
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. (2023) 117:24
https://doi.org/10.1007/s13398-022-01360-z

ORIG INAL PAPER

Some Korovkin type approximation applications of power
series methods

Havva Uluçay1 ·Mehmet Ünver2 · Dilek Söylemez3

Received: 24 August 2021 / Accepted: 16 November 2022 / Published online: 24 November 2022
© The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2022

Abstract
Korovkin type approximation via summability methods is one of the recent interests of the
mathematical analysis. In this paper, we prove some Korovkin type approximation theorems
in Lq [a, b], the space of all measurable real valued qth power Lebesgue integrable functions
defined on [a, b] for q ≥ 1, and C[a, b], the space of all continuous real valued functions
defined on [a, b], via statistical convergence with respect to power series (summability)
methods, integral summability methods and μ-statistical convergence of the power series
transforms of positive linear operators. We also show with examples that the results obtained
in the present paper are stronger than some existing approximation theorems in the literature.

Keywords Power series method · P-Statistical convergence · Integral summability ·
Korovkin type approximation theorem

Mathematics Subject Classification 40C10 · 40G15 · 41A36

1 Introduction

The classical Korovkin type approximation theory deals with the convergence of sequences
of positive linear operators [2, 25]. Korovkin [25] presented a simple criterion in order to
decide for a sequence of positive linear operators

(
L j

)
on C[a, b], the space of all con-

tinuous real functions defined on [a, b], whether (L j f ) converges uniformly to f for all
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f ∈ C[a, b]. Besides many researchers have extended Korovkin’s theorem by considering
other function spaces or considering summability methods whenever the sequence of positive
linear operators does not converge in the ordinary sense with respect to the structure of the
space (see, e.g., [1, 3, 5–7, 9, 13, 16, 18, 21–23, 27–29, 31–34, 36, 39, 40, 43]). Actually, the
main motivation of the summability theory is to make a non-convergent sequence or series
converge in some more general senses [10].

We denote the space of all bounded real functions defined on [a, b] by B[a, b]. It is well
known that the spaces C[a, b] and B[a, b] are Banach spaces with the norm ‖·‖∞ defined
by

‖ f ‖∞ = sup
t∈[a,b]

| f (t)| .

Let 1 ≤ q < ∞ and let Lq [a, b] denote the Banach space of all measurable real valued qth
power Lebesgue integrable functions defined on [a, b] with the norm ‖·‖q defined by

‖ f ‖q :=
⎛

⎝
b∫

a

| f (t)|q dt
⎞

⎠

1/q

.

In this paper we give some Korovkin type approximation theorems via power series methods,
P-statistical convergence and integral summability methods in Lq [a, b] and C[a, b].

A power series method is a function theoretical type method and methods of function
theoretical type are exceptionally appropriate for applications connected with analytic con-
tinuation and numerical solutions of systems of linear equations (see, [10], Sects. 5.2 and
5.3). Power series methods are also very useful in Korovkin type approximation theory.
First Korovkin type approximation theorem via Abel convergence, a particular power series
method, was given by Unver [40]. Following this study many authors have given Korovkin
type approximation results with power series methods (see, e.g., [4, 6, 8, 12, 15, 35, 37–39,
41]).

Definition 1 Let (p j ) be a non-negative real sequence such that p0 > 0 and assume that

corresponding power series p(t) :=
∑∞

j=0
p j t j has radius of convergence R with 0 < R ≤

∞. Let

Cp :=
{
f : (−R, R) → R

∣∣∣∣ lim
0<t→R−

1

p(t)
f (t) exists

}

and

CPp :=
⎧
⎨

⎩
x = (x j )

∣∣∣∣∣∣
px (t) :=

∞∑

j=0

p j x j t
j has radius of convergence ≥ R and px ∈ CP

⎫
⎬

⎭
.

The functional P − lim : CPp → R (for short P) defined by

P − lim x = lim
0<t→R−

1

p(t)

∞∑

j=0

p j t
j x j

is called a power series method and x is said to be P-convergent if the limit in the right hand
side exists (see, e.g., [10]).
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Let P be a power series method. P is said to be regular if P − lim x = L provided that
lim x = L . A power series method is regular if and only if for any non-negative integer j ,

lim0<t→R−
p j t j

p(t)
= 0 (see, e.g., [10]). Throughout this paper we assume that 0 ≤ t < R. P

is said to be Borel type if R = ∞ and it is said to be non-polynomial if p is not a polynomial,
that is, pk �= 0 for infinitely many non-negative integer k. A Borel type power series method
is regular if and only if it is non-polynomial [10].

If we take p j = 1

j ! for any non-negative integer j in Definition 1, then we have p(t) = et

with radius of convergence R = ∞. In this case, the corresponding regular power series
method is called the Borel method B. In other words, a real sequence x = (x j ) is said to be

Borel convergent to a real number, L , if the series
∑∞

j=0

1

j ! t
j x j is convergent for any t ≥ 0,

and

lim
0<t→∞

1

et

∞∑

j=0

1

j ! t
j x j = L.

If we take p j = 1 for any non-negative integer j in Definition 1, then we have p(t) = 1

1 − t
with radius of convergence R = 1. In this case, the corresponding regular power series
method is called the Abel method , i.e., a real sequence x = (x j ) is said to be Abel convergent

to a real number, L , if the series
∑∞

j=0
t j x j is convergent for any 0 ≤ t < 1, and

lim
0<t→1−(1 − t)

∞∑

j=0

t j x j = L.

The concept of statistical convergence that is introduced by Fast [19] and its generaliza-
tion A-statistical convergence where A is an infinite matrix are interesting concepts of the
summability theory and they have many applications in Korovkin type approximation theory.
A real sequence x = (x j ) is said to be statistically convergent to a real number L if for any
ε > 0

lim
n→∞

1

n + 1

∣∣{ j ≤ n : ∣∣x j − L
∣∣ ≥ ε

}∣∣ = 0

where vertical bars denote the cardinality (see, e.g., [20, 24, 26, 30]) andwewrite st−lim x =
L .

In Sect. 2, we prove a Korovkin type approximation theorem in Lq [a, b] via applying
P-statistical convergence. The concept of P-statistical convergence has been defined in [42]
where P stands for a regular power series method. Now, we recall this concept.

Definition 2 [42] Let P be a regular power series method. A real sequence x = (x j ) is said
to P-statistically convergent to a real number L if for any ε > 0

lim
t→R−

1

p(t)

∑

j :|x j−L|≥ε

p j t
j = 0. (1.1)

In this case, we write stP − lim x = L .

In Sect. 3, we prove a Korovkin type approximation theorem by applying integral summa-
bility methods to Borel type power series transforms of positive linear operators on C[a, b].
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Let K : [0,∞) × [0,∞) → R be a Lebesgue measurable function such that K (s, •) is
Lebesgue integrable for any s ∈ [0,∞). If for a Lebesgue measurable function f and a real
number L

lim
s→∞

∞∫

0

K (s, t) f (t)dt = L

whenever lim
t→∞ f (t) = L , then K is called a regular integral summability method [11].

In Sect. 4, we prove a Korovkin type approximation theorem by applying μ-statistical
convergence to power series transforms of positive linear operators in Lq [a, b]. For this
purpose, we need the following definitions.

Definition 3 [11] An f -measure μ is a monotone non-negative finitely additive set function
defined on a collection of subsets � of [0,∞) which has the following properties:
(i) For any bounded B ∈ �, μ(B) = 0,
(ii) μ([0,∞)) = 1,
(iii) If A is Lebesgue measurable, A ⊂ B and μ(B) = 0, then A ∈ � and μ(A) = 0.

Definition 4 [11] Let f be a real function defined on [0,∞). If for any ε > o

μ ({t : | f (t) − L| ≥ ε}) = 0,

then f is said to be μ-statistically convergent to real number L . In this case, we write
stμ − lim f (t) = L .

2 Approximation via P-statistical convergence on Lq[a,b]
In this section, we prove a Korovkin type approximation theorem in Lq [a, b] by using P-
statistical convergence. A Korovkin type theorem in Lq [a, b] given by Gadjiev and Orhan
[21] via statistical convergence. Further Korovkin type approximation results in Lq [a, b]
may be found in [17, 28, 38]. First of all, we recall the classical case of these theorems [17].

Theorem 1 [17] Let
(
Tj

)
be a sequence of positive linear operators from Lq [a, b] into

Lq [a, b] such that the sequence
∥∥Tj

∥∥ := ∥∥Tj
∥∥
Lq [a,b]→Lq [a,b] is uniformly bounded. Then

for any f ∈ Lq [a, b]
lim ||Tj f − f ||q = 0

if and only if for i = 0, 1, 2

lim ||Tj ei − ei ||q = 0

where ei (t) = t i for i = 0, 1, 2.

Now , we are ready to present the following Korovkin type approximation theorem in
Lq [a, b] via P-statistical convergence. A version of this theorem in C[a, b] can be found in
[42].

Theorem 2 Let P be a regular power series method and let
(
Tj

)
be a sequence of posi-

tive linear operators from Lq [a, b] into Lq [a, b] such that the sequence
∥∥Tj

∥∥ is uniformly
bounded. Then for any f ∈ Lq [a, b] we have

stP − lim ||Tj f − f ||q = 0
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if and only if for i = 0, 1, 2

stP − lim ||Tj ei − ei ||q = 0.

Proof The necessity is trivial. To prove the sufficiency let f ∈ Lq [a, b]. Given ε > 0, from
the Lusin’s theorem, there exists a continuous function ϕ on [a, b] such that || f − ϕ||q < ε.
Since the function ϕ is continuous there exist δ > 0 such that

|ϕ(t) − ϕ(x)| < ε

for any t, x ∈ [a, b]whenever |t−x | < δ. Moreover, from the hypothesis there exists M > 0
such that sup

j
||Tj || ≤ M . If we follow the technique in [17], then we get for any non-negative

integer j that

||Tj f − f ||q ≤ ε(2 + M) +
(

ε + C + 2C

δ2
d2

)
||Tj e0 − e0||q

+ 4C

δ2
d||Tj e1 − e1||q + 2C

δ2
||Tj e2 − e2||q

where d := max {|a|, |b|} and C is a uniform bound of ϕ. Now since ε > 0 is arbitrary, by
the assumptions we have

stP − lim ||Tj f − f ||q = 0.


�
In Example 1 we show that Theorem 2 is stronger than Theorem 1.

Example 1 Let α = (α j ) be a non-negative divergent sequence that is B-statistically conver-
gent to 1. Here B stands for Borel power series method. Consider the sequence of Bernstein
operators (L j ) where for any positive integer j and f ∈ L1[0, 1]

L j ( f ; x) =
j∑

k=0

f

(
k

j

) (
j

k

)
xk(1 − x) j−k .

It is known that for any positive integer j

L j (e0; x) = 1, (2.1)

L j (e1; x) = x, (2.2)

and

L j (e2; x) = x2 + x − x2

j
. (2.3)

Let us define a sequence of positive linear operators (Tj ) by Tj := α j L j for any non-negative
integer j where L0 = 0. It is obvious that (Tj ) does not satisfy the conditions of Theorem 1.
On the other hand, we obtain from (2.1), (2.2) and (2.3) that

∥∥Tj e0 − e0
∥∥
1 = ∣∣α j − 1

∣∣ ‖e0‖1 , (2.4)
∥∥Tj e1 − e1

∥∥
1 = ∣∣α j − 1

∣∣ ‖e1‖1 (2.5)

and
∥∥Tj e2 − e2

∥∥
1 ≤ ∣∣α j − 1

∣∣ ‖e2‖1 + α j

j
‖e1 − e2‖1 (2.6)
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for j = 1, 2, ... It is obvious from the hypothesis, (2.4) and (2.5) that

stB − lim
∥
∥Tj e0 − e0

∥
∥
1 = 0

and

stB − lim
∥
∥Tj e1 − e1

∥
∥
1 = 0.

Moreover regularity of B-statistical convergence yields that stB − lim
1

j
= 0 which implies

stB − lim
α j

j
= 0. Hence, taking into account stB − lim α j = 1 in (2.6) we obtain

stB − lim
∥∥Tj e2 − e2

∥∥
1 = 0.

So from Theorem 2 we conclude that

stB − lim
∥
∥Tj f − f

∥
∥
1 = 0

for any f ∈ L1[0, 1].

3 Approximation of Borel type power series transforms in C[a,b] via
integral summability

In this section, we deal with the sequences of positive linear operators that are not convergent
with a Borel-type power series method. If a divergent sequence of positive linear operators
is still not convergent with a Borel-type power series method, it can be made convergent by
considering integral summability method which is a function-to-function method.

Let P be a non-polynomial Borel-type power series method and let T = (
Tj

)
be a

sequence of positive linear operators from C[a, b] to B[a, b] such that

H := sup
t>0

1

p(t)

∞∑

j=0

∥∥Tj e0
∥∥∞ p j t

j < ∞. (3.1)

Then for any t > 0 the operator V t
P,T : C[a, b] → B[a, b] defined by

(V t
P,T f

)
(x) = 1

p(t)

∞∑

j=0

Tj ( f ; x)p j t
j (3.2)

is a positive linear operator. Note that V t
P,T is well-defined from (3.1) for each t > 0. Since

point-wise (indeed, here the series converges uniformly) limit of a sequence of measurable

functions is measurable we obtain that for any x ∈ [a, b] the function
(
V t
P,T f

)
(x) is a

measurable function of the variable t . Now we can define a new positive linear operator by
using integral summability. Let K is a non-negative regular integral summability method.
For any s ∈ [0,∞) the operator Ks

p,T : C[a, b] → B[a, b] defined by

(
Ks

p,T f
)

(x) :=
∞∫

0

K (s, t)
(V t

P,T f
)
(x) dt (3.3)
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is again a positive linear operator. As K is non-negative and regular we can write from [11]
that

lim
s→∞

∞∫

0

K (s, t)dt = 1. (3.4)

On the other hand, we have for any s ∈ [0,∞) that
∥
∥
∥Ks

p,T

∥
∥
∥ :=

∥
∥
∥Ks

p,T

∥
∥
∥
C[a,b]→B[a,b]

= sup
‖ f ‖=1

sup
x∈[a,b]

∣
∣
∣
∣
∣
∣

∞∫

0

K (s, t)
(V t

P,T f
)
(x) dt

∣
∣
∣
∣
∣
∣

≤ H

∞∫

0

K (s, t)dt < ∞ (3.5)

which implies that the operator Ks
p,T is well-defined and bounded. Besides, from (3.4) and

(3.5) it is easy to see that

lim sup
s→∞

∥∥∥Ks
p,T

∥∥∥ ≤ H .

Hence, if a sequence of positive linear operator does not convergent with a Borel type power
series method then we can use integral summability.

Theorem 3 Let P be a non-polynomial Borel-type power series method and let
(
Tj

)
be a

sequence of positive linear operators from C[a, b] to B[a, b] that satisfies (3.1). Then for
any f ∈ C[a, b] we have

lim
s→∞

∥∥∥Ks
p,T f − f

∥∥∥∞ = 0 (3.6)

if and only if for any i = 0, 1, 2

lim
s→∞

∥∥∥Ks
p,T ei − ei

∥∥∥∞ = 0. (3.7)

Proof We trivially have (3.6) implies (3.7). Now let
{
Tj

}
be a sequence of positive linear

operators from C[a, b] into B[a, b] that satisfies (3.1) and let f ∈ C[a, b]. From the conti-
nuity of f , for every ε > 0 there exists a real number δ > 0 such that | f (t) − f (x)| < ε

whenever t, x ∈ [a, b] satisfying |x − t | < δ. On the other hand we obtain

| f (t) − f (x)| ≤ | f (t)| + | f (x)|
<

2 ‖ f ‖∞
δ2

(t − x)2

for all t, x ∈ [a, b] satisfying |x − t | ≥ δ. Hence, for any t, x ∈ [a, b] we have

| f (t) − f (x)| < ε + 2 ‖ f ‖∞
δ2

(t − x)2. (3.8)
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Using (3.8), as in the classical case [25] we finally have for any x ∈ [a, b] that
∣
∣
∣
(
Ks

p,T f
)

(x) − f (x)
∣
∣
∣ =

(
ε + H + 2 ‖ f ‖∞

δ2
c2

)
∣
∣
∣∣
∣
∣

∞∫

0

K (s, y)
(V t

P,T e0
)
(x) dy − e0(x)

∣
∣
∣∣
∣
∣

≤ 4c ‖ f ‖∞
δ2

∣
∣
∣
∣
∣
∣

∞∫

0

K (s, y)
(V t

P,T e1
)
(x) dy − e1(x)

∣
∣
∣
∣
∣
∣

+ 2 ‖ f ‖∞
δ2

∣
∣
∣
∣
∣
∣

∞∫

0

K (s, y)
(V t

P,T e2
)
(x) dy − e2(x)

∣
∣
∣
∣
∣
∣

(3.9)

where c = max {|a| , |b|}. Now, (3.8), (3.9) and hypothesis prove (3.6). 
�
The regularities of P and K imply that if the conditions of classical Korovkin theorem

hold, then (3.7) is satisfied. Example 2 shows that the converse of this fact is not valid in
general. Hence, Theorem 3 is stronger than classical Korovkin theorem. It also proves that
Theorem 3 is stronger than Korovkin type approximation theorem of [38].

Example 2 Let α = (α j ) be a sequence which is Abel convergent to 1 and which is not Borel
convergent and consider the sequence of Bernstein operators (L j ) recalled in Example 1.
Define the sequence of positive linear operators (Tj ) to be Tj = α j L j . Asα is not convergent,
(2.1) implies that (Tj e0) is not uniformly convergent. Therefore, classical Korovkin theorem
is not applicable to the sequence (Tj ). On the other hand, since α is not Borel convergent,
again (2.1) implies that (Tj e0) is not convergent in Borel sense. Hence, theorem of [38] fails.
Now, If we consider the Abel integral summability method [11] K which is defined by

K (s, t) = 1

s
e−t/s

and the Borel power series method B, then for any s ∈ (0,∞) the operator in (3.3) turns the
operator

(Ks
B,T f )(x) = 1

s

∞∫

0

e−t/se−t

⎛

⎝
∞∑

j=0

Tj ( f ; x) t
j

j !

⎞

⎠ dt .

Using the Lebesgue Monotone Convergence Theorem and the Gamma function we have

(Ks
B,T f )(x) = 1

s + 1

∞∑

j=0

(
s

s + 1

) j

Tj ( f ; x). (3.10)

Now, if we consider the substitution of t = s

s + 1
, then we obtain 0 < t < 1, t → 1− as

s → ∞ and

1

s + 1

∞∑

j=0

(
s

s + 1

) j

Tj ( f ; x) = (1 − t)
∞∑

j=0

t j Tj ( f ; x).

Thus, from (2.1), (2.2), (2.3) and Abel convergence of α, condition (3.7) is satisfied. Hence,
we have from Theorem 1 that

lim
s→∞

∥∥Ks
B,T f − f

∥∥∞ = 0
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Fig. 1 Limit in (3.13)

for any f ∈ C[0, 1].
In Example 3 we illustrate the uniform convergence of Ks

B,T f to f ∈ C[0, 1] as
s → ∞ for particular choice of sequence of positive linear operators. Note that the sequence
of positive linear operators given in the example does not satisfy the conditions of classical
Korovkin theorem.

Example 3 Consider again the Abel integral summability method K , the Borel power series
method B and the sequence of Bernstein operators (L j ). Define the sequence of positive
linear operators (Tj ) to be

Tj ( f ; x) =
{
0, if j is perfect square or j = 0
L j ( f ; x), otherwise. (3.11)

From (2.1) and (3.10) we have

(Ks
B,T e0)(x) = 1

s + 1

⎛

⎝
∞∑

j=0

(
s

s + 1

) j

−
∞∑

k=0

(
s

s + 1

)k2
⎞

⎠ . (3.12)

It is easy to see that the first series on the right hand side converges (s+1). On the other hand,
we know that Abel convergence is stronger than and consistent with the Cesàro summability.
Therefore, theCesàro summability of the characteristic sequenceof the perfect square integers
implies (see also Fig. 1)

lim
s→∞

1

s + 1

∞∑

k=0

(
s

s + 1

)k2

= lim
q→1− (1 − q)

∞∑

k=0

qk
2

= 0. (3.13)

So, from (3.12) and (3.13) we have

lim
s→∞

∥∥Ks
B,T e0 − e0

∥∥∞ = 0.
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24 Page 10 of 14 H. Uluçay et al.

Fig. 2 Approximation of f (t) = e−t

Similarly, from (2.2) and (3.10) we obtain

(Ks
B,T e1)(x) = x

s + 1

⎛

⎝
∞∑

j=0

(
s

s + 1

) j

−
∞∑

k=0

(
s

s + 1

)k2
⎞

⎠ ,

which implies that

lim
s→∞

∥∥Ks
B,T e1 − e1

∥∥∞ = 0.

Finally, from (2.3) and (3.10) we have

(Ks
B,T e2)(x) = x2

s + 1

⎛

⎝
∞∑

j=1

(
s

s + 1

) j

−
∞∑

k=1

(
s

s + 1

)k2
⎞

⎠

+ x − x2

s + 1

⎛

⎝
∞∑

j=1

(
s

s + 1

) j 1

j
−

∞∑

k=1

(
s

s + 1

)k2 1

k2

⎞

⎠ . (3.14)

On the other hand the sequence a = (ak) defined by

ak =
{ 1

k
, k is perfect square

0, otherwise

is convergent to zero which implies its Abel convergence to zero, i.e.,

lim
q→1−(1 − q)

∞∑

k=1

qk
2 1

k2
= 0.

Hence, we have

lim
s→∞

1

s + 1

∞∑

k=1

(
s

s + 1

)k2 1

k2
= lim

q→1−(1 − q)

∞∑

k=1

qk
2 1

k2

= 0
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and from the Abel convergence of the sequence

(
1

j

)
to zero we obtain

lim
s→∞

1

s + 1

∞∑

j=1

(
s

s + 1

) j 1

j
= 0.

Therefore, we have from (3.14) that

lim
s→∞

∥
∥Ks

B,T e2 − e2
∥
∥∞ = 0.

So, the hypotheses of Theorem 3 are satisfied. Hence, we can say that

lim
s→∞

∥
∥Ks

B,T f − f
∥
∥∞ = 0

for any f ∈ C[0, 1] by Theorem 1. Figure 2 illustrates the approximation of the function

f ∈ C[0, 1] defined by f (t) = e−t with the net
(
Ks

B,T

)
.

4 Approximation of Borel type power series transforms in Lq[a,b] via
�-statistical convergence

In this section, applying μ-statistical convergence to Borel type power series transforms
of positive linear operators we get a Korovkin type approximation theorem in Lq [a, b].
Throughout this section we assume that μ is an f -measure on a collection of subsets � of
[0,∞).

Let
(
Tj

)
be a sequence of positive linear operators from Lq [a, b] into Lq [a, b] such that

H := sup
t>0

∞∑

j=0

p j‖Tj‖Lq→Lq t
j < ∞. (4.1)

Nowwe consider the operatorsV t
P,T defined by (3.2). Observe thatV t

P,T is also linear positive
operator acting from Lq [a, b] into Lq [a, b] (see, [38]).

Theorem 4 Let
(
Tj

)
be a sequence of positive linear operators from Lq [a, b] into Lq [a, b]

such that (4.1) is satisfied. Then for any f ∈ Lq [a, b] we have
stμ − lim ||V t

P,T f − f ||q = 0

if and only if

stμ − lim ||V t
P,T ei − ei ||q = 0

for i = 0, 1, 2 .

Proof The necessity is trivial. Let f ∈ Lq [a, b]. Given ε > 0, from the Lusin’s Theorem,
there exists a continuous function ϕ on [a, b] such that || f − ϕ||q < ε. Since the function ϕ

is continuous there exist δ > 0 such that

|ϕ(y) − ϕ(x)| < ε
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for any x, y ∈ [a, b] whenever |y − x | < δ. If we follow the technical in [38], then we can
write

||V t
P,T f − f ||q ≤ ε

(
2 + H

p0

)
+

(
ε + M + 2M

δ2
d2

)
||V t

P,T e0 − e0||q

+ 4M

δ2
d||V t

P,T e1 − e1||q + 2M

δ2
||V t

P,T e2 − e2||q
where d := max {|a| , |b|} and M is a uniform bound of ϕ. So from the hypothesis we
immediately conclude that

stμ − lim ||V t
P,T f − f ||q = 0.


�

5 Conclusion

Function theoretical type summabilitymethods have various applications. One of these appli-
cations is making a Korovkin type approximation with a sequence of positive linear operators
whenever the ordinary convergence of the space fails. In this paper, we prove some Korovkin
type approximation theorems by using P-statistical convergence, integral summability and
μ-statistical convergence in the spaces of C[a, b] and Lq [a, b] where P is a power series
method andμ is an f measure.We also give some examples that show that the result obtained
in this paper is stronger than some previous results.
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