1)) is nonincreasing. It is easy to check that if lim infn→∞ ψ(2n)

ψ(n)
> 1,

then there exists C > 1

sup
n≥1

n

ψ(n)
x∗

n ≤ ‖x‖mv ≤ Cr sup
n≥1

n

ψ(n)
x∗

n .

In particular, if r ∈ (1,∞) andψ(n) = n1−1/r , then the spacemv coincides with the classical
Marcinkiewicz space �r ,∞ and, in the above estimate, Cr = r/(r − 1).

Subgaussian random variables. Closely following Pisier [31], we list some basic facts
about real and complex subgaussian random variables.

Let (�,A,P) be a probability space, and f a random variable. If f is real-valued, then
f is said to be subgaussian, whenever there is some s ≥ 0 such that for every x ∈ R

E exp(x f ) ≤ exp(s2x2/2),

and if f is complex-valued, whenever there is some s ≥ 0 such that for every z ∈ C

E exp(Re(z f )) ≤ exp(s2|z|2/2).
In this case, the best such s is denoted by sg( f ). Note that subgaussian random variables
always havemean zero. ByMarkov’s inequality it iswell-known that, given a real subgaussian
f , we for all t > 0 have

P
({| f | > t}) ≤ 2 exp

( −t2

2sg( f )2

)

, (9)

whereas in the complex case

P
({| f | > t}) ≤ 4 exp

( −t2

2sg( f )2

)

. (10)
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The Orlicz spaces Lϕr , 1 ≤ r < ∞ provide a natural framework for the study of subgaussian
random variables. Among others it is known, that a real mean-zero random variable f is
subgaussian if and only if f ∈ Lϕ2 , in which case sg( f ) and ‖ f ‖Lϕ2

are equivalent up to
universal constants (see, e.g., [31, Lemma 3.2]).

A real-valued sequence ( fn) is called subgaussian if there is s ≥ 0 such that for any x =
(xn) ∈ �2 of norm one, the random variable f = ∑∞

n=1 xn fn is subgaussian. Equivalently,
for every finitely supported sequence x = (xn) ∈ R

N we have

E exp

(

Re

( ∞
∑

n=1

xn fn

))

≤ exp

(

s2
∞
∑

n=1

|xn |2/2
)

. (11)

Additionally, a complex-valued sequence ( fn) is said to be subgaussian, whenever the real-
valued sequence formed by both, the real parts Re fn and the imaginary parts Im fn , is
subgaussian. This implies that there is some s ≥ 0 such that (11) holds for any finitely
supported x = (xn) ∈ C

N. Moreover, sg(( fn)) denotes the best possible number such that
(11) holds.

Let us recall a few examples ( [31, Lemma 1.2 and p.5]). Clearly, every sequence of inde-
pendent, real (resp., complex) normal gaussian variables is subgaussian with constant 1.
Moreover, every sequence of independent Rademacher variables εi is subgaussian with
sg((εi )) = 1, and also independent Steinhaus variables zi (randomvariableswith values in the
unit circle T and with distribution equal to the normalized Haar measure) form subgaussian
sequences for which sg((zi )) = 1.

Polynomials.Given Banach spaces X1, . . . , Xm , the product X1×· · ·× Xm is equipped with
the standard norm ‖(x1, . . . , xm)‖ := max1≤ j≤m ‖x j‖X j , for all (x1, . . . , xm) ∈ X1 ×· · ·×
Xm . The Banach space Lm(X1, . . . , Xm) of all scalar-valued m-linear bounded mappings L
on X1 × · · · × Xm is equipped with the norm

‖L‖ := sup
{|L(x1, . . . , xm)|; x j ∈ BX j , 1 ≤ j ≤ m}.

A scalar-valued function P on a Banach space X is said to be anm-homogeneous polynomial
if it is the restriction of an m-linear form L on Xm to its diagonal, i.e., P(x) = L(x, . . . , x)

for all x ∈ X . We say that P is a polynomial of degree at most m whenever P = ∑m
k=0 Pk ,

where all Pk are k-homogeneous (P0 a constant). For a given positive integerm, we denote by
Pm(X) the Banach space of all polynomials on X of degree at mostm equippedwith the norm
‖P‖ := sup{|P(z)|; z ∈ BX }. The symbol P(X) denotes the union of all Pm(X), m ∈ N.
More generally, we write ‖P‖E := sup{|P(z)|; z ∈ E}, whenever E is a non-empty subset
of X .

For a multi-index α = (α1, . . . αn) ∈ Z
n and z = (z1, . . . , zn) ∈ C

n , the standard
notation |α| := |α1| + . . . + |αn | and zα := zα1

1 · · · zαn
n is used. For α = (α1, . . . αn) ∈ N

n
0,

we let α! := α1! · · · αn !, where N0 := N ∪ {0}. By N
(N)
0 we denote the union of all multi

indices α ∈ N
n
0, n ∈ N.

Given a finite dimensional Banach space X = (Cn, ‖ · ‖), every polynomial P ∈ Pm(X)

has the form P(z) = ∑

|α|≤m cαzα, z ∈ C
n , and its degree is given by deg(P) :=

max{|α|; cα �= 0}.
For n ∈ N and m ∈ N0 we denote by Tm(Tn) the space of all trigonometric polynomials

P(z) = ∑

α∈Zn ,|α|≤m cαzα on the n-dimensional torus Tn which have degree deg(P) ≤ m.
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Clearly, Tm(Tn) together with the sup norm ‖ · ‖Tn also denoted by ‖ · ‖∞) forms a Banach
space.

Interpolation. We recall some fundamental notions from interpolation theory (see, e.g., [5,
8, 27]). The pair �X = (X0, X1) of Banach spaces is called a Banach couple if there exists
a Hausdorff topological vector space X such that X j ↪→ X , j = 0, 1. A mapping F , acting
on the class of all Banach couples, is called an interpolation functor if for every couple
�X = (X0, X1), F( �X) is a Banach space intermediate with respect to �X (i.e., X0 ∩ X1 ⊂
F( �X) ⊂ X0 + X1), and T : F( �X) → F( �Y ) is bounded for every operator T : �X → �Y
(meaning T : X0 + X1 → Y0 + Y1 is linear and its restrictions T : X j → Y j , j = 0, 1 are
defined and bounded). If additionally there is a constantC > 0 such that for each T : �X → �Y

‖T : F( �X) → F( �Y )‖ ≤ C ‖T : �X → �Y‖,
where ‖T : �X → �Y‖ := max{‖T : X0 → Y0‖, ‖T : X1 → Y1‖}, then F is called bounded.
Clearly, C ≥ 1, and if C = 1, then F is called exact.

Following [27], the function ψF which corresponds to an exact interpolation functor F
by the equality

F(sR, tR) = ψF (s, t)R, s, t > 0,

is called the characteristic function of the functor F . Here αR denotes R equipped with the
norm ‖ · ‖αR := α| · | for α > 0.

For a bounded interpolation functor F we define the fundamental function φF of F by

φF (s, t) = sup ‖T : F( �X) → F( �Y )‖, s, t > 0,

where the supremum is taken over all Banach couples �X , �Y and all operators T : �X → �Y
such that ‖T : X0 → Y0‖ ≤ s and ‖T : X1 → Y1‖ ≤ t .

It is easy to see thatφF belongs to the setQ of all functionsϕ : (0,∞)×(0,∞) → (0,∞),
which are non-decreasing in each variable and positively homogeneous (that is, ϕ(λs, λt) =
λϕ(s, t) for all λ, s, t > 0). For any ψ ∈ Q, we define ψ∗ : (0,∞) × (0,∞) → (0,∞) by
ψ∗(s, t) = 1/ψ(s−1, s−1) for all s, t > 0.

3 Gateway

Weprove KSZ -inequalities in the sense of (1) for subgaussian randomvariables.Our approach
seems entirely elementary. In Sect. 3.1 we use Khintchine’s inequality and extrapolation, and
in Sect. 3.2 we elaborate these ideas using a convexity argument.

3.1 KSZ- versus Khinchine’s inequality

The following estimate for Rademacher averages in �N∞ is weaker than what we are going
to prove in Theorem 3.6, where we replace the Rademacher variables εi by subgaussian
variables γi and Lr -spaces by exponential Orlicz spaces Lϕr . But its proof is considerably
simpler than what is going to follow later—though it still reflects some of the main ideas of
this article.

Theorem 3.1 Let (εi )i∈N be a sequence of independent Rademacher random variables. Then,
for every r ∈ [2,∞), every N ∈ N, and every choice of finitely many a1, . . . , aK ∈ �N∞ with
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ai = (ai ( j))N
j=1, 1 ≤ i ≤ K , we have

(

E

∥
∥
∥

K
∑

i=1

aiεi

∥
∥
∥

r

�N∞

)1/r

≤ e2
√

r (1 + log N )
1
2 sup

1≤ j≤N
‖(ai ( j))K

i=1‖�2 .

Moreover, if we denote by C(N , r) the best constant in this inequality, then we have

C(N , r) � (1 + log N )
1
2 .

Note again that for N = 1 these estimates (up to constants) are covered by (the right hand
side) of Khintchine’s inequality from (2).

For the proofwe need slightlymore preparation. Define for each N ∈ N the N -th harmonic
number

hN :=
N

∑

j=1

1

j
,

and the discrete measure μN on the power set of {1, . . . , N } by μN ({ j}) := 1
j . In what

follows, we will use the following obvious estimates without any further reference:

log N < hN ≤ 1 + log N , N ∈ N .

We add an elementary observation which will turn out to be crucial.

Lemma 3.2 For every ξ = (ξi ) ∈ C
N , we have

1

e
‖ξ‖�N∞ ≤ ‖ξ‖LhN (μN ) ≤ e

1
e ‖ξ‖�N∞ .

Proof From the obvious inequality log t
t ≤ 1

e , t ≥ 1, we get that

‖ξ‖LhN (μN ) ≤
( N

∑

j=1

1

j

) 1
hN ‖ξ‖�N∞ = h

1
hN
N ‖ξ‖�N∞ ≤ e

1
e ‖ξ‖�N∞ .

Conversely, if ‖ξ‖LhN (μN ) = 1, then
|ξ j |hN

j ≤ 1 and so

|ξ j | ≤ j
1

hN ≤ e
1

hN
log N ≤ e, 1 ≤ j ≤ N .

This combined with the homogeneity of the norm yields the left hand estimate. ��
We are ready for the proof of Theorem 3.1.

Proof of Theorem 3.1 By Lemma 3.2

(

E

∥
∥
∥

K
∑

i=1

aiεi

∥
∥
∥

r

�N∞

)1/r

≤ e

( ∫

�

∥
∥
∥

( K
∑

i=1

εi (ω)ai ( j)
)N

j=1

∥
∥
∥

r

LhN (μN )
dP(ω)

) 1
r

= e

( ∫

�

( N
∑

j=1

∣
∣
∣

K
∑

i=1

εi (ω)ai ( j)
∣
∣
∣

hN 1

j

) r
hN

dP(ω)

) 1
r

≤ e

( ∫

�

( N
∑

j=1

∣
∣
∣

K
∑

i=1

εi (ω)ai ( j)
∣
∣
∣

hN 1

j

)r

dP(ω)

) 1
rhN

,

123



44 Page 10 of 40 A. Defant, M. Mastyło

where the last estimate follows from Hölder’s inequality.
Now the continuous Minkowski inequality implies

(

E

∥
∥
∥

K
∑

i=1

aiεi

∥
∥
∥

r

�N∞

)1/r

≤ e

( N
∑

j=1

( ∫

�

∣
∣
∣

K
∑

i=1

εi (ω)ai ( j)
∣
∣
∣

rhN 1

jr

) 1
r

dP(ω)

) 1
hN

= e

( N
∑

j=1

1

j

( ∫

�

∣
∣
∣

K
∑

i=1

εi (ω)ai ( j)
∣
∣
∣

rhN
) 1

r

dP(ω)

) 1
hN

.

Finally, we use Khintchine’s inequality (2) together with the well-known estimate BrhN ≤√
rhN to get that

(

E

∥
∥
∥

K
∑

i=1

aiεi

∥
∥
∥

r

�N∞

)1/r

≤ e

( N
∑

j=1

1

j

(√

rhN
∥
∥
(

ai ( j)
)K

i=1

∥
∥
2

)hN
) 1

hN

≤ eh
1

hN
N

√
r(1 + log N )

1
2 sup

1≤ j≤N
‖(ai ( j))K

i=1‖�2 .

Using the fact that h
1

hN
N ≤ e gives the desired estimate. See the proof of the final argument

in Theorem 3.6 to check that the constant C(2, N ) is asymptotically optimal. ��
From the norm equivalence (3) (take there r = 2) we immediately deduce the following

consequence.

Corollary 3.3 Let (εi )i∈N be a sequence of independent Rademacher random variables. Then,
for any choice of finitely many scalars a1, . . . , aK ∈ �N∞ with ai = (ai ( j))N

j=1, 1 ≤ i ≤ K ,
we have

∥
∥
∥
∥

K
∑

i=1

εi ai

∥
∥
∥
∥

Lϕ2 (�N∞)

≤ e2(1 + log N )
1
2 sup
1≤ j≤N

∥
∥
(

ai ( j)
)K

i=1

∥
∥

�2
. (12)

By a result of Peskir [29] it is known that for N = 1 the best possible constant here equals√
8/3. Note that Corollary 3.3 states that X = Lϕ2 and Sn = �n

2 for each n ∈ N in the

language of (1) satisfy an abstract KSZ -inequality with constant ϕ(N ) = e2(1 + log N )
1
2 .

In the following two sections (Lemma 3.4 and Theorem 3.6) this result will be extended to
X = Lϕr , 2 < r < ∞, S = �r ′,∞, and subgaussian random variables.

3.2 KSZ-inequalities for subgaussian random variables

As discussed in the introduction the following result is one of our crucial tools. In the case of
Rademacher random variables see Zygmund [42] (r = 2), Pisier [30], and Rodin-Semyonov
[34] (where the lemma ismentionedwithout proof). ReplacingRademacher randomvariables
by sugaussians, it is an improvement of a result mentioned by Pisier in [31, Remark 10.5],
and it is surely well-known to specialists.

For the sake of completeness we include an entirely elementary proof which is done in
a similar fashion as in the case of Rademacher random variables in [20, Sect. 4.1].

Lemma 3.4 Let (γi )i∈N be a sequence of (real or complex) subgaussian random variables
over (�,A,P) such that s = sg((γi )).
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(1) There is a constant C2 = C(s) > 0 such that, for any choice of (real or complex) scalars
α1, . . . , αn

∥
∥
∥

n
∑

i=1

αiγi

∥
∥
∥

Lϕ2

≤ C2 ‖(αi )‖2.

(2) Assume, additionally, that M = supi ‖γi‖∞ < ∞. Then for any r ∈ (2,∞) there is
a constant Cr = C(r , s, M) > 0 such that, for any choice of (real or complex) scalars
α1, . . . , αn

∥
∥
∥

n
∑

i=1

αiγi

∥
∥
∥

Lϕr

≤ Cr ‖(αi )‖r ′,∞.

Note again that by [29] in the case of Rademacher random variables εi the best constant
C2 is precisely

√
8/3.

Proof We only discuss the real case—the proof of the complex case is similar.
(1) We fix scalars α1, . . . , αn ∈ R such that

∑n
i=1 |αi |2 = 1. From (9) and (11), we deduce

that for f = ∑n
i=1 αiγi ,

P
({| f | > t}) ≤ 2 exp

(−t2

2s2

)

.

Then, for every c > 0, we have

E

(

ϕ2
(| f |/c

)) =
∫ ∞

0
P
({| f | > ct})d(et2 − 1) ≤ 4

∫ ∞

0
te

t2− c2 t2

2s2 dt .

Choosing c = c(s) large enough, gives the conclusion.
(2) Take r ∈ (2,∞), and α1, . . . , αn ∈ R decreasing such that |αi | ≤ |i |−1/r ′

for each
1 ≤ i ≤ n (without loss of generality).We prove that for some constantCr = C(r , s, M) > 0
for all t > 0

P
({| f | > t}) ≤ 2 exp

(−tr

Cr

)

, (13)

since then the conclusion follows as before.
We distinguish two cases, t < 2Mr and t ≥ 2Mr . In the first case, it is obvious (since

P
({| f | > t}) ≤ 1) that there is such a constant Cr > 0. In the second case, so t ≥ 2Mr , we

define m(t) = �( t
2Mr

)r� and obtain

| f | ≤ M
∑

i≤m(t)

|αi | +
∣
∣
∣

∑

i>m(t)

αiγi

∣
∣
∣ ≤ Mrm(t)1/r +

∣
∣
∣

∑

i>m(t)

αiγi

∣
∣
∣.

(if m(t) ≥ n, then the second sum is supposed to be 0). Then, for all t > 0, we get that

P
({| f | > t}) ≤ P

({∣
∣
∣

∑

i>m(t)

αiγi

∣
∣
∣ > Mrm(t)1/r

})

≤ 2e
− M2r2m(t)2/r

2s2
∑

i>m(t) |αi |2 .

Finally, using the fact that |αi |2 ≤ i−2/r ′
for all i , we see that there is some C ′

r =
C ′(r , s, M) > 0 such that for all t ≥ 2Mr ,

tr

C ′
r

≤ M2r2m(t)2/r

2s2
∑

i>m(t) |αi |2 ,
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and this completes the proof. ��
As promised above, we now extend the abstract KSZ -inequalities from Theorem 3.1. We

prepare the proof with an elementary lemma, which is easily verified by using standard
calculus.

Lemma 3.5 For any c > 0 and α ∈ (0, 1) the function ϕ given by ϕ(t) := e(ct)α − 1 for all

t ∈ [0,∞) is convex on the interval
[( 1−α

α

) 1
α 1

c ,∞)

. In particular, for c = ( 1
α

) 1
α the function

ϕ is convex on [(1 − α)
1
α ,∞).

We are ready to state the following theorem, which for N = 1 recovers Lemma 3.4 (being
the crucial tool for its proof).

Theorem 3.6 Let (γi )i∈N be a (real or complex) subgaussian sequence of random variables
over (�,A,P) with s = sg((γi )).

(1) There is a constant C2 = C(s) > 0 such that, for each K , N ∈ N, and every choice of
finitely many a1, . . . , aK ∈ �N∞ with ai = (ai ( j))N

j=1, 1 ≤ i ≤ K , we have

∥
∥
∥
∥

K
∑

i=1

γi ai

∥
∥
∥
∥

Lϕ2 (�N∞)

≤ C2(1 + log N )
1
2 sup
1≤ j≤N

∥
∥
(

ai ( j)
)K

i=1

∥
∥

�2
.

(2) Assume, additionally, that M = supi ‖γi‖∞ < ∞. Then for every r ∈ (2,∞) there is
a constant Cr = C(r , s, M) > 0 such that, for each K , N ∈ N, and every choice of
finitely many a1, . . . , aK ∈ �N∞ with ai = (ai ( j))N

j=1, 1 ≤ i ≤ K , we have

∥
∥
∥
∥

K
∑

i=1

γi ai

∥
∥
∥
∥

Lϕr (�N∞)

≤ Cr (1 + log N )
1
r sup
1≤ j≤N

∥
∥
(

ai ( j)
)K

i=1

∥
∥

�r ′,∞
.

Moreover, for a fixed sequence (γi ) we denote the best constant in (1) (case r = 2) and
(2) (case r ∈ (2,∞)) by C(N , r). Then for normal Gausian, Rademacher or Steinhaus

variables we in (1) have that C(N , 2) � (1+ log N )
1
2 , up to universal constants, whereas in

(2), we have that for Rademacher or Steinhaus random variables C(N , r) � (1 + log N )
1
r ,

up to constants only depending on r.

Proof Fix r ∈ [2,∞). We claim that the following estimate holds:

∥
∥
∥
∥

K
∑

i=1

γi ai

∥
∥
∥
∥

Lϕr (�N∞)

≤ e2 r
1
r h

1
r
N h

1
hN
N sup

1≤ j≤N

∥
∥
∥
∥

K
∑

i=1

γi ai ( j)

∥
∥
∥
∥

Lϕr

.

Use of the exponential Khintchine inequality from Lemma 3.4 then finishes the proof of the
theorem. In order to establish the claim, we may assume without loss of generality that

sup
1≤ j≤N

∥
∥
∥
∥

K
∑

i=1

γi ai ( j)

∥
∥
∥
∥

Lϕr

≤ 1.

Note first that by Lemma 3.2 we have that

∥
∥
∥
∥

K
∑

i=1

γi ai

∥
∥
∥
∥

Lϕr (�N∞)

≤ e

∥
∥
∥
∥

K
∑

i=1

γi ai

∥
∥
∥
∥

Lϕr (LhN )

,

123



Aspects of the Kahane–Salem–Zygmund inequalities… Page 13 of 40 44

and so we need to estimate the second term.
We define α(N ) := r

hN
and c(N ) := ( 1

α(N )

) 1
α(N ) , and handle the following two different

cases separately, the first case: α(N ) < 1, and the second: α(N ) ≥ 1. We start with the first
case. To do so, we define

�N :=
{

ω ∈ �;
∣
∣
∣

K
∑

i=1

γi (ω)ai ( j)
∣
∣
∣ ≥ c(N )

1
hN

}

.

Since P is a probability measure and ϕr (1) = e − 1, we get

∫

�

ϕr

((
1

c(N )hN

N
∑

j=1

1

j

∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

hN
) 1

hN
)

dP

≤
∫

�N

ϕr

(( N
∑

j=1

1

jhN

1

c(N )

∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

hN
) 1

hN
)

dP + e − 1 .

Lemma 3.5 shows that the functionψN ,r (t) := ϕr
(

(c(N )t)
1

hN ) for t ≥ 0 is convex on [1,∞).
Combining this fact with c(N ) ≥ 1 yields

∫

�N

ϕr

(( N
∑

j=1

1

jhN

1

c(N )

∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

hN
) 1

hN
)

dP

≤
∫

�N

ϕr

((

c(N )

N
∑

j=1

1

jhN

1

c(N )

∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

hN
) 1

hN
)

dP

=
∫

�N

ψr ,N

( N
∑

j=1

1

jhN

1

c(N )

∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

hN
)

dP

≤
∫

�N

N
∑

j=1

1

jhN
ψr ,N

(
1

c(N )

∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

hN
)

dP

=
∫

�N

N
∑

j=1

1

jhN
ϕr

(∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

)

dP

=
∫

�

ϕr

(∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

)

dP ≤ 1 .

Finally, this implies

∫

�

ϕr

((
1

c(N )hN

N
∑

j=1

1

j

∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

hN
) 1

hN
)

dP ≤ 1 + e − 1 = e ,

and hence the claim in the first case follows from

∥
∥
∥
∥

K
∑

i=1

γi ai ( j)

∥
∥
∥
∥

Lϕr (LhN )

≤ e c
1

hN
N h

1
hN
N = e r− 1

r h
1
r
N h

1
hN
N .
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It remains to discuss the second case α(N ) = r
hN

≥ 1, which is more simple since now the

function ϕN ,r (t) := ϕr
(

t
1

hN
)

for all t ≥ 0 is convex on [0,∞). Observe that r
1
r c(N )

1
hN ≥ 1.

Together we get

∫

�

ϕr

(
1

r
1
r c(N )

1
hN h

1
hN
N

( N
∑

j=1

1

j

∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

hN
) 1

hN
)

dP

≤
∫

�

ϕN ,r

( N
∑

j=1

1

jhN

∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

hN
)

dP

≤ sup
1≤ j≤N

∫

�

ϕr

(∣
∣
∣

K
∑

i=1

γi ai ( j)
∣
∣
∣

)

dP ≤ 1 .

Thus we have
∥
∥
∥
∥

K
∑

i=1

γi ai ( j)

∥
∥
∥
∥

Lϕr (LhN )

≤ e r
1
r c(N )

1
hN h

1
hN
N ≤ e h

1
r
N h

1
hN
N ,

and this as above completes the proof of the claim.
Let us check the final result of the theorem, and prove that

C(N , r) ≺ (1 + log N )
1
r ,

whenever we consider Rademacher variables εi . Indeed, we have that

(

E

∥
∥
∥

K
∑

i=1

aiεi

∥
∥
∥

2

�N∞

)1/2

≤
∥
∥
∥
∥

K
∑

i=1

εi ai

∥
∥
∥
∥

Lϕr (�N∞)

≤ C(N , r) sup
1≤ j≤N

∥
∥
(

(ai ( j)
)K

i=1

∥
∥

�r ′,∞

≤ C(N , r) sup
1≤ j≤N

( K
∑

i=1

|ai ( j)|r ′
) 1

r ′
≤ C(N , r)

( K
∑

i=1

‖ai‖r ′
�N∞

) 1
r ′

,

which implies that

Tr ′(�N∞) ≺ C(N , r),

where Tr ′(�N∞) denotes the Rademacher type r ′ of �N∞ (which up to constants in r equals the
Gaussian as well as the Steinhaus type r ′ of �N∞). But it is well-known (see, e.g., [36, p.16])
that up to universal constants, we have

Tr ′(�N∞) � (1 + log N )
1
r ,

the conclusion. For all other cases the same proof works. ��

4 KSZ-inequalities by latticeM-constants

We here suggest an entirely different approach to the abstract KSZ -inequalities from Theo-
rem 3.6. In fact, the outcome of this theorem turns out to be an immediate consequence of
Lemma 3.4 as well as the forthcoming Lemma 4.1 and Corollary 4.3.
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We prove that, given some Banach function lattice X , then every sequence (γi )i of random
variables in X satisfies a KSZ -inequality of type (X , (Sn), ψ) (as defined in (1)), whenever
the semi normed spaces Sn = (Kn, ‖ · ‖n) are defined in a proper way. To show this, we use
a characteristic from the theory of abstract Banach lattices called M-constant (see [1, 37]).
If X is a Banach lattice, then the constant μn(X) is given by

μn(X) := sup

{
∥
∥ sup
1≤ j≤n

x j
∥
∥

X ; 0 ≤ x j , ‖x j‖X ≤ 1, for 1 ≤ j ≤ n

}

, n ∈ N .

Clearly, (μn(X))n is a non-decreasing sequence and μn(X) ∈ [1, n] for each n ∈ N. It was
shown in [1, Theorem 1] that

(
μn(X)

n

)

decreases. Moreover, it easy to see that (μn(X))n is
submultiplicative, that is,

μmn(X) ≤ μm(X)μn(X), m, n ∈ N,

and hence limn→∞ μn(X)
n ∈ {0, 1} (see in [1] the proof of Theorem 2). This impliesμn(X) =

n for each n whenever limn→∞ μn(X)
n = 1 (see [1, Lemma 3]).

The following lemma is obvious—although crucial for our purposes.

Lemma 4.1 Let X be a Banach lattice over (�,A, ν) and ψ : N → [1,∞) defined by
ψ(n) = μn(X) for each n ∈ N. Then every sequence (γi )i∈N of random variables in X
satisfies the KSZ-inequality of type (X , (Sn), ψ) with Sn := (Kn, ‖ · ‖n) for each n ∈ N,
where the semi norms ‖ · ‖n (resp., norms ‖ · ‖n, whenever the γi are linearly independent)
are given by

‖z‖n := ‖z1γ1 + . . . + znγn‖X , z = (z1, . . . , zn) ∈ K
n .

Proof It follows from the definition of μn(X) that for any g1, . . . , gN ∈ X ,
∥
∥ sup
1≤ j≤N

|g j |
∥
∥

X ≤ μN (X) sup
1≤ j≤N

‖g j‖X .

This implies that for every choice of finitely many vectors a1, . . . , aK ∈ �N∞ with ai =
(ai ( j))N

j=1, one has

∥
∥
∥
∥

sup
1≤ j≤N

∣
∣
∣

K
∑

i=1

ai ( j)γi

∣
∣
∣

∥
∥
∥
∥

X
≤ μN (X) sup

1≤ j≤N

∥
∥
∥

K
∑

i=1

ai ( j)γi

∥
∥
∥

X

= ψ(N ) sup
1≤ j≤N

∥
∥(ai ( j))K

j=1

∥
∥

SK .

Clearly, ‖ · ‖n is a norm, whenever (γi ) is a linearly independent system, and this completes
the proof. ��

It may be expected that an abstract KSZ -inequality (like in (1)) for a specific sequence
(γi )i of random variables from a concrete Banach function lattice X has better constants
ψ(N ) than the M-constants μN (X) indicated by the preceding lemma.

To see that this is indeed true, observe first that for any Lr -space with 1 ≤ r < ∞ on
an atomless measure space (�,A, ν), one has μN (Lr ) = N 1/r . But then, secondly, we see
by Theorem 3.6 that Rademacher variables in an Lr -space with r ∈ [2,∞) satisfy a KSZ -
inequality with considerably better constants ψ(N ) than the one from Lemma 4.1 (namely,

Cr (1 + log N )
1
r instead of N 1/r ).

We now find estimates of M-constants for some class of Orlicz spaces on probability
measures spaces.

123



44 Page 16 of 40 A. Defant, M. Mastyło

Proposition 4.2 Let L� be an Orlicz space over a probability measure space (�,A, ν) with
�(t) = eϕ(t) − 1 for all t ≥ 0, where ϕ is an Orlicz function on R+ such that, for some
γ > 0, ϕ(st) ≤ γ ϕ(s)ϕ(t) for all s ∈ (0, 1] and t > 0. Then, for each n ∈ N, one has

μn(L�) ≤ K

ϕ−1
(

ϕ(1)/(1 + log n)
) ,

where K = (e − 1)γ ϕ(1).

Proof Given γ1, . . . , fn ∈ L� with ‖ f j‖L� ≤ 1. Clearly,
∫

�
�(| f j |) dν ≤ 1 for each

1 ≤ j ≤ n. Then for g := sup1≤ j≤n | f j | one has
∫

�
�(g) dν ≤ n by

∫

�
�(g) dν ≤

∑n
j=1 �(| f j |) dν ≤ n, and hence

∫

�

eϕ(g) dν ≤ elog(n+1).

Applying Jensen’s inequality, we get (by log(n + 1) = log n + log(1 + 1
n ) ≤ 1 + log n)

∫

�

e
ϕ(g)

1+log n dν ≤ e
log(n+1)
1+log n ≤ e.

Since ϕ is convex and 1 ≤ γ ϕ(1), it follows that ϕ(t/γ ϕ(1)) ≤ ϕ(t)/γ ϕ(1) for all t ≥ 0.
Combining this with our hypothesis on ϕ, yields that for all ω ∈ � and each n ≥ 1,

ϕ
(

ϕ−1
( ϕ(1)

1 + log n

) g(ω)

γ ϕ(1)

)

≤ 1

1 + log n
ϕ(g(ω)).

The above two inequalities in combination with the convexity of the � function give
∫

�

�
( g

C

)

dν ≤ 1,

where C = (e−1)γ ϕ(1)
ϕ−1(ϕ(1)/(1+log n))

. This implies that ‖g‖L� ≤ C . Since f1, . . . , fn in the unit
ball of L� were arbitrary, the required estimate follows. ��

The following corollary is an immediate consequence of Proposition 4.2.

Corollary 4.3 For r ∈ [1,∞) let Lϕr be an Orlicz space over a probability measure space
(�,A, ν) with ϕr (t) = etr − 1 for all t ≥ 0. Then for each n ∈ N one has

μn(Lϕr ) ≤ (e − 1)(1 + log n)
1
r .

We conclude with two remarks. The first one shows that we reached the goal formulated
at the beginning of this section.

Remark 4.4 Applying Lemma 4.1, Proposition 4.2, Lemma 3.4 and Corollary 4.3, we recover
both statements (1) and (2) from Theorem 3.6.

Remark 4.5 Using Lemma 4.1, Proposition 4.2, Lemma 3.4 and Corollary 4.3, the constant in

the estimate (12) in Corollary 3.3 improves from e2(1+ log N )
1
2 to (e −1)

√

8
3 (1+ log N )

1
2 .

Indeed, as already mentioned after Corollary 3.3, by a result from [29] the best possible

constant in the inequality
∥
∥

∑

i aiεi
∥
∥

Lϕ2
≤ C ‖a‖�2 equals C =

√

8
3 .
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5 Approach by interpolation

In this section we use interpolation theory to prove more abstract KSZ -inequalities in the
sense of (1), which in fact extend and strengthen the previous ones. As an additional benefit
we find two more proofs of Theorem 3.6 in the case r > 2 (using the case r = 2 as a starting
point).Whereas our proof fromSect. 3.1 is entirely elementary, the proof fromSect. 4 is based
on Banach lattices theory. The new arguments used here, heavily rely on the technically more
complicated machinery of interpolation in Banach spaces—in particular that of the K - and
orbit method.

5.1 Exact interpolation functors

LetF be an exact interpolation functor. Inwhat followswe use an inequality that is an obvious
consequence of the definition of the fundamental function φF (given in the preliminaries):
For any operator T : �X → �Y between Banach couples �X = (X0, X1) and �Y = (Y0, Y1), one
has

∥
∥T : F( �X) → F( �Y )

∥
∥ ≤ φF

(‖T : X0 → Y0‖, ‖T : X1 → Y1‖
)

.

In this section we mainly consider a special class of exact interpolation functors F . Clearly,
by the interpolation property, it follows that for any Banach couple �X = (X0, X1), we have

sup
N≥1

∥
∥id : F(�N∞(X0), �

N∞(X1)) ↪→ �N∞(F(X0, X1))
∥
∥ ≤ 1.

This motivates us to introduce the following definition: An interpolation functor F is said to
have the ∞-property on �X with constant δ > 0 whenever

sup
N≥1

∥
∥id : �N∞(F(X0, X1)) ↪→ F(�N∞(X0), �

N∞(X1))
∥
∥ ≤ δ,

and F has the uniform ∞-property with constant δ whenever it has the ∞-property on any
Banach couple �X with constant δ.

Moreover, we need the following useful interpolation formula from [9], which is
a consequence of the Hahn–Banach–Kantorovich theorem.

Lemma 5.1 Let E0 and E1 be Banach function lattices on a measure space (�,A, μ) and
let X be a Banach space. Then, for any exact interpolation functor F , we have

F(E0(X), E1(X)) ∼= F(E0, E1)(X).

Now we are prepared to prove the following key interpolation theorem based on the case
r = 2 from Theorem 3.6. The space of all scalar N × K -matrices is denoted by MN ,K .

Theorem 5.2 Let (γi )i∈N be a subgaussian sequence of (real or complex) random variables
with s = sg((γi )) and M = supi ‖γi‖∞ < ∞. Suppose that F is an exact interpolation
functor with the ∞-property with constant δ.

Then there exists a constant C = C(s, M) > 0 such that for every matrix (ai, j ) ∈ MN ,K ,
we have

∥
∥
∥ sup
1≤ j≤N

∣
∣

K
∑

i=1

γi ai, j
∣
∣

∥
∥
∥F(L∞,Lϕ2 )

≤ δCφF
(

1,
√

1 + log N
)

sup
1≤ j≤N

∥
∥(ai, j )

K
i=1

∥
∥F(�1,�2)

,

where φF is the fundamental function of F . In particular, C = √
8/3, whenever (γi ) = (εi )

is a sequence of independent random Rademacher variables.
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Proof Define the linear mapping T : MN ,K → L0(P, �N∞) by

T (ai, j ) :=
( K

∑

i=1

γi ai, j

)N

j=1
, (ai, j ) ∈ MN ,K .

We claim that

T : (

�N∞(�K
1 ), �N∞(�K

2 )
) → (

L∞(�N∞), Lϕ2(�
N∞)

)

.

Obviously, T : �N∞(�K
1 ) → L∞(�N∞) with norm ‖T ‖ ≤ supi ‖γi‖∞. From Theorem 3.6, it

follows that T : �N∞(�K
2 ) → Lϕ2(�

N∞) has norm less than or equal to C2
√
1 + log N . By the

interpolation property, and our hypothesis that F has the ∞-property with constant δ, we get
that for all (ai, j ) ∈ MN ,K

∥
∥T (ai, j )

∥
∥F(L∞(�N∞),Lϕ2 (�N∞))

≤ C δ φF (1,
√

1 + log N )
∥
∥(ai, j )

∥
∥

�N∞(F(�K
1 ,�K

2 ))
.

Since (�K
1 , �K

2 ) is a 1-complemented sub-couple of the couple (�1, �2),

F(�K
1 , �K

2 ) ∼= F(�1, �2)
K .

Thus the above interpolation estimate combinedwith Lemma 5.1 yields the required estimate.
If (γi ) = (εi )i∈N, then we have ‖T ‖ = 1 and C2 = √

8/3. ��

As an application of Theorem 5.2, we get the interpolation variant of Theorem 3.6.

Remark 5.3 Let (γi )i∈N be a subgaussian sequence of (real or complex) random variables
with s = sg((γi )) and M = supi ‖γi‖∞ < ∞. Let F be an exact interpolation functor with
the ∞-property with constant δ.

Then there exists a constant C = C(s, M) > 0 such that, for every Banach space E , every
λ-embedding I : E ↪→ �N∞, and every choice of x1, . . . , xK ∈ E , we have

∥
∥
∥
∥

K
∑

i=1

γi xi

∥
∥
∥
∥F(L∞,Lϕ2 )(E)

≤ ‖I −1‖Cδ φF
(

1,
√

1 + log N
)

sup
1≤ j≤N

∥
∥
(

I (xi )( j)
)K

i=1

∥
∥F(�1,�2)

,

where φF is the fundamental function of F .

In order to apply all this within the setting of Orlicz spaces, the following lemma from
[22, Proof of Lemma 4] is going to be crucial.

Lemma 5.4 Let F be an exact interpolation functor with characteristic function ψ = ψF .
Then the following embedding

F(L∞(P), Lϕ2(P)) ↪→ L�(P)

is contractive, where � and � are Orlicz functions satisfying for all t > 0

�(t) = e�(t) − 1 and �−1(t) � ψ∗(1,
√

t).
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5.2 The K-method

We now restrict Theorem 5.2 to two interpolation methods, which play a fundamental role
in interpolation theory in Banach spaces, the K -method and the Orbit method.

If Theorem 5.2 is to be applied in a specific situation, then a naturally given exact interpo-
lation functor F is usually the best choice. Then, in order to prove abstract KSZ -inequalities
(like e.g., Theorem 3.6 for r > 2), the main difficulty lies (A) in proving that F has the
∞-property, and (B) in providing a best possible estimate of the fundamental function φF .

It is worth pointing out, that for the key Theorem 5.2 we only need to know that F has
the ∞-property on the special Banach couple (L∞, Lϕ2).

We start with the K -method of interpolation. Let F be a Banach sequence lattice of
(two-sided) sequences such that (min{1, 2k})k∈Z ∈ F . If (X0, X1) is a Banach couple, then
the K -method of interpolation produces (X0, X1)F , the Banach space of all x ∈ X0 + X1

equipped with the norm

‖x‖ := ∥
∥
(

K (1, 2k, x; X0, X1)
)

k

∥
∥

F ,

where K is the Peetre functional given for all x ∈ X0 + X1 and all s, t > 0 by

K (s, t, x; X0, X1) := inf
{

s‖x0‖X0 + t‖x1‖X1; x = x0 + x1, x0 ∈ X0, x1 ∈ X1
}

.

If ψ ∈ Q (see the preliminaries) and F := �∞(1/ψ(1, 2n)), then the space (X0, X1)F is
denoted by

(X0, X1)ψ,∞.

In the particular case that θ ∈ (0, 1) and ψ(s, t) = s1−θ tθ for all s, t > 0, we recover the
classical Lions–Peetre space (X0, X1)θ,∞.

In what follows, for any ψ ∈ Q, we define the function ψ ∈ Q by

ψ(s, t) = sup

{
ψ(us, vt)

ψ(u, v)
; u, v > 0

}

, s, t > 0 . (14)

Moreover, we need another lemma.

Lemma 5.5 For any ψ ∈ Q, the exact interpolation functorF := ( · )ψ,∞ has the ∞-property
with constant 2 and its fundamental function satisfies φF ≤ 2ψ .

Proof Fix Banach couples �X = (X0, X1) and �Y = (Y0, Y1). Routine calculations show that,
for all (x j )

N
j=1 in X0 + X1, we have

max
1≤ j≤N

K (1, t, x j ; X0, X1) ≤ K
(

1, t, (x j )
N
j=1; �N∞(X0), �

N∞(X0)
)

≤ 2 max
1≤ j≤N

K (1, t, x j ; X0, X1) .

This immediately implies thatF has the∞-propertywith constant 2. Since for anyoperator
T : �X → �Y , x ∈ X0 + X1, and n ∈ Z

K (1, 2n, T x; �Y ) ≤ K (‖T : X0 → Y0‖, 2n‖T : X1 → Y1‖, T x; �X),

the estimate φF (s, t) ≤ 2ψ(s, t) for all s, t > 0 is obvious. ��
Then for the special case of Lions-Peetre interpolation the following consequence is

immediate from Theorem 5.2 (in the form given in Remark 5.3).
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Theorem 5.6 Let ψ ∈ Q, and (γi )i∈N be a subgaussian sequence of (real or complex) random
variables with s = sg((γi )) and M = supi ‖γi‖∞ < ∞.

Then there exists a constant C = C(s, M) > 0 such that, for every Banach space E,
every λ-embedding I : E ↪→ �N∞, and every choice of x1, . . . , xK ∈ E, we have

∥
∥
∥
∥

K
∑

i=1

γi xi

∥
∥
∥
∥

(L∞,Lϕ2 )ψ,∞(E)

≤ 2λC ψ
(

1,
√

1 + log N
)

sup
1≤ j≤N

∥
∥
(

I (xi )( j)
)K

i=1

∥
∥

ψ,∞ .

As announced, we now show that Theorem 5.6 combined with Lemma 5.4 in the case
2 < r < ∞ recovers Theorem 3.6.

Indeed, to see this we use a well-known interpolation formula, which states that for all
1 ≤ p0 < p1 < ∞ and θ ∈ (0, 1)

(�p0 , �p1)θ,∞ = �p,∞,

where 1/p = (1− θ)/p0 + θ/p1 (see [5, Theorem 5.2.1]). Thus if 2 < r < ∞ and θ = 2/r ,
then the above formula yields

(�1, �2)θ,∞ = �r ′,∞,

where 1/r + 1/r ′ = 1. It is easily checked that for F = ( · )θ,∞, we have that ψF (s, t) =
s1−θ tθ and φF (s, t) ≤ s1−θ tθ for all s, t > 0.

Now observe that if θ = 2/r , then the Orlicz function �, which satisfies �−1(t) =
ψF (1,

√
t), is given by �(t) = tr for all t > 0 and so �(t) := e�(t) − 1 = etr − 1 for all

t ≥ 0. Since the functor ( · )θ,∞ by Lemma 5.5 has the ∞-property, Lemma 5.4 applies, and
so we finally recover Theorem 3.6.

We refer to [21], where it shown that for some class of functionsψ , the interpolation spaces
(�1, �2)ψ,∞ equal, up to equivalence of norms, the symmetricMarcinkiewicz sequence spaces
mw , where the weight w = (wn) only depends on ψ . Moreover, these results show that in
the scalar case the estimate in Theorem 5.6 is best possible in general, that is, the two sides
of the inequality appearing there are equivalent.

5.3 The orbit method

Now we consider the method of orbits (see [8, 27]). Given a Banach couple �A = (A0, A1),
we fix an arbitrary element a �= 0 in A0 + A1. The orbit of the element a in a Banach couple
�X is the Banach space Orb �A(a, �X) := {T a; T : �A → �X} equipped with the norm

‖x‖ := inf
{‖T : �A → �X‖; T : �A → �X , x = T a

}

.

It is easy to see that F := Orb �A(a, ·) is an exact interpolation functor. The fundamental
function φF of F is given by the formula (see [27, p. 389–390])

φF (s, t) = 1/K (s−1, t−1, a; �A), s, t > 0.

As we did for the K -method in the previous section, we now intend to analyze under which
additional assumptions Theorem 5.2 and Remark 5.3 apply to the orbit method. This in
particular means to understand when the orbit method leads to functors satisfying the ∞-
property, and when the generated fundamental functions may be estimated in a proper way.

We start with the following lemma on the ∞-property.
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Lemma 5.7 Given a Banach couple �A = (A0, A1) and a �= 0 in A0 + A1. Then, for any
Banach couple �X = (X0, X1) and each positive integer N, we have with F := Orb �A(a, ·)

�N∞(F(X0, X1)) ∼= F(�N∞(X0), �
N∞(X1)), N ∈ N,

that is, the functor Orb �A(a, ·) has the ∞-property with constant 1.

Proof It is enough to show that, for each N ∈ N,
∥
∥id : �N∞(F(X0, X1)) ↪→ F(�N∞(X0), �

N∞(X1))
∥
∥ ≤ 1.

Fix x = (x j )
N
j=1 ∈ �N∞(F( �X))with ‖x‖

�N∞(F( �X))
≤ 1. This implies that, for each 1 ≤ j ≤ N

there exists Tj : �A → �X such that x j = Tj (a) and ‖Tj : �A → �X‖ ≤ 1. Define an operator
⊕ Tj : A0 + A1 → �N∞(X0) + �N∞(X1), by

⊕ Tj (b) := (Tj b)N
j=1, b ∈ A0 + A1.

Observe that ⊕ Tj : (A0, A1) → (�N∞(X0), �
N∞(X1)) with

∥
∥ ⊕ Tj : Ai → �N∞(Xi )‖ = sup

1≤ j≤N
‖Tj : Ai → Xi‖ ≤ 1, i = 0, 1.

Since ⊕ Tj (a) = (Tj a)N
j=1 = (x j )

N
j=1 = x , it follows that

x ∈ F(�N∞(X0), �
N∞(X1))

with ‖x‖ ≤ 1. This completes the proof. ��
For a given ϕ ∈ Q, we let aϕ := (ϕ(1, 2n))n∈Z and ��∞ := (�∞, �∞(2−n)). We consider

the orbit Orb��∞(aϕ, ·), and remark that this functor appeared in [26] in a slightly different
form. In what follows this functor is denoted by

ϕ� = Orb��∞(aϕ, ·).
As explained above we need to estimate the fundamental function of this functor. To do this,
we provide a close to optimal estimate, which seems of independent interest for various other
types of interpolation problems (for ϕ ∈ Q see again (14) for the definition of ϕ).

Lemma 5.8 If ϕ ∈ Q, then for every operator T : (X0, X1) → (Y0, Y1) between Banach
couples, we have

‖T : ϕ�(X0, X1) → ϕ�(Y0, Y1)‖ ≤ 4ϕ (‖T : X0 → Y0‖, ‖T : X1 → Y1‖),
that is, the fundamental function of ϕ� satisfies φϕ�

≤ 4ϕ.

Proof For the proof we need the isometrical formula Orb �A(a, ��∞) ∼= (��∞)ψ,∞, where �A =.
(A0, A1) is a Banach couple, a �= 0 in A0 + A1, andψ(s, t) := K (s, t, a; �A) for all s, t > 0.
Moreover, we abbreviate K (1, s, a; �A) in the following by K (s, a; �A). We first prove a major
step:

∥
∥id : (��∞)ψ,∞ ↪→ Orb �A(a, ��∞)

∥
∥ ≤ 1.

Fix ξ := (ξn) ∈ (�∞, �∞(2−n))ψ,∞ with ‖ξ‖ψ,∞ ≤ 1. Then

K (2n, ξ ; �∞) ≤ K (2n, a; �A), n ∈ Z.

123



44 Page 22 of 40 A. Defant, M. Mastyło

By the Hahn–Banach theorem, for each n ∈ Z we can find a functional fn ∈ (A0 + A1)
∗

such that fn(a) = K (2n, a; �A) and

| fn(x)| ≤ K (2n, x; �A), x ∈ A0 + A1.

This inequality implies that supn∈Z ‖ fn‖A∗
0

≤ 1 and supn∈Z 2−n‖ fn‖A∗
1

≤ 1. It is easy to see
that

|ξn | ≤ K (2n, ξ ; ��∞), n ∈ Z.

From the above relations, we conclude that the mapping S given on A0 + A1 by the formula

Sx :=
( ξn

K (2n, a; a)
fn(x)

)

n∈Z, x ∈ A0 + A1,

defines a bounded operator from �A into ��∞ with ‖S : �A → ��∞‖ ≤ 1 and Sa = ξ . In
consequence ξ ∈ Orb �A(a, ��∞) with ‖ξ‖Orb ≤ 1. This proves the major step.

Since, for any operator T : �A → ��∞,

K (2n, T a; ��∞) ≤ ‖T : �A → ��∞‖ K (2n, a; �A), n ∈ Z,

the reverse continuous inclusion follows with
∥
∥id : Orb �A(a, ��∞) → (�∞, �∞(2−n))ψ,∞

∥
∥ ≤ 1.

Nowwewill use the isometrical formula shown abovewith �A := ��∞ to get that forϕ�(��∞) :=
Orb��∞(aϕ, ��∞) = �∞

( 1
ϕ(1,2n)

)

with

1

2
sup
n∈Z

|ξn |
ϕ(1, 2n)

≤ ‖ξ‖
ϕ�(��∞)

≤ 2 sup
n∈Z

|ξn |
ϕ(1, 2n)

.

To see this we recall the following easily verified formula which states that, for all ξ = (ξk) ∈
�∞ + �∞(2−k), we have

∥
∥
(

min{s, 2−k t}ξk
)‖�∞ ≤ K (s, t, ξ ; ��∞) ≤ 2

∥
∥
(

min{s, 2−k t}ξk
)∥
∥

�∞ , s, t > 0.

In particular, we get that for ψ(1, 2n) := K (2n, aϕ, ��∞) with aϕ = {ϕ(1, 2k)} the following
estimates hold:

ϕ(1, 2n) ≤ ψ(1, 2n) ≤ 2 sup
k∈Z

min
{

1,
2n

2k

}

ϕ(1, 2k) = 2ϕ(1, 2n), n ∈ Z.

Now we are ready to prove the required statement. Let T : �X → �Y be a nontrivial operator.
Fix x ∈ ϕ�( �X), and take any S : ��∞ → �X such that x = Saϕ .

For each ν ∈ Z, we consider the shift operator τν defined by τν(ξn) := (ξn+ν). Clearly,
τν : ��∞ → ��∞ with ‖τν : ��∞ → ��∞‖ = max{1, 2ν}. By the interpolation property T x ∈
ϕ�( �Y ). Then, for each k ∈ Z, we get that

‖T x‖
ϕ�( �Y )

= ‖T (Saϕ)‖
ϕ�( �Y )

= ‖T Sτ−k(τkaϕ)‖
ϕ�( �Y )

≤ max
{‖T Sτ−k : �∞ → Y0‖, ‖T Sτ−k : �∞(2−n) → Y1‖

} ‖τkaϕ‖
ϕ�(��∞)

≤ max
{‖T : X0 → Y0‖, 2−k‖T : X1 → Y1‖

} ∥
∥
(

ϕ(1, 2n+k)
)∥
∥

ϕ�(��∞)
‖S : ��∞ → �X‖ .
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Choose k such that 2k‖T : X0 → Y0‖ ≤ ‖T : X1 → Y1‖ < 2k+1‖T : X0 → Y0‖. Then
applying the estimate proved above, we obtain

∥
∥
(

ϕ(1, 2n+k)
)∥
∥

ϕ�(��∞)
≤ 2 sup

n∈Z
ϕ(1, 2n+k)

ϕ(1, 2n)
≤ 2 ϕ(1, 2k)

≤ 2 ϕ
(

1, ‖T : X1 → Y1‖/|T : X0 → Y0‖
)

.

Since S : ��∞ → �X with x = Saϕ was arbitrary, the above estimates yields

‖T x‖
ϕ�( �Y )

≤ 4 ‖T : X0 → Y0‖ ϕ
(

1, ‖T : X1 → Y1‖/‖T : X0 → Y0‖
)‖x‖

ϕ�( �Y )

= 4 ϕ
(‖T : X0 → Y0‖, ‖T : X1 → Y1‖

)‖x‖
ϕ�( �X)

.

This completes the proof. ��

5.4 The Calderón–Lozanovskii method

In order to illustrate that Lemma 5.7 and Lemma 5.8 combined with Theorem 5.2 and
Remark 5.3 indeed lead to concrete abstract KSZ -inequalities, we finally turn to the so-
called Calderón–Lozanovskii method. This interpolation method of Banach function spaces,
based on the Orbit method, is particularly adapted to the setting of Orlicz spaces.

It is well known that if ϕ : R+ × R+ → R+ is a non-vanishing, concave function, which
is continuous in each variable and positive homogeneous of degree one, then for any couple
(X0, X1) of Banach function lattices on a measure space (�,A, μ) with the Fatou property
the formula

ϕ�(X0, X1) = ϕ(X0, X1)

holds (see [26]), up to equivalence of norms with universal constants. Here ϕ(X0, X1)

denotes the Calderón–Lozanovskii space, which consists of all f ∈ L0(μ) such that
| f | ≤ λϕ(| f0|, | f1|) μ-a.e. for some λ > 0 and f j ∈ BX j , j ∈ {0, 1}. It is a Banach
lattice endowed with the norm

‖ f ‖ := inf
{

λ > 0; | f | ≤ λϕ(| f0|, | f1|), ‖ f0‖X0 ≤ 1, ‖ f1‖X1 ≤ 1
}

.

Combining the Lemmas 5.7 and 5.8 with Remark 5.3 yields the following result.

Theorem 5.9 Let ϕ ∈ Q be a concave function, and (γi )i∈N a subgaussian sequence of (real
or complex) random variables with s = sg((γi )) and M = supi ‖γi‖∞ < ∞.

Then there is a universal constant c > 0 and a constant C = C(s, M) > 0 such that, for
every Banach space E, everyλ-embedding I : E ↪→ �N∞, and every choice of x1, . . . , xK ∈ E,
we have

∥
∥
∥
∥

K
∑

i=1

γi xi

∥
∥
∥
∥

ϕ(L∞,Lϕ2 )(X)

≤ cλC ϕ
(

1,
√

1 + log N
)

sup
1≤ j≤N

∥
∥
(

I (xi )( j)
)K

i=1

∥
∥

ϕ(�1,�2)
.

We note that if the Orlicz function � is defined by �(t) = eϕ(1,
√

t) − 1 for all t ≥ 0, then
standard calculations show

ϕ(L∞, Lϕ2) = L�,

with universal constants for the equivalence of the norms. Moreover, by a well-known result
from [26] we have

ϕ(�1, �2) = �φ,
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where the Orlicz function φ is given by φ−1(t) = ϕ(t,
√

t) for all t ≥ 0.

6 Applications

In this section we apply the abstract KSZ -inequality from Theorem 3.6 (see also again (1)) to
trigonometric polynomials, as well as polynomials and multilinear forms on Banach spaces.

The formulations, which distinguishes the apparently two different cases in this theorem,
are somewhat cumbersome. This is the reasonwhy for simplicity of notation and presentation,
we in the following remark make several agreements which are used throughout the rest of
the paper.

Remark 6.1 All subgaussian sequences (γi )i∈J of random variables, with a given countable
set J of indices, are defined over a common probability measure space (�,A,P). In each of
our applications the varying index set J will be clear from the context.

The symbol Sr ′ denotes the Hilbert space �2, whenever r = 2, and the Marcinkiewicz
space �r ′,∞, whenever r ∈ (2,∞). The space Sr ′ is here understood as a Banach sequence
space on a corresponding countable set I of indices.

If the subgaussian sequence (γi )i∈J comes along with the Banach sequence space Sr ′ , r ∈
[2,∞), thenwewrite s = sg((γi )) for short, and assume additionally that M = supi ‖γi‖∞ <

∞ whenever r ∈ (2,∞).
Moreover, if in this case, the constant Cr , r ∈ [2,∞) appears, then C2 = C(s) will only

depend on s, and Cr = C(r , s, M) only on r , s, M . For appropriate samples of all that we
once again refer to Lemma 3.4 and Theorem 3.6.

The following remark is going to help to apply Theorem 3.6 in concrete cases.

Remark 6.2 Adopting the notation used inRemark 6.1, for every r ∈ [2,∞) there is a constant
Cr > 0 such that, for every Banach space E , for every λ-embedding I : E ↪→ �N∞, and for
every choice of x1, . . . , xK ∈ E , we have

∥
∥
∥
∥

K
∑

i=1

γi xi

∥
∥
∥
∥

Lϕr (E)

≤ ‖I −1‖ Cr (1 + log N )
1
r sup
1≤ j≤N

∥
∥(I (xi )( j))K

i=1

∥
∥

Sr ′ .

Indeed, by Theorem 3.6 we have

∥
∥
∥
∥

K
∑

i=1

γi xi

∥
∥
∥
∥

Lϕr (E)

≤ ‖I −1‖
∥
∥
∥
∥

( K
∑

i=1

γi I (xi )( j)

)N

j=1

∥
∥
∥
∥

Lϕr (�N∞)

≤ Cr‖I −1‖(1 + log N )
1
r sup
1≤ j≤N

∥
∥(I (xi )( j))K

i=1

∥
∥

Sr ′ .

In view of this result, for a given finite dimensional Banach space E , we are interested in
finding λ-embeddings of E into �N∞ with the best possible dimension N = N (dim E, λ).

In this section we mainly concentrate on the Banach spaces E = Tm(Tn), E = Pm(X),
and Lm(X1, . . . , Xm) (see again the preliminaries for the definitions). All coming estimates
are based on the following well-known result, which is a consequence of a volume argument
(see [41, Proposition 10, p. 74] for details).

Proposition 6.3 Let E be an n-dimensional Banach space and ε ∈ (0, 1). Then there exists
an ε-net {x j }N

j=1 in BE with N ≤ (

1 + 1
ε
)n for real E, and N ≤ (1 + 1

ε

)2n
for complex E.
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The following corollary (see [41, Proposition 13, p.76]) is an immediate consequence.

Corollary 6.4 For every n-dimensional Banach space E and for every ε ∈ (0, 1) there exists
an isomorphic embedding I : E → �N∞ with

(1 − ε)‖x‖E ≤ ‖I (x)‖�N∞ ≤ ‖x‖, x ∈ E,

where N ≤ (

1 + 1
ε

)n
if E is a real space, and N ≤ (

1 + 1
ε

)2n
if E is a complex space. In

particular, we have that I is an (1 − ε)−1-embedding.

For later use we collect another immediate consequence of Proposition 6.3.

Corollary 6.5 Let E be an n-dimensional Banach space and K ⊂ BE a compact subset. Then
for every ε ∈ (0, 1) there exists a set {B(x j , ε)}N

j=1 of balls with centers in K covering K ,

where N ≤ (

1 + 1
ε

)n
in the real and N ≤ (

1 + 1
ε
)2n in the complex case.

Tosee afirst example atwhatweaim for,wemention the following abstract KSZ -inequality
for n-dimensional Banach spaces E , which is now an immediate consequence of Theorem 3.6
(in the form of Remark 6.2) and Corollary 6.4.

Theorem 6.6 Adopting the notation used in Remark 6.1, for every r ∈ [2,∞) there is a con-
stant Cr > 0 such that for every n-dimensional Banach space E and, for every choice of
x1, . . . , xK ∈ E, we have

∥
∥
∥
∥

K
∑

i=1

γi xi

∥
∥
∥
∥

Lϕr (E)

≤ Cr n
1
r sup

‖x∗‖≤1

∥
∥(x∗(xi ))

K
i=1)

∥
∥

Sr ′ .

We point out that it is easy to show that here the exponent in the term n
1
r , 2 ≤ r < ∞ can

not be improved.

6.1 Trigonometric polynomials

Originally one of the initial motivations of this paper was to prove new general variants
of Kahane–Salem–Zygmund random polynomial inequalities, which recover the classical
known results. We point out that in their seminal Acta paper Salem and Zygmund (see [35];
[19, p. 69]) proved a theorem for one-variable random trigonometric polynomials which
states: Assume that P1, . . . , PK are trigonometric polynomials on T of degree at most m,
and γ1, . . . , γK are independent subgaussian random variables. Then, there exists a universal
constant C > 0 such that

P

({

ω ∈ �;
∥
∥
∥

N
∑

i=1

γi (ω)Pi

∥
∥
∥∞ ≥ C

( N
∑

i=1

‖Pi‖∞ logm

) 1
2
})

≤ 1

m2 .

There is a large number of remarkable applications of this result, and in order to illustrate
this, we comment two of them.

The first one, due to Odlyzko [25], is related to the problem of minimizing

M(n) = inf

{

− min
θ∈[0,2π ]

∞
∑

k=1

bk cos kθ

}

,

where the infimum is taken over all choices of bk ∈ N0 with
∑∞

k=1 bk = n.
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The Salem–Zygmund result was used in [25] to prove that given any trigonometric cosine
polynomial P(θ) = b0+∑N

k=1 bk cos kθ, θ ∈ [0, 2π ], it is possible to change its coefficients
slightly so as to make them integers without affecting the values of the polynomial too
severely. More precisely, let

R(ω, θ) =
N

∑

k=1

ξk(ω) cos kθ, θ ∈ [0, 2π],

be the random cosine polynomial given by ξk = 0 for each 1 ≤ k ≤ N , whenever bk is an
integer, and else P({ξk := �bk� − bk}) = �bk� − bk , P({ξk := �bk� − bk}) = bk − �bk�.
Then the Salem–Zygmund inequality yields that

lim
N→∞P

({‖R‖∞ ≺ (N log N )
1
2
}) = 1,

whereas the polynomial P(θ) + R(ω, θ) has always integer coefficients (except perhaps the
constant coefficient).

Applying this random modification to the classical Fejér kernel, Odlyzko proved that

M(n) = O
(

(n log n)
1
3
)

,

and this leads, in particular, to improved upper estimates for a problem of Erdös and Szekeres
[16] asking for the largest possible value of all polynomials

n
∏

k=1

(1 − zαk ), z ∈ T

on the unit circle T with α ∈ N
n
0.

The second application we wish to mention here, is related to the Hardy–Littlewoodmajo-
rant problem for trigonometric polynomials in L p(T) with 2 < p /∈ 2N. In their remarkable
paper [23], Mockenhaupt and Schlag proved a version of the Salem–Zygmund inequality
for asymmetric i.i.d. Bernoulli variables, and used it (in combination with Bourgain’s results
from [7] on �(p)-Sidon sets), to show for each N ∈ N and 0 < ρ < 1 the existence of
random sets A ⊂ {1, . . . , N } of size Nρ that satisfy, for all α > 0, the majorant inequality,

sup
|an |≤1

∥
∥
∥

∑

n∈A

anzn
∥
∥
∥

L p(T)
≤ Cα Nα

∥
∥
∥

∑

n∈A

zn
∥
∥
∥

L p(T)

with a large probability.
Let us come back to multidimensional Salem–Zygmund inequalities, first studied by

Kahane (recall that we in short write KSZ -inequalities). These inequalities have numerous
applications inmany areas ofmodern analysis as e.g. shown in [19], and also [13, 33]. Various
variants were proved over recent years, and what may be the most important one gives an
upper bound of the expectation for the normof random trigonometric polynomials. As already
indicated in the introduction, the following result is an extension of the KSZ -inequality for
random trigonometric Rademacher polynomials of degree less than or equal m (see again (6)
and (7)).

Theorem 6.7 Adopting the notation used in Remark 6.1, for every r ∈ [2,∞) there is a
constant Cr > 0 such that, for any choice of trigonometric polynomials P1, . . . , PK ∈
Tm(Tn), we have

∥
∥
∥
∥
sup
z∈Tn

∣
∣
∣

K
∑

i=1

γi Pi (z)
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr
(

n(1 + logm)
) 1

r sup
z∈Tn

∥
∥(Pi (z))

K
i=1

∥
∥

Sr ′ .
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Proof This follows from the embedding in (8) and Theorem 3.6 (via a similar argument as
in Remark 6.2). ��

The following corollary for subgaussian random polynomials is then obvious.

Corollary 6.8 Adopting the notation used in Remark 6.1, for every r ∈ [2,∞) there is
a constant Cr > 0 such that for every random trigonometric polynomial

∑

|α|≤m εαcαzα ∈
Tm(Tn), we have

∥
∥
∥
∥
sup
z∈Tn

∣
∣
∣

∑

|α|≤m

γαcαzα
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr
(

n(1 + logm)
) 1

r
∥
∥(cα)|α|≤m

∥
∥

Sr ′ .

6.2 Polynomials in Banach spaces

In recent years many different types of extensions of the KSZ -inequality (7) were obtained,
where the supremum is taken over various Reinhard domains R ⊂ C

n (e.g., the unit ball B�n
p

of the Banach space �n
p , 1 ≤ p < ∞ instead of the n-dimensional torus Tn).

Extending results from [6, 11, 12], Bayart in [4] estimates the expectation of the norm of
an m-homogeneous random Rademacher polynomial

P(ω, z) =
∑

|α|=m

εα(ω)cαzα

on an arbitrary n-dimensional complex Banach space Xn = (Cn, ‖ · ‖). It is shown that,
given r ∈ [2,∞),

E

(

sup
z∈BXn

∣
∣P(·, z)

∣
∣

)

≤ Cr
(

n(1 + logm)
) 1

r sup
|α|=m

|cα|
(

α!
m!

) 1
r ′

sup
z∈BXn

( n
∑

i=1

|zk |r ′
) m

r ′
,

where Cr > 0 is a constant only depending on r .
To prove results of this type, Bayart uses two different methods. The first method is

based on Khintchine-type inequalities for Rademacher processes, and the second relies on
controlling increments of aRademacher process in anOrlicz space, and in this case an entropy
argument is used.

We mention that Bayart applied his results in the study of multidimensional Bohr radii,
as well as unconditionality in Banach spaces of homogenous polynomials; all this is also
collected in the recentmonograph [13]. Finally, we recall that [14, 22] have several extensions
of Bayart’s results—two articles depending heavily on abstract interpolation theory.

In the following theorem, based on the abstract KSZ -inequality from Theorem 3.6, we
extend several of these results—in particular those obtained by Bayart’s first method.

Theorem 6.9 Adopting the notation used in Remark 6.1, for every r ∈ [2,∞) there is a con-
stant Cr > 0 such that for every m ∈ N0, n ∈ N, every complex n-dimensional Banach space
X, and every choice of polynomials P1, . . . , PK ∈ Pm(X), we have

∥
∥
∥
∥
sup

z∈BX

∣
∣
∣

K
∑

i=1

γi Pi (z)
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr
(

n(1 + logm)
) 1

r sup
z∈BX

∥
∥(Pi (z))

K
i=1

∥
∥

Sr ′ .

We start the proof with another definition. Given a real or complex Banach space X and
a compact set K ⊂ BX , we say that K satisfies a Markov–Fréchet inequality whenever there
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is an exponent ν ≥ 0, and a constant M > 0 such that, for every P ∈ P(X), we have

sup
z∈K

‖∇ P(z)‖X∗ ≤ M(degP)ν sup
z∈K

|P(z)|,

where ∇ P(z) ∈ X∗ denotes the Fréchet derivative of P in z ∈ K . If this inequality only
holds for a subclass P of P(X), then we say that K satisfies a Markov-Fréchet inequality for
P with exponent ν and constant M .

Lemma 6.10 Let X be an n-dimensional Banach space (real or complex), and K ⊂ BX

a convex and compact set, which satisfies a Markov–Fréchet inequality with exponent ν

and constant M. Then for each m ∈ N there exists a subset F ⊂ K such that, for every
P ∈ Pm(X), we have

‖P‖K ≤ 2 sup
z∈F

|P(z)‖F ,

with card F ≤ N, where N = (

1 + 2 Mmν
)n

in the real case and N = (

1 + 2 Mmν
)2n

in
the complex case. In other words the Banach space Pm(X), 2-embeds into �N∞.

Proof We assume that X is complex, and take P ∈ Pm(X) (the real case follows the same
way). Then for z1, z2 ∈ K we obtain, using the fact that K is convex and satisfies a Markov–
Fréchet inequality,

|P(z1) − P(z2)| =
∣
∣
∣
∣

∫ 1

0

d

dt
P

(

t z1 + (1 − t)z2
)

dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

(

(∇ P)
(

t z1 + (1 − t)z2
))

(z1 − z2) dt

∣
∣
∣
∣

≤ Mmν‖P‖[z1,z2] ‖z1 − z2‖X ≤ Mmν‖P‖K ‖z1 − z2‖X .

Applying Corollary 6.5 with ε := 1
2 Mmν , we conclude that there is a finite set F ⊂ K with

card F ≤ (1 + 2Mmν)2n such that

K ⊂
⋃

u∈F

BX (u, ε).

Then, for every z ∈ K there is v ∈ F with ‖z − v‖ ≤ ε, which yields

|P(z)| ≤ |P(v)| + |P(z) − P(v)| ≤ sup
u∈F

|P(u)| + 1

2
‖P‖K ,

and the proof is complete. ��
When does the unit ball BX of a complex Banach space X itself satisfy a Markov–Fréchet

inequality? For later use, we collect a few results in this direction, and start with the following
result due to Harris [18, Corollary 3].

Lemma 6.11 Let X be a complex Banach space. Then BX satisfies a Markov–Fréchet
inequality with constant M = e and exponent ν = 1.

For our purposes it will be enough to know that this result holds with exponent ν = 2,
and for this weaker fact we include a self-contained proof.

Proof of Lemma 6.11 with exponent ν = 2. Take P ∈ P(X) with m = deg P , and
consider its Taylor expansion P = ∑m

k=0 Pk with Pk ∈ Pk(X) (see, e.g., [13, 15.4]). For
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each 1 ≤ k ≤ m denote by P̌k the unique symmetric m-linear form on X associated to Pk .
Then by polarization (see, e.g., [13, (15.18)]), for each 2 ≤ k ≤ n and for all z, h ∈ BX , we
have

|(∇ Pk(z))(h)| = k|P̌k
(

z, . . . , z, h
)| ≤ k

( k

k − 1

)k−1‖Pk‖BX ,

and hence

sup
z∈BX

‖∇ Pk(z)‖X∗ ≤ ek‖Pk‖BX .

This combined with the Cauchy inequality (see, e.g., [13, Proposition 15.33]) yields

sup
z∈BX

‖∇ P(z)‖X∗ ≤
m

∑

k=1

sup
z∈BX

‖∇ Pk(z)‖X∗

≤
m

∑

k=1

ke‖Pk‖BX ≤ em2‖P‖BX ,

and so the required estimate follows.
Finally, we are ready to give the

Proof of Theorem 6.9 Consider the 2-embedding of the space E = Pm(X) into �N∞ proved in
Lemma 6.10. Then Theorem 6.9 is an immediate consequence of Theorem 3.6 (in the form
of Remark 6.2) observing that every z ∈ BX defines a norm one functional x∗ ∈ E∗ by
x∗(P) = P(z). ��

Lemma 6.11 is a result on complex Banach spaces X . For real X the proof of Lemma 6.11
does not work, since then no Cauchy inequality with constant 1 is available, that is, the
projection which assigns to each polynomial its k-th Taylor polynomial is not contractive on
Pm(X).

However, applying the idea of the preceding proof to homogeneous polynomials only
and using the ’real polarization estimate’ of Harris from [18, Corollary 7], we get, in the
homogeneous case, the following real variant of Lemma 6.11.

Lemma 6.12 Let X be a real Banach space. Then BX satisfies a Markov–Fréchet inequality
for all homogeneous polynomials with constant M = √

e and exponent ν = 1/2.

Remark 6.13 Lemma 6.12 combined with Lemma 6.10 shows that Theorem 6.9 holds for
real Banach spaces X and a real sequence (γi ) of subgaussian random variables if we replace
the space Pm(X) by its subspace of all m-homogeneous polynomials.

Next we present another result which may be of interest. To state it, we recall that for
every convex and compact set C ⊂ R

n the minimal width of C is given by

w(C) = min{w(u); ‖u‖2 = 1},
where w(u) is the width of C in the direction of the normal vector u ∈ R

n, ‖u‖2 = 1.

Theorem 6.14 Adopting the notation used in Remark 6.1 together with the additional assump-
tion that all subgaussians γi are real, for every r ∈ [2,∞) there is a constant Cr > 0 such
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that, for every convex and compact subset C in R
n with non-empty interior, and every choice

of polynomials P1, . . . , PK of degree ≤ m on R
n, we have

∥
∥
∥
∥
sup
x∈C

∣
∣
∣

K
∑

i=1

γi Pi (x)

∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr

(

n
(

1 + log
( 8m2

w(C)

))) 1
r

sup
x∈B�n

2

∥
∥(Pi (x))K

i=1

∥
∥

Sr ′ .

Proof This result is a consequence of Theorem 3.6 in combination with Lemma 6.10, since
a remarkable result due to Wilhelmsen [40, Theorem 3.1] states that a convex and compact
subset C of the real Hilbert space �n

2 with non-empty interior satisfies a Markov–Fréchet
inequality with constant M = 4/w(C) and exponent ν = 2. ��

Fixing a basis in X , that is looking at X = (Cn, ‖ · ‖), we finally (like in Corollary 6.8)
list another two corollaries of Theorem 6.9 for subgaussian random polynomials.

Corollary 6.15 Adopting the notation used in Remark 6.1, for every r ∈ [2,∞) there is
a constant Cr > 0 such that for every Banach space X = (Cn, ‖ · ‖), and every random
polynomial

∑

|α|≤m γαcαzα ∈ Pm(X), we have

∥
∥
∥
∥
sup

z∈BX

∣
∣
∣

∑

|α|≤m

γαcαzα
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr
(

n(1 + logm)
) 1

r sup
z∈BX

∥
∥
(

cαzα
)

|α|≤m

∥
∥

Sr ′ .

We remark that for Xn = �n
p with 1 ≤ p ≤ ∞, we have (see, e.g., [15, Lemma 1.38])

sup
z∈B�n

p

∥
∥
(

cαzα
)

|α|≤m

∥
∥

Sr ′ ≤ sup
|α|≤m

(
αα

|α||α|

) 1
p ∥
∥
(

cα

)

|α|≤m

∥
∥

Sr ′ .

We finish showing that Corollary 6.15 gives a considerable extension of Bayart’s result
from [4, Theorem 3.1].

Corollary 6.16 Adopting the notation used in Remark 6.1, for every r ∈ [2,∞) there is
a constant Cr > 0 such that, for every Banach space X = (Cn, ‖ · ‖) and every random
polynomial

∑

|α|≤m γαcαzα ∈ Pm(X), we have

∥
∥
∥
∥
sup

z∈BX

∣
∣
∣

∑

|α|≤m

γαcαzα
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr
(

n(1 + logm)
) 1

r

( m
∑

k=0

sup
|α|=k

|cα|r ′
α!

k! sup
z∈BX

( n
∑

i=1

|zi |r ′
)k) 1

r ′
.

Proof In view of Corollary 6.15, all we have to show is that for 2 ≤ r < ∞ and z ∈ C
n

(
∑

|α|≤m

|cαzα|r ′
) 1

r ′
≤

( m
∑

k=0

sup
|α|=k

|cα|r ′
α!

k! sup
z∈BX

( n
∑

i=1

|zi |r ′
)k) 1

r ′
,

and hence we check that for each k ∈ {1, . . . , m}
∑

|α|=k

|cαzα|r ′ ≤ sup
|α|=k

|cα|r ′
α!

k! sup
z∈BX

( n
∑

i=1

|zi |r ′
)k

.
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To understand this we need a bit more of notation. Following [4] or [13], for each positive
integers m and n, we define

M(k, n) := {1, . . . , n}k ,

J (k, n) := {j = ( j1, . . . , jk) ∈ M(k, n); j1 ≤ . . . ≤ jk} .

We consider on M(k, n) the equivalence relation: i ∼ j if there is a permutation σ on
{1, . . . , k} such that (i1, . . . , ik) = (iσ(1), . . . , iσ(k)). The equivalence class of i ∈ M(k, n)

is denoted by [i], and its cardinality by |[i]|. Obviously there is a canonical bijection between
J (k, n) and the set of all multi-indices α ∈ N

n
0 with |α| = k, and if j is associated with α,

then |[j]| = k!/α! . Then
∑

j∈J (k,n)

|cjzj|r ′ ≤ sup
j∈J (k,n)

|cj|r ′

|[j]|
∑

j∈J (k,n)

|[j]||zj|r ′

= sup
j∈J (k,n)

|cj|r ′

|[j]|
∑

j∈J (k,n)

∑

i∈[j]
|zi|r ′

= sup
j∈J (k,n)

|cj|r ′

|[j]|
∑

i∈M(k,n)

|zi|r ′ = sup
j∈J (k,n)

|cj|r ′

|[j]|
( n

∑

k=1

|zk |r ′
)k

,

which is exactly what we were looking for. ��

The following result on homogeneous polynomials on �n
p is of special interest. Given

1 ≤ p ≤ ∞, we use the notation r(p) := max{p′, 2}.

Corollary 6.17 Adopting the notation used in Remark 6.1, for every 1 < p ≤ ∞ there is
a constant Cr(p) = C(p) > 0 such that, for every m-homogeneous random polynomial
∑

|α|=m γαzα on �n
p, we have

∥
∥
∥
∥

sup
z∈B�n

p

∣
∣
∣

∑

|α|=m

γαzα
∣
∣
∣

∥
∥
∥
∥

Lϕr(p)

≤ Cr(p)

(

n(1 + logm)
) 1

r(p) nm max{ 12− 1
p ,0}

.

In addition, fixing m and assuming that the subgaussians γα are normal Gaussian,
Rademacher or Steinhaus variables, provided r(p) = 2, and Rademacher or Steinhaus
variables, whenever 1 ≤ r(p) < ∞ is arbitrary, the preceding estimate is asymptotically
optimal in the sense that

∥
∥
∥
∥

sup
z∈B�n

p

∣
∣
∣

∑

|α|=m

γαzα
∣
∣
∣

∥
∥
∥
∥

Lϕr(p)

� n
1

r(p)
+m max{ 12− 1

p ,0}
,

up to constants which only depend on m and p but not on n.

Proof For the first statement we apply Corollary 6.16 to r = r(p), and recall that by Hölder’s
inequality

sup
z∈B�n

p

( n
∑

i=1

|zi |r ′
)1/r ′

= nmax{ 1
r ′ − 1

p ,0}
.
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To see the optimality in the case of Rademacher random variables εα , note first that for
every ω

∥
∥
∥

n
∑

k=1

zk

∥
∥
∥

m

B�n
p

≤
∥
∥
∥

∑

|α|=m

m!
α! εα(ω)εα(ω)zα

∥
∥
∥

B�n
p

≤ m!χ(m, �n
p)

∥
∥
∥

∑

|α|=m

εα(ω)zα
∥
∥
∥

B�n
p

,

where χ(m, �n
p) stands for the unconditional basis constant of the basis sequence formed

by all monomials zα (for α ∈ N
n
0 with |α| = m) in the Banach space of m-homogeneous

polynomials on �n
p . But it is well-known that

χ(m, �n
p) � n(m−1)

(

1− 1
min{p,2}

)

,

where the constants only depend on m and p (see, e.g., [13, Corollary 19.8 ]) . This gives

nm(1− 1
p )n−(m−1)

(

1− 1
min{p,2}

)

≺
∥
∥
∥

∑

|α|=m

εα(ω)zα
∥
∥
∥

B�n
p

.

Taking norms in Lϕr(p)
leads to the desired lower bound for Rademacher random variables.

For Steinhaus and Gaussian variables, note that in these cases Lϕr(p)
-averages are dominated

by the corresponding Rademacher average. ��

6.3 Multilinear forms in Banach spaces

We here apply our techniques to spaces of multilinear forms on finite dimensional Banach
spaces, and our main contribution is as follows.

Theorem 6.18 Adopting the notation used in Remark 6.1, for every r ∈ [2,∞) there is
a constant Cr > 0 such that, for every choice of finite dimensional (real or complex)
Banach spaces X j with dim X j = n j , 1 ≤ j ≤ m, and m-linear mappings L1, . . . , L K ∈
Lm(X1, . . . , Xm), we have

∥
∥
∥
∥

sup
(z1,...,zm )∈BX1×···×Xm

∣
∣
∣

K
∑

i=1

γi Li (z1, . . . , zm)

∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr

( m
∑

j=1

n j (1 + logm)

) 1
r

sup
(z1,...,zm )∈BX1×···×Xm

∥
∥(Li (z1, . . . , zm))K

i=1

∥
∥

Sr ′ .

Our strategy for the proof is exactly as before, we start with a multilinear analog of
Lemma 6.10.

Lemma 6.19 Let X j with dim X j = n j , 1 ≤ j ≤ m be finite dimensional (real or complex)
Banach spaces. Then there is a subset F ⊂ ∏m

j=1 BX j of cardinality

card(F) ≤
m

∏

j=1

(

1 + 2m
)2n j

such that for every L ∈ Lm(X1, . . . , Xm),

‖L‖∞ ≤ 2 sup
(z1,...,zm )∈F

|L(z1, . . . , zm)|.
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The proof is again based on Corollary 6.5, hence, if all Banach spaces Xi are real, we may
replace the exponents 2n j by n j .

Proof For L ∈ Lm(X1, . . . , Xm) and z j , v j ∈ BX j for each 1 ≤ j ≤ m, we have

|L(z1, . . . , zm) − L(v1, . . . , vm)| ≤
m

∑

k=1

L(z1, . . . , zk−1, zk − vk, vk+1, . . . , vm),

and hence

|L(z1, . . . , zm) − L(v1, . . . , vm)| ≤ m max
1≤ j≤m

‖z j − v j‖ ‖L‖∞.

By Corollary 6.5, for each 1 ≤ j ≤ m there is Fj ⊂ BX j with card Fj ≤ (1 + 2m)2n j such
that

BX j ⊂
⋃

v∈Fj

BX j

(

v,
1

2m

)

.

Then for every (z1, . . . , zm) ∈ BX1 × · · · × BXm there is some (v1, . . . , vm) ∈ F :=
F1 × · · · × Fm with max1≤ j≤m ‖z j − v j‖ ≤ 1

2m , and hence

|L(z1, . . . , zm)|
≤ |L(z1, . . . , zm) − L(v1, . . . , vm)| + |L(v1, . . . , vm)| ≤ 1

2
‖L‖∞ + sup

u∈F
|L(u)| .

Since card F ≤ ∏m
j=1

(

1 + 2m
)2n j , the conclusion follows. ��

Proof of Theorem 6.18 Consider the 2-embedding of E := Lm(X1, . . . , Xm) in �N∞ proved
in Lemma 6.19. Then Theorem 6.18 is an immediate consequence of Theorem 3.6 (in the
form given in Remark 6.2) . ��

The following immediate corollary extends Bayart’s result from [4, Theorem 3.4]. Denote
by M the union of all index sets M(m, n) := {1, . . . , n}m with m, n ∈ N. Moreover, for
m, n1, . . . , nm ∈ N, we denote J(n1, . . . , nm) = ∏m

j=1{1, . . . , n j }.

Corollary 6.20 Using for the index set J = M the notation of Remark 6.1, for every r ∈
[2,∞) there is a constant Cr > 0 such that for every m-linear random mapping

∑

j∈J
γj(ω) cj z1( j1) · · · zm( jm), ω ∈ �

on the product X1 × · · · × Xm of Banach spaces X j := (Kn j , ‖ · ‖ j ), 1 ≤ j ≤ m, we have

∥
∥
∥
∥

sup
(z1,...,zm )∈BX1×···×Xm

∣
∣
∣
∣

∑

j∈J
γj cj z1( j1) · · · zm( jm)

∣
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr

( m
∑

j=1

n j (1 + logm)

) 1
r

sup
j∈J

|cj|
m

∏

j=1

sup
z j ∈BX j

( n j
∑

k=1

|z j (k)|r ′
) 1

r ′
.
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In the final part of this section we evaluate our results for the special case of m-linear
mappings defined on products �

n1
p1 × · · · × �

nm
pm . The results are multilinear versions of

Corollary 6.17. Given p := (p1, . . . , pm) ∈ [1,∞]m ,

r(p) := min
{

max{2, p′
k}; 1 ≤ k ≤ m

} ∈ [2,∞].
The following result was proved by Albuquerque and Rezende in [2, Proposition 2.3 and
Theorem 2.4]: Assume that m, n1, . . . , nm ∈ N. Then there are signs (εj)j∈J(n1,...,nm ), and
an m-linear mapping A on �

n1
p1 × · · · × �

nm
pm given by

A(z1, . . . , zm) :=
∑

j∈J(n1,...,nm )

εj z1( j1) · · · zm( jm)

for all (z1, . . . , zm) ∈ �
n1
p1 × · · · × �

nm
pm such that

‖A‖ ≤ C
2

r(p)
m

( m
∑

j=1

n j

) 1
r(p)

m
∏

j=1

n
max{ 1

r(p)′ − 1
p j

,0}
j , (15)

where Cm = (m!)1−max{1/2,1/max{p1,...,pm }}√log(1 + 4m). In [28, Theorem 1.1] this result
was recently analysed by Pellegrino, Serrano and Silva showing that in fact, we may replace
(15) by

‖A‖ ≤ C
2

r(p)
m

( m
∑

j=1

n j

) 1
r(p)

m
∏

j=1

n
max{ 12− 1

p j
,0}

j , (16)

an estimate which in the important case n = n1 = . . . = nm for fixed m turns out to be
asymptotically correct in n.

All this is covered by the following more general result.

Theorem 6.21 Using for the index set J = M the notation of Remark 6.1, and let
p = (p1, . . . , pm) ∈ [1,∞]m, not all p j ’s equal 1. Then there is a constant Cr(p) =
C(p1, . . . , pm) > 0 such that for every m-linear random mapping L on �

n1
p1 × · · · × �

nm
pm

given by

L(ω, z1, . . . , zm) :=
∑

j∈J(n1,...,nm )

γj(ω) cj z1( j1) · · · zm( jm), ω ∈ �

for all (z1, . . . , zm) ∈ �
n1
p1 × · · · × �

nm
pm , we have

∥
∥
∥
∥

sup
(z1,...,zm )∈B

�
n1
p1

×···×�
nm
pm

∣
∣L(·, z1, . . . , zm)

∥
∥
∥
∥

Lϕr(p)

≤ Cr(p)(1 + logm)
1

r(p) sup
j∈J(n1,...,nm )

( m
∑

j=1

n j

) 1
r(p)

m
∏

j=1

n
max{ 12− 1

p j
,0}

j .

In addition, assuming that m is fixed, n = n1 = . . . = nm, and all subgaussians γj are
normal Gaussian, Rademacher or Steinhaus variables, provided r(p) = 2, and Rademacher
or Steinhaus variables, whenever 1 ≤ r(p) ≤ ∞ is arbitrary, we have that the preceding
estimate is optimal in the sense that

∥
∥
∥
∥

sup
z j ∈B

�
n j
p j

1≤ j≤m

∣
∣
∣
∣

∑

j∈J(n1,...,nm )

γj z1( j1) · · · zm( jm)

∣
∣
∣
∣

∥
∥
∥
∥

Lϕr(p)

� n
1

r(p)
+∑m

j=1 max{ 12− 1
p j

,0}
,
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where the constants depend only on m and the p j ’s but not on n.

Proof First estimate: Recall that by Hölder’s inequality for each j ∈ {1, . . . , m}

sup
z j ∈B

�
n j
p j

( n j
∑

k=1

|z j (k)|r(p)′
) 1

r(p)′ = n
max{ 1

r(p)′ − 1
p j

,0}
j .

Now apply Corollary 6.20 with r = r(p) ∈ [2,∞) to get that
∥
∥
∥
∥

sup
(z1,...,zm )∈B

�
n1
p1

×···×�
nm
pm

∣
∣L(·, z1, . . . , zm)

∣
∣

∥
∥
∥
∥

Lϕr(p)

≤ Cr(p)(1 + logm)
1

r(p) sup
j∈J(n1,...,nm )

( m
∑

j=1

n j

) 1
r(p)

m
∏

j=1

n
max{ 1

r(p)′ − 1
p j

,0}
j .

This leads to the desired estimate. Indeed, without loss of generality we may assume that
p1 ≤ . . . ≤ pm , and hence we consider the following two cases:

(1) pm < 2 ,
(2) p1 ≤ . . . ≤ pd < 2 ≤ pd+1 ≤ . . . ≤ pm .

Clearly, in case (1) we have r(p) = p′
m and so r(p)′ = pm . Since p1 ≤ . . . ≤ pm < 2,

m
∏

j=1

n
max{ 1

r(p)′ − 1
p j

,0}
j = 1 =

m
∏

j=1

n
max{ 12− 1

p j
,0}

j ,

so the required estimate follows.
It remains to handle case (2): Observe that in this case r(p) = 2 and, for all ω ∈ � we

have

f (ω) :=
∥
∥
∥L(ω, ·) :

d
∏

j=1

�n
p j

×
m

∏

j=d+1

�n
p j

→ K

∥
∥
∥

≤ g(ω) :=
∥
∥
∥L(ω, ·) :

d
∏

j=1

�n
p j

×
m

∏

j=d+1

�n
2 → K

∥
∥
∥ .

Now to finish observe that r(p1, . . . , pd , 2, . . . , 2) = 2 yields
∥
∥ f (ω)

∥
∥

Lϕ2
≤ ∥

∥g(ω)
∥
∥

Lϕ2

≤ C(p1,...,pd ,2,...,2)(1 + logm)
1
2

( m
∑

j=1

n j

) 1
2

m
∏

j=1

n
max{ 12− 1

p j
,0}

j .

Second estimate: Let us first look at Rademacher variables εj. Then it is proved in [28, Section
2.2.] that for all unimodular m-linear forms given by

L(ω, z1, . . . , zm) :=
∑

j∈M(m,n)

εj(ω) z1( j1) · · · zm( jm), ω ∈ �,

we have that
∥
∥
∥L(ω, ·) :

m
∏

j=1

�n
p j

→ K

∥
∥
∥ ≥ Dmn

1
r(p)

+∑m
j=1 max{ 12− 1

p j
,0}

,
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where the constant Dm > 0 only depends on m. Taking norms in Lϕr(p)
, finishes the argu-

ment for this case. But vector-valued Lϕr(p)
-averages taken with respect to Steinhaus or

Gaussian random variables dominate the corresponding Lϕr(p)
-averages for Rademacher

random variables which completes the argument. ��

6.4 Randomized Dirichlet polynomials

This section is inspired by Queffélec’s paper [32]. Based on Bohr’s vision of ordinary
Dirichlet series and results from the preceding sections, our goal is to provide some new
KSZ -inequalities for randomized Dirichlet polynomials.

Inequalities of this type recently play a crucial role within the study of Dirichlet series—
see in particular the probabilistic proofs of the Bohr-Bohnenblust-Hille theorem on Bohr’s
absolute convergence problem from [13, Remark 7.3] and [33, Theorem 5.4.2]. For more
applications in this direction, see e.g., [13, 17, 19, 39].

Given a finite subset A ⊂ N, we denote by DA the |A|-dimensional linear space of all
Dirichlet polynomials D defined by

D(s) =
∑

n∈A

ann−s, s ∈ C,

with complex coefficients an , n ∈ A. Since each such Dirichlet polynomial obviously defines
a bounded andholomorphic functionon the right half-plane inC, the spaceDA forms aBanach
space whenever it is equipped with the norm

‖D‖∞ = sup
Res>0

∣
∣
∣

N
∑

n=1

ann−s
∣
∣
∣ = sup

t∈R

∣
∣
∣

N
∑

n=1

ann−i t
∣
∣
∣.

We note that the particular cases an = 1 and an = (−1)n play a crucial role within the study
of the Riemann zeta-function ζ : C \ {1} → C. In fact, in recent times, techniques related to
random inequalities for Dirichlet polynomials have gained more and more importance. This
may be illustrated by a deep classical result of Turán [38], which states that the truth of the
famous Lindelöf’s conjecture:

ζ
(

1/2 + i t
) = Oε(t

ε), t ∈ R,

with an arbitrarily small ε > 0, is equivalent to the validity of the inequality:

∣
∣
∣
∣

N
∑

n=1

(−1)n

nit

∣
∣
∣
∣
≤ C N

1
2+ε(2 + |t |)ε, t ∈ R

for an arbitrarily small ε > 0 and with C depending on ε.
In order to formulate our main result we need two characteristics of the finite set A ⊂ N

defining DA. For x ≥ 2 we denote (as usual) by π(x) the number of all primes in the
interval [2, x], and by �(n) the number of prime divisors of n ∈ N counted accorded to their
multiplicities. We define

�(A) := max
n∈A

π(n) and �(A) := max
n∈A

�(n).

Theorem 6.22 Adopting the notation used in Remark 6.1, for every r ∈ [2,∞) there is
a constant Cr > 0 such that for any finite set A ⊂ N and any choice of finitely many
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Dirichlet polynomials D1, . . . , DK ∈ DA, we have
∥
∥
∥
∥
sup
t∈R

∣
∣
∣

K
∑

j=1

γ j D j (t)
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr

(

1 + �(A)
(

1 + 20 log�(A)
))

1
r
sup
t∈R

∥
∥(D j (t))

K
j=1

∥
∥

Sr ′ .

Before we give the proof of this result, we state an immediate consequence of independent
interest.

Corollary 6.23 Adopting the notation used in Remark 6.1, for every r ∈ [2,∞) there is
a constant Cr > 0 such that, for every Dirichlet random polynomial

∑

n∈A γnann−i t in DA,
we have

∥
∥
∥
∥
sup
t∈R

∣
∣
∣

∑

n∈A

γnann−i t
∣
∣
∣

∥
∥
∥
∥

Lϕr

≤ Cr

(

1 + �(A)
(

1 + 20 log�(A)
))

1
r ∥
∥(an)n∈A

∥
∥

Sr ′ .

As mentioned, our proof of Theorem 6.22 is based on ’Bohr’s point of view’ (carefully
explained in [13, 32, 33]). More precisely, in our situation we need to embedDA into a certain
space of trigonometric polynomials, controlling the degree as well as the number of variables
of the polynomials in this space. To achieve this, we consider the following so-called Bohr
lift:

LA : DA → T�(A)(T
�(A)),

∑

n∈A

ann−s �→
∑

α:pα∈A

apα zα.

By (a particular case of) Kronecker’s theorem on Diophantine approximation we know that
the continuous homomorphism

β : R → T
�(A), t → (

pi t
k

)�(A)

k=1

has dense range (see, e.g., [13, Proposition 3.4] or [33, Section 2.2]). This implies that LA is
an isometry into.

Moreover, we repeat from (8) that there is a finite subset F ⊂ T
�(A) with cardinality

card(F) ≤ N = (1 + 20�(A))�(A) such that

I : T�(A)(T
�(A)) ↪→ �N∞ , I (P) := (P(zi ))i∈F ,

is a 2-isomorphic embedding.Combining all thisweobtain the following embedding theorem.

Proposition 6.24 For every finite subset A ⊂ N there is a subset F ⊂ T
�(A) with cardinality

card(F) ≤ N = (1 + 20�(A))�(A)

I ◦ LA : DA ↪→ �N∞ , D �→
((

L(D)(z)
))

z∈F

is a 2-embedding.

Now we easily obtain the proof of Theorem 6.22.

Proof of Theorem 6.22 The proof is, in fact, immediate from Theorem 6.7 (or Remark 6.2),
taking into account that by Kronecker’s theorem we have

sup
z∈F

∥
∥
∥

(

(I ◦ L)
(

D j
)

(z)
)K

j=1

∥
∥
∥

Sr ′
≤ sup

z∈T�(A)

∥
∥
∥

(

(I ◦ L)
(

D j
)

(z)
)K

j=1

∥
∥
∥

Sr ′

= sup
t∈R

∥
∥
∥

(

(I ◦ L)
(

D j
)

(β(t))
)K

j=1

∥
∥
∥

Sr ′
≤ sup

t∈R

∥
∥
∥

(

D j (t)
)K

j=1

∥
∥
∥

Sr ′
.

��
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In the following examples we consider several interesting subclasses of all Dirichlet
polynomials of length N , each given by a particular finite subset A ⊂ N:

Example 1 For N ∈ N and 2 ≤ x ≤ N define

A(N , x) := {1 ≤ n ≤ N ; π(n) ≤ x}.
Then DA(N ,x) is the space of all Dirichlet polynomials of length N , which only ’depend on
π(x) primes’. Using the remarkably sharp estimates for π(x) due to Costa Periera [10]:

x log 2

log x
< π(x), x ≥ 5 and π(x) <

5x

3 log x
, x > 1 ,

we see that

�(A(N , x)) ≤ π(x) <
5x

3 log x
.

Moreover, since for any 1 ≤ n = pα ≤ N with α ∈ N
π(x) we have that 2|α| ≤ N , we get

�(A(N , x)) ≤ log N

log 2
.

With these estimates for �(A(N , x)) and �(A(N , x)) our KSZ -inequalities from Theo-
rem 6.22 extend Queffélec’s results from [33, Theorem 5.3.5] considerably.

Let us look at the special case x = N , and denote byDN the Banach space of all Dirichlet
polynomials of length N , in other words, DN = DA(N ) with A(N ) = {1, . . . , N }. Then
�(A(N )) < 5N

3 log N and �(A(N )) ≤ log N
log 2 . It is worth noting that in the case N = pn , the

nth prime, we have �(AN ) = n.

Example 2 Given N , m ∈ N, denote by B(N , m) the set of all natural numbers 1 ≤ n ≤ N
which are ’m-homogeneous’ in the sense that for all n = pα , we have |α| = m (each n has
less than m prime divisors, counted according to their multiplicities). Then DB(N ,m) is the
space of all m-homogeneous Dirichlet polynomials of length N . As above, we have

�(B(N , m)) ≤ π(N ) <
5N

3 log N
,

and obviously

�(B(N , m)) = m.

Example 3 A special case of the preceding result (N = pN and m = 1) is given by C(N ) =
{p1, . . . , pN }. Then DC(N ) consists of a Dirichlet polynomials

∑N
n=1 apnp

−s
n , and

�(C(N )) = N and �(C(N )) = 1.

In passing, we note that by Bohr’s inequality the linear bijection

�N
1 → DC(N ), (an)N

n=1 �→
N

∑

n=1

apnp
−s
n

is isometric ( [13, Corollary 4.3] and [33, Theorem 4.4.1]).

We close the paper with following interpolation estimate for randomized Dirichlet
polynomials which is a consequence of Proposition 6.24 and Remark 5.3.
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Theorem 6.25 Let (γi )i∈N be a subgaussian sequence of (real or complex) random variables
with s = sg((γi )) and M = supi ‖γi‖∞ < ∞. Suppose that an exact interpolation functor
F has the ∞-property with constant δ.

Then there is a constant C = C(s, M) > 0 such that, for any finite set A ⊂ N and any
choice of finitely many Dirichlet polynomials D1, . . . , DK ∈ DA, we have

∥
∥
∥
∥
sup
t∈R

∣
∣
∣

K
∑

j=1

γ j D j (t)
∣
∣
∣

∥
∥
∥
∥F(L∞,Lϕ2 )

≤ 2 δCφF
(

1,
√

1 + �(A)
(

1 + 20 log�(A)
)

sup
t∈R

∥
∥(D j (t))

K
j=1

∥
∥F(�1,�2)

,

where φF is the fundamental function of F .
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