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Abstract
We characterize Schatten p-class Hankel operators with general symbols acting on Bergman
spaces with exponential weights when 0 < p < ∞.
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1 Introduction

LetD be the unit disc on the complex plane. For a subharmonic function ϕ onD, the weighted
Lebesgue space L2

ϕ is the set of all measurable functions f on D such that

‖ f ‖L2
ϕ

=
⎧
⎨

⎩

∫

D

∣
∣
∣ f (z)e−ϕ(z)

∣
∣
∣
2
d A(z)

⎫
⎬

⎭

1
2

< ∞,

where d A is the usual Lebesgue area measure on D. Let H(D) be the set of all analytic
functions on D. The weighted Bergman space A2

ϕ is defined as

A2
ϕ = L2

ϕ ∩ H(D).
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In this paper, we are interested in A2
ϕ with the weight function ϕ ∈ W which was first

introduced in [15]. To describe W precisely, let C0 be the space of all continuous functions
ρ : D → (0,∞) satisfying lim|z|→1 ρ(z) = 0. The set L is defined as

L =
{

ρ : ‖ρ‖L = sup
z,w∈D,z �=w

|ρ(z) − ρ(w)|
|z − w| < ∞, ρ ∈ C0

}

.

Let L0 be the set of those ρ ∈ Lwith the property that for each ε > 0, there exists a compact
subset E ⊆ D such that |ρ(z) − ρ(w)| ≤ ε|z − w|, whenever z, w ∈ D\E . Then the weight
class W is defined as

W =
{

ϕ ∈ C2 : �ϕ > 0, and ∃ ρ ∈ L0 such that
1√
�ϕ

� ρ

}

,

where � denotes the standard Laplace operator. Here and afterward, the notation a � b
indicates that there exists some positive constant C such that C−1b ≤ a ≤ Cb.

The weight classW covers a large class of weights. There are two weight classes that are
closely related to W . One is introduced by Borichev et al. [4]. The other is introduced by
Oleinik [24] and Perel’man [25]. For simplicity, we setBDK to be theweight class considered
by Borichev et al., and set OP to be the weight class considered by Oleinik and Perel’man.
As stated in [27], there is a gap in the theory of non-radial weighted Bergman spaces in which
properties differ greatly from the radial ones. The weight class BDK is radial. However, both
the collection W and OP contain non-radial weights. For example, a non-radial weight in
W is given by

ϕ(z) = 1 + ( z+z̄
2

)2

1 − |z|2 .

As mentioned in [15], the weight class W covers BDK, but there is no inclusion relation
between the weight class W and OP .

From [15], we know that A2
ϕ is a Hilbert space, and there exists a reproducing kernel

Kz(·) = K (·, z). Furthermore, one can see that K (w, z) = K (z, w). Hence, the Bergman
projection P can be represented as

P(g)(z) =
∫

D

g(w)K (z, w)e−2ϕ(w)d A(w), ∀g ∈ L2
ϕ and z ∈ D.

Given some symbol function f , one defines the Hankel operator H f as

H f (g) = f g − P( f g).

Let C be the set of complex number and N
+ be the set of positive integers. From [15], we

know that

� =
⎧
⎨

⎩

N∑

j=1

a j K (·, z j ) : N ∈ N
+, a j ∈ C, z j ∈ D, for 1 ≤ j ≤ N

⎫
⎬

⎭

is dense in A2
ϕ . We consider those f in the symbol class S defined as

S = { f is measurable on D : f g ∈ L1
ϕ for g ∈ �

}
.

Since ||K (·, z)||L∞
ϕ

< ∞ (see [15]), P( f g)(z) is well defined for f ∈ S.
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For a bounded linear operator T : H1 → H2 between two Hilbert spaces, the singular
values s j (T ) of T are defined by

s j (T ) = inf {||T − K || : K : H1 → H2, rank K ≤ j} ,

where rank K denotes the rank of K . The operator T is compact if and only if s j (T ) → 0 as
j → ∞. For 0 < p < ∞, we say that T is in the Schatten class Sp andwrite T ∈ Sp(H1, H2)

if

||T ||pSp =
∞∑

j=1

s j (T )p < ∞.

This defines a norm when 1 ≤ p < ∞ and a quasi-norm otherwise.
In the past 50 years, a great deal of mathematical effort has been devoted to the study

of Schatten class membership of Hankel operators. Problems about this issue fall into the
following three broad categories.

For an analytic function f , one can see that H f = 0. So a natural problem is to characterize
Schatten class membership of H f̄ . In 1988, Arazy et al. [1] proved that H f̄ belongs to the
Schatten class Sp if and only if f belongs to the Besov class when 1 < p < ∞. In the case
of 0 < p ≤ 1, they showed that H f̄ ∈ Sp if and only if f is a constant. In 1993, Li [18]
extended this result to the case of strongly pseudoconvex domains. In [9], the problem of
the smallest value of p such that Hankel operators are in the Schatten p-class was studied.
In the setting of Fock space, Constantin and Ortega-Cerdà [5] obtained a characterization of
Schatten p-class Hankel operators H f̄ acting on L2(e2φ) where φ is a subharmonic function
such that�φ is a doublingmeasure. In 2013, Seip andYoussfi [30] characterized the Schatten
class membership of Hankel operator H f̄ on weighted Fock space L2(�) where � belongs
to a class of certain radial logarithmic growth functions. Bommier-Hato and Constantin [3]
generalized the result of [30] to the setting of vector-valued Hankel operators.

For a general symbol function f , the problem of simultaneous membership in Sp of H f

and H f̄ has been studied by many mathematicians. In 1991, Zhu [34] studied Schatten class
Hankel operators on the Bergman space of the unit ball and proved that H f and H f̄ are both
in the Schatten p-class if and only if the mean oscillation of f satisfies the L p condition when
2 ≤ p < ∞. Xia [31] showed that the same result holds for 1 < p < 2 in the setting of the
unit disc. In the case of weighted Bergman spaces of the unit ball, Pau [26] completely solved
this problem for all 0 < p < ∞ in terms of the behaviour of a local mean oscillation function
in 2015. Notice that Lv and Xu [22] gave a characterization using the method of global mean
oscillation for 2 ≤ p < ∞ in 1994. Miao [23] studied the same problem in the setting of
harmonic Hankel operators and obtained analogous result. In 2008, Raimondo [29] got a
characterization of joint membership of H f and H f̄ in Sp on the Bergman space of planar
domains. In the setting of Fock space, Xia and Zheng [32] characterized the simultaneous
membership in Sp of H f and H f̄ in terms of the standard deviation for 1 ≤ p < ∞. In 2011,
Isralowitz [16] showed that the same result in [32] also holds for 0 < p < 1.

The final question is characterizing the Schatten class membership of single Hankel oper-
ators. In 1992, Luecking [21] characterized the Schatten p-class of a single Hankel operator
H f for the first time on the Bergman spaces of the unit disc when 1 ≤ p < ∞. In 1996,
Lin and Rochberg [19] gave a description of Schatten class Hankel operators acting on expo-
nential Bergman spaces A2

ϕ where the weight ϕ belongs to OP when p ≥ 1. Galanopoulos
[8] solved the open case when 0 < p < 1. In the setting of Fock space, recently, Hu and
Virtanen [13] considered the Schatten p-class membership for single Hankel operators H f
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on the Fock space in C
n when 0 < p < ∞ in terms of their recently introduced notion of

integral distance to analytic functions [14].
The study of Schatten class Hankel operators plays an important role in the spectral theory

of Toeplitz operators (see, e.g., [28] and the references therein) which have wide applications
in mathematical physics. It is worth mentioning that the relevant question of Schatten class
Teoplitz operators has also been extensively studied in Fock spaces and Bergman spaces.
See, for example, [2, 17–20, 30, 33].

For a weight ϕ ∈ W , Hu and Pau [12] completely described the boundedness and com-
pactness of Hankel operators with general symbols. However, characterizing Schatten class
membership of Hankel operators with such weights remains open. In this paper, we are con-
cerned with the Schatten p-class of Hankel operators acting on weighted Bergman spaces
with ϕ ∈ W when 0 < p < ∞. ∂̄-techniques are important for our analysis. As the canonical
solution to ∂̄u = g∂̄ f , H f g is naturally connected with the ∂̄-theory. We will use Hörman-
der’s theory to obtain the L2-estimate. Another useful tool is the space of bounded distance
to analytic functions which was initiated by Luecking [21]. A number of techniques in this
paper are inspired by [8, 13, 14, 19, 21]. A crucial step in the proof of our main theorem for
0 < p < 1 is that decomposing a lattice into its diagonal part and off-diagonal part. Such
method has been previously applied in [8, 13].

Throughout the paper,C stands for some positive constant which may change from line to
line, but does not depend on functions being considered. We also give an expression A � B,
which means that there is some constant C such that A ≤ CB.

2 Preliminaries

In this section, we are going to present some lemmas that we need in the proof of our main
result. For z ∈ D and r > 0, set D(z, r) = {w : |w − z| < r} to be the Euclidean disc with
center z and radius r . For a function ρ, we will simply write

Dr (z) = D(z, rρ(z)).

Lemma 2.1 Let ρ ∈ L be positive. Then there exists a constant αρ > 0 such that

2

3
ρ(w) < ρ(z) < 2ρ(w) (2.1)

for every z ∈ D and w ∈ Dαρ (z).

Proof Set αρ = 1
2‖ρ‖L . By the definition of L, we know that

|ρ(w) − ρ(z)| ≤ ‖ρ‖L · |w − z|,
for every w, z ∈ D. Clearly, |w − z| < αρρ(z) for w ∈ Dαρ (z). It follows that, for every
z ∈ D and w ∈ Dαρ (z),

|ρ(w) − ρ(z)| <
1

2
ρ(z).

Therefore, we have

2

3
ρ(w) < ρ(z) < 2ρ(w).

The proof is complete. ��
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In what follows, we always let ρ ∈ L be fixed. So we can simply write α = αρ . We always
suppose that α is from Lemma 2.1. For our analysis, we need a covering lemma which is
almost identical to Lemma 3.1 of [6].

Lemma 2.2 Let ρ ∈ L be positive. There are positive constants α and s, depending only on
||ρ||L, such that for 0 < r ≤ α, there exists a sequence {a j }∞j=1 ⊆ D satisfying

(A) D = ∪∞
j=1D

r (a j );
(B) Dsr (a j ) ∩ Dsr (am) = ∅ for j �= m;
(C) {D2α(a j )}∞j=1 is a covering of D of finite multiplicity.

A sequence {a j }∞j=1 satisfying (A)–(C) of Lemma 2.2 will be called a (ρ, r ) lattice. The set
of (ρ, r ) lattices will be denoted by L(ρ, r). The statement (C) of Lemma 2.2 says that for
{a j }∞j=1 ∈ L(ρ, r), there exists an integer N0 such that

1 ≤
∞∑

j=1

χD2α(a j )
(z) ≤ N0, ∀z ∈ D. (2.2)

For z ∈ D, let kz = Kz/||Kz ||A2
ϕ
be the normalized reproducing kernel of A2

ϕ . The
following lemma is an easy consequence of Lemma 2.1, Theorem 3.2 in [15], and Theorem
3.3 in [15].

Lemma 2.3 Let ϕ ∈ W with 1√
�ϕ

� ρ ∈ L0. For any w ∈ D, the following statement holds

(A) Suppose r ∈ (0, α]. Then we have

|kw(z)|e−ϕ(z) � 1

ρ(w)
� 1

ρ(z)
, ∀z ∈ Dr (w); (2.3)

(B) For each positive number N, there exists a constant C such that

|kw(z)|e−ϕ(z) ≤ C
1

ρ(z)

(
min{ρ(z), ρ(w)}

|z − w|
)N

, z ∈ D. (2.4)

Lemma 2.4 (Lemma 2.4 [12]) Let ϕ ∈ W and {a j }∞j=1 be some (ρ, r)-lattice with 0 < r ≤ α.

Then for {λ j }∞j=1 ∈ l2, we have
∑∞

j=1 λ j ka j ∈ A2
ϕ with the norm estimation

∥
∥
∥
∥
∥
∥

∞∑

j=1

λ j ka j

∥
∥
∥
∥
∥
∥
L2

ϕ

≤ C
∥
∥
∥{λ j }∞j=1

∥
∥
∥
l2

.

Lemma 2.5 (Lemma 5.4 [33]) Let ρ ∈ L0, r ∈ (0, α] and k ∈ N
+. For any (ρ, r)-lattice

{a j }∞j=1 on D, we can divide it into M subsequences which satisfies that if ai and a j are two

different points in the same subsequence, then |ai − a j | ≥ 2kr min
(
ρ(ai ), ρ(a j )

)
.

Given a measurable function f on D, we define the Toeplitz operator with symbol f as

T f g(z) =
∫

D

g(w)K (z, w)e−2ϕ(w) f (w)d A(w), ∀g ∈ A2
ϕ and z ∈ D.

Clearly, the Teoplitz operator T f is well defined when f ∈ �. The averaging function f̂r
with respect to f is defined to be

f̂r (z) = 1

|Dr (z)|
∫

Dr (z)

f (w)d A(w).
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where |Dr (z)| is the Lebesgue measure of Dr (z). The following result on Schatten class
Toeplitz operators is useful in our analysis. One can find its proof in [33].

Theorem 2.1 Let ϕ ∈ W with 1√
�ϕ

� ρ ∈ L0, 0 < p < ∞, r ∈ (0, α], and f be a positive

borel measurable function such that the Toeplitz operator T f is well defined. Then T f belongs
to Sp if and only if the function f̂r is in L p(D, ρ−2d A).

Lemma 2.6 Let 0 < p < ∞, r ∈ (0, α] and f be a measurable function. Then we have
∫

D

|g(z)e−ϕ(z)|p| f (z)|d A(z) �
∫

D

|g(z)e−ϕ(z)|p |̂ f |r (z)d A(z) (2.5)

for g ∈ H(D).

Proof Similar to that of Lemma 2.4 in [11]. ��
In our study, we need some results for 0 < p < 1.

Lemma 2.7 ([7]) Let A and B be two bounded operators. Then

||AB||pSp ≤ ||B||p||A||pSp and ||AB||pSp ≤ ||A||p||B||pSp (2.6)

for every p ∈ (0, 1).

Lemma 2.8 ([7]) Let A = A1 + A2 be the sum of two finite-rank operators on a Hilbert
space. Then for every p ∈ (0, 1), we have

||A||pSp ≤ C
(
||A1||pSp + ||A2||pSp

)
, (2.7)

where the constant C depends only on p.

3 Schatten class membership of Hankel operators

In this section, we are going to give our characterization of Schatten class Hankel operators.
Let L2

loc(D) be the collection of square locally Lebesgue integrable functions on D. For
f ∈ L2

loc(D) and z ∈ D, we define Gr ( f )(z) as

Gr ( f )(z) = inf

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

1

|Dr (z)|
∫

Dr (z)

| f − h|2d A
⎞

⎟
⎠

1/2

: h ∈ H(Dr (z))

⎫
⎪⎬

⎪⎭
,

where H(Dr (z)) is the set of all analytic functions on Dr (z). For z ∈ D, f ∈ L2(Dr (z), d A)

and r > 0, we define the square mean of | f | over Dr (z) by setting

Mr ( f )(z) =
⎛

⎜
⎝

1

|Dr (z)|
∫

Dr (z)

| f |2d A
⎞

⎟
⎠

1/2

.

Lemma 3.1 For z ∈ D, f ∈ L2(Dr (z), d A) and r > 0, there exists some h ∈ H(Dr (z))
such that

Mr ( f − h)(z) = Gr ( f )(z). (3.1)
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Proof The approach is similar to Lemma 3.3 of [14] and we omit the proof. ��
For z ∈ D and r > 0, let

A2(Dr (z), d A) = L2(Dr (z), d A) ∩ H(Dr (z))

be the Bergman space over Dr (z). Denote by Bz,r the corresponding Bergman projection
induced by the Bergman kernel of A2(Dr (z), d A). It is well known that Bz,r is bounded and
Bz,r h = h for h ∈ A2(Dr (z), d A). The following lemma is a special case of Lemma 3.4 in
[14] (where it is proved for all 1 ≤ q < ∞ while our case is just q = 2). We prove it using
a different method that is both easier and more natural for operators on the Hilbert space.

Lemma 3.2 For z ∈ D, f ∈ L2(Dr (z), d A) and r > 0, there holds

Mr ( f − Bz,r ( f ))(z) � Gr ( f )(z). (3.2)

Proof Choose h as in Lemma 3.1. Then h ∈ A2(Dr (z), d A) since f ∈ L2
loc(D). Thus

Bz,r h = h. By the triangle inequality and Lemma 3.1, we have

Mr ( f − Bz,r ( f ))(z) ≤ Mr ( f − h)(z) + Mr (h − Bz,r ( f ))(z)

= Mr ( f − h)(z) + Mr (Bz,r (h − f ))(z)

� Mr ( f − h)(z) = Gr ( f )(z).

Obviously, Gr ( f )(z) ≤ Mr ( f − Bz,r ( f ))(z). ��
Given r > 0, let {a j }∞j=1 be a (ρ, r/2)-lattice, set Jz = { j : z ∈ Dr (a j )} and denote by
|Jz | the cardinal number of Jz . By (2.2), 1 ≤ |Jz | ≤ N . If {ψ j }∞j=1 is a partition of unity

subordinate to {Dr/2(a j )}∞j=1. Precisely,

ψ j ∈ C∞(D), suppψ j ⊆ Dr/2(a j ), |∂̄ψ j | ≤ Cρ(a j )
−1,

∞∑

j=1

ψ j = 1, ψ j ≥ 0.

Clearly, by (2.1)

ρ(z)|∂̄ψ j (z)| ≤ C, ∀ j = 1, 2, . . . and z ∈ D.

Given f ∈ L2
loc(D), for j = 1, 2, . . . , pick h j ∈ H(Dr (a j )) as in Lemma 3.1 such that

Mr ( f − h j ) = Gr ( f )(a j ).

Define

f1 =
∞∑

j=1

h jψ j and f2 = f − f1. (3.3)

Notice that f1(z) is a finite sum for every z ∈ D and hence well defined since suppψ j ⊆
Dr/2(a j ) ⊆ Dr (a j ).

Lemma 3.3 For f ∈ L2
loc(D) and r > 0, decomposing f = f1 + f2 as in (3.3), we have

f1 ∈ C1(D) and

|ρ(z)∂̄ f1(z)| + Mr/4(∂̄ f1)(z) + Mr/4( f2)(z) ≤ CG7r ( f )(z) (3.4)

for z ∈ D, where the constant C is independent of f .
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Proof Since h j ∈ H(Dr (a j )) and ψ j ∈ C∞(D), we have f1 ∈ C1(D). Given z ∈ D,
without loss of generality, we may assume z ∈ Dr/2(a1). For z ∈ Dr/2(a j ), we
have Dr/4(z) ⊆ Dr (a j ). Since |h j − h1|2 is subharmonic on Dr/4(z) ⊆ Dr (a j ) and
∑∞

j=1 ∂̄ψ j (z) = ∂̄
∑∞

j=1 ψ j (z) = ∂̄1 = 0, we obtain

|ρ(z)∂̄ f1(z)| =
∣
∣
∣
∣
∣
∣

∞∑

j=1

(h j (z) − h1(z))ρ(z)∂̄ψ j (z)

∣
∣
∣
∣
∣
∣

≤
∞∑

j=1

|h j (z) − h1(z)||ρ(z)∂̄ψ j (z)|

≤ C
∑

{ j :z∈Dr/2(a j )}
Mr/4(h j − h1)(z)

≤ C
∑

{ j :z∈Dr/2(a j )}
[Mr/4( f − h j )(z) + Mr/4( f − h1)(z)]

�
∑

{ j :z∈Dr/2(a j )}
Gr ( f )(a j ).

For z ∈ Dr/2(a j ), we have Dr (a j ) ⊆ D3r (z). Therefore,

Gr ( f )(a j ) ≤ CG3r ( f )(z).

Consequently,

|ρ(z)∂̄ f1(z)| ≤ CG3r ( f )(z). (3.5)

For w ∈ Dr/4(z), we have D3r (w) ⊆ D7r (z). Thus, integrating on both sides of (3.5)

Mr/4(ρ∂̄ f1)(z)
2 ≤ Cρ(z)−2

∫

Dr/4(z)

G3r ( f )(w)2d A(w)

≤ CG7r ( f )(z)
2. (3.6)

Next, we prove the part with regard to f2. By the Cauchy–Schwarz inequality, we get

| f2(z)|2 ≤
∞∑

j=1

| f (z) − h j (z)|2ψ j (z).

Hence,

Mr/4( f2)(z)
2 ≤

∞∑

j=1

1

|Dr/4(z)|
∫

Dr/4(z)

| f − h j |2ψ j d A

≤ C
∑

{ j :z∈Dr/2(a j )}

1

|Dr (a j )|
∫

Dr (a j )

| f − h j |2d A

= C
∑

{ j :z∈Dr (a j )}
Gr ( f )(a j )

2

≤ CG3r ( f )(z)
2.

Since G3r ( f )(z) ≤ CG7r ( f )(z), the result follows immediately. ��
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Lemma 3.4 Let 0 < p < ∞ and f ∈ L2
loc(D). Then the following statements are equivalent:

(A) Mr ( f )(z) ∈ L p(D, ρ−2d A) for some (or any) r ≤ α;
(B) The sequence {Mδ( f )(a j )}∞j=1 ∈ l p for some (or any) (ρ, δ)-lattice {a j }∞j=1 with δ ≤ α.

Moreover, we have

||Mr ( f )||L p(D,ρ−2d A) � ||{Mδ( f )(a j )}∞j=1||l p . (3.7)

Proof This lemma is essentially proved in Proposition 2.4 of [33] when the L p condition is
given by L p(D, d A). The proof is easy to modify. ��

Let z ∈ D, r > 0. Consider the space L2(Dr (z), e−2ϕd A) := L2
ϕ(Dr (z)) and the

closed subspace of analytic functions A2
ϕ(Dr (z)). Let Pz,r be the projection of L2

ϕ(Dr (z))

onto A2
ϕ(Dr (z)). Given a function f ∈ L2

ϕ(Dr (z)), we extend Pz,r ( f ) to D by setting
Pz,r ( f )(w) = 0 for w ∈ D \ Dr (z). For f , g ∈ L2

ϕ , we have f , g ∈ L2
ϕ(Dr (z)). So there

holds P2
z,r ( f ) = Pz,r ( f ) and 〈 f , Pz,r (g)〉 = 〈Pz,r ( f ), g〉 for f , g ∈ L2

ϕ . Moreover, if
h ∈ A2

ϕ , then Pz,r (h) = χDr (z)h. Hence, for h ∈ A2
ϕ and g ∈ L2

ϕ , we get

〈h, χDr (z)g〉 = 〈χDr (z)h, g〉 = 〈Pz,r (h), g〉 = 〈h, Pz,r (g)〉.
or equivalently,

〈h, χDr (z)g − Pz,r (g)〉 = 0. (3.8)

Lemma 3.5 Let f , g ∈ L2
ϕ . Then

〈 f − P( f ), χDr (z)g − Pz,r (g)〉 = 〈χDr (z) f − Pz,r ( f ), χDr (z)g − Pz,r (g)〉.
Proof The approach is similar to Lemma 5.1 of [13] and we omit the detail here. ��
From [12], we know that H f : A2

ϕ → L2
ϕ is bounded if and only if Gr ( f ) ∈ L∞. As a

corollary, Gr ( f ) ∈ L∞ is independent of the choice of r . Furthermore, ||Gr ( f )||L∞ �
||Gδ( f )||L∞ . If Gr ( f ) ∈ L∞, by lemma (3.3), one can get

||Mr ( f2)||L∞ � ||Gr ( f )||L∞ . (3.9)

In the study of Schatten class Hankel operators, it is natural to consider the symbol function
to be f ∈ S such that Gr ( f ) ∈ L∞.

Lemma 3.6 Let ϕ ∈ W with 1√
�ϕ

� ρ ∈ L0, 0 < p < ∞, r ∈ (0, α], and f ∈ S such that

Gr ( f ) ∈ L∞, and decompose f = f1 + f2 as in Lemma 3.3. Then H f1 and H f2 are well
defined on �. Furthermore,

||H f1(g)||L2
ϕ

� ||gρ∂̄ f1||L2
ϕ
and ||H f2(g)||L2

ϕ
� || f2g||L2

ϕ
.

Proof Recall that

f̂r (z) = 1

|Dr (z)|
∫

Dr (z)

f (w)d A(w).

Obviously, by definition,

Mr ( f )(z)
2 = |̂ f |2r (z). (3.10)
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Applying Hölder’s inequality, we have

|̂ f |r (z) ≤ Mr ( f )(z). (3.11)

Applying Lemma 2.6 with p = 1, (3.9) and (3.11), we get
∫

D

|gKz |e−2ϕ | f2|d A �
∫

D

|gKz |e−2ϕ |̂ f2|r d A

�
∫

D

|gKz |e−2ϕMr ( f2)d A

� ||Gr ( f )||L∞||g||L2
ϕ
||Kz ||L2

ϕ
< ∞.

This implies that H f2 is well defined on �. Since H f1 = H f − H f2 , H f1 is also well defined
on �.

By the boundedness of P , we get

||H f2(g)||2L2
ϕ

≤ ||I − P||2 · || f2g||2L2
ϕ

Since ∂̄(H f1(g)) = g∂̄ f1 and H f1(g)⊥A2
ϕ , H f1(g) is the canonical solution of the equation

∂̄u = g∂̄ f1. By Hörmander’s L2 estimation (see Lemma 4.4.1 of [10]), there holds

||H f1(g)||L2
ϕ

≤ ||u||L2
ϕ

� ||gρ∂̄ f1||L2
ϕ

The proof is complete. ��
Theorem 3.1 Let ϕ ∈ W with 1√

�ϕ
� ρ ∈ L0, 0 < p < ∞, 0 < r ≤ α, and f ∈ S such

that Gr ( f ) ∈ L∞. Then the following statements are equivalent:

(A) The Hankel operator H f belongs to Sp;
(B) For some (or any) (ρ,r )-lattice {a j }∞j=1, {Gr ( f )(a j )}∞j=1 ∈ l p;

(C) For some (or any) r , Gr ( f ) ∈ L p(D, ρ−2d A);
(D) For some (or any) r , f admits a decomposition f = f1 + f2 such that f1 ∈ C1(D),

Mr (ρ∂̄ f1) ∈ L p(D, ρ−2d A), and Mr ( f2) ∈ L p(D, ρ−2d A);
(E) For some (or any) (ρ,r )-lattice {a j }∞j=1, f admits a decomposition f = f1 + f2 such

that f1 ∈ C1(D), {Mr (ρ∂̄ f1)(a j )}∞j=1 ∈ l p and {Mr ( f2)(a j )}∞j=1 ∈ l p.

Proof (A) ⇒ (B): We deal with the case 0 < p < 1 first. Let {a j }∞j=1 be a (ρ, r )-lattice as in
Lemma 2.2. Let k ∈ N

+ and k > 5. According to Lemma 2.5, we can partition the sequence
into M subsequences which satisfies that if ai and a j are two different points in the same
subsequence, then

|ai − a j | ≥ 2kr min(ρ(ai ), ρ(a j )). (3.12)

It is enough to work with one of these sequences. Without loss of generality, we assume the
sequence to be {a j }∞j=1. Let J be any finite subcollection of N

+. Suppose {e j }∞j=1 to be an

orthonormal set of A2
ϕ . Set

A(g) =
∑

j∈J

〈g, e j 〉ka j , g ∈ A2
ϕ.
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By Parseval’s equality,

∑

j∈J

|〈g, e j 〉|2 ≤
∞∑

j=1

|〈g, e j 〉|2 = ||g||2ϕ.

According to Lemma 2.4, A is bounded on A2
ϕ .

If ||χDr (a j )gka j − Pa j ,r (gka j )||L2
ϕ

�= 0, we can set

h j = χDr (a j ) f ka j − Pa j ,r ( f ka j )

||χDr (a j ) f ka j − Pa j ,r ( f ka j )||L2
ϕ

,

otherwise we set h j = 0. Clearly ||h j ||2ϕ ≤ 1. If Dr (ai ) ∩ Dr (a j ) �= ∅, then we have
|ai − a j | ≤ 3r min{ρ(ai ), ρ(a j )}. If we choose k to be sufficiently large, then there must
holds Dr (ai ) ∩ Dr (a j ) = ∅ for i �= j . Therefore 〈hi , h j 〉 = 0 for i �= j .
For a series of nonnegative numbers {c j } j∈J , we define an operator B as

B(g) =
∑

j∈J

c j 〈g, h j 〉e j .

It is easy to see that B is bounded on A2
ϕ and ||B|| ≤ sup j∈J {c j }. By the definition, we get

BH f A(g) =
∑

j∈J

c j 〈H f A(g), h j 〉e j

=
∑

j∈J

∑

i∈J

c j 〈H f kai , h j 〉〈g, ei 〉e j .

Applying Lemma 2.7, we have

||BH f A||pSp ≤ ||B||p||H f ||pSp ||A||p ≤ C sup
j∈J

cpj .

We decompose the operator BH f A to the diagonal part defined by

Y (g) =
∑

j∈J

c j 〈H f ka j , h j 〉〈g, e j 〉e j

and the non-diagonal part defined by

Z(g) =
∑

j,i∈J :i �= j

c j 〈H f kai , h j 〉〈g, ei 〉e j .

By Lemma 2.8, there holds

||Y ||pSp � ||BH f A||pSp + ||Z ||pSp .
Lemma 2.3 tells us that there is some constant C > 0 such that

|ka j (z)| ≥ Ceϕ(z)ρ(a j )
−1 > 0,

for z ∈ Dr (a j ). Therefore, k−1
a j

∈ H(Dr (a j )). By Lemma 3.5 and (2.3), we get

||Y ||pSp =
∑

j∈J

cpj |〈H f ka j , h j 〉|p =
∑

j∈J

cpj |〈 f ka j − P( f ka j ), h j 〉|p

=
∑

j∈J

cpj |〈χDr (a j ) f ka j − Pa j ,r ( f ka j ), h j 〉|p
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=
∑

j∈J

cpj ||χDr (a j ) f ka j − Pa j ,r ( f ka j )||pL2
ϕ

=
∑

j∈J

cpj

⎧
⎪⎨

⎪⎩

∫

Dr (a j )

| f ka j − Pa j ,r ( f ka j )|2e−2ϕd A

⎫
⎪⎬

⎪⎭

p/2

=
∑

j∈J

cpj

⎧
⎪⎨

⎪⎩

∫

Dr (a j )

|ka j |2e−2ϕ | f − k−1
a j

Pa j ,r ( f ka j )|2d A

⎫
⎪⎬

⎪⎭

p/2

�
∑

j∈J

cpj

⎧
⎪⎨

⎪⎩

1

|Dr (a j )|
∫

Dr (a j )

| f − k−1
a j

Pa j ,r ( f ka j )|2d A

⎫
⎪⎬

⎪⎭

p/2

≥
∑

j∈J

cpj Gr ( f )(a j )
p.

By Proposition 1.29 of [35], Lemma 3.5, and Cauchy–Schwarz inequality, we have

||Z ||pSp ≤
∞∑

n=1

∞∑

m=1

|〈Zen, em〉|p =
∑

j,i∈J :i �= j

c pj |〈H f kai , h j 〉|p

=
∑

j,i∈J :i �= j

c pj |〈χDr (a j ) f kai − Pa j ,r f kai , h j 〉|p

≤
∑

j,i∈J :i �= j

c pj ||χDr (a j ) f kai − Pa j ,r f kai ||pL2
ϕ

=
∑

j,i∈J :i �= j

c pj

⎧
⎪⎨

⎪⎩

∫

Dr (a j )

| f kai − Pa j ,r ( f kai )|2e−2ϕd A

⎫
⎪⎬

⎪⎭

p/2

≤
∑

j,i∈J :i �= j

c pj

⎧
⎪⎨

⎪⎩

∫

Dr (a j )

| f kai − kai Ba j ,r ( f )|2e−2ϕd A

⎫
⎪⎬

⎪⎭

p/2

.

where Bz,r is the projection of L2(Dr (z)) onto A2(Dr (z)). Therefore, applying Lemma 3.2,
we obtain

||Z ||pSp ≤
∑

j∈J

cpj
∑

i∈J :i �= j

⎧
⎪⎨

⎪⎩

∫

Dr (a j )

(
|kai (z)|2e−2ϕ(z)

)
| f (z) − Ba j ,r ( f )(z)|2d A(z)

⎫
⎪⎬

⎪⎭

p/2

�
∑

j∈J

cpj
∑

i∈J :i �= j

(

sup
z∈Dr (a j )

|kai (z)|2e−2ϕ(z)

)p/2

ρ(a j )
p

⎧
⎪⎨

⎪⎩

1

|Dr (a j )|
∫

Dr (a j )

| f (z) − Ba j ,r ( f )(z)|2d A(z)

⎫
⎪⎬

⎪⎭

p/2
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�
∑

j∈J

cpj Gr ( f )(a j )
pρ(a j )

p
∑

i∈J :i �= j

(

sup
z∈Dr (a j )

|kai (z)|2e−2ϕ(z)

)p/2

. (3.13)

For each i, j ∈ J with i �= j , there is some w j,i ∈ Dr (a j ) such that

|w j,i − ai | = inf
z∈Dr (a j )

|z − ai |

By (2.4) and (2.1), for z ∈ Dr (a j )

|kai (z)|e−ϕ(z) ≤ C
1

ρ(z)

(
min(ρ(z), ρ(ai ))

|z − ai |
)N

� 1

ρ(a j )

(
min(ρ(w j,i ), ρ(ai ))

|w j,i − ai |
)N

.

We assert that |w j,i − ai | ≥ 2k−2r min(ρ(w j,i ), ρ(ai )). Otherwise, if |w j,i − ai | ≤
2k−2r min(ρ(w j,i ), ρ(ai )), by (2.1) and the triangle inequality, one can get

|a j − ai | ≤ |a j − w j,i | + |w j,i − ai | ≤ rρ(a j ) + 2k−2rρ(w j,i ) < 2krρ(a j ),

and

|a j − ai | ≤ rρ(a j ) + 2k−2rρ(w j,i ) ≤ 2rρ(w j,i ) + 2k−2rρ(w j,i ).

For each k > 5, we can choose r such that 2k−2r < α. Then by (2.1) again,

|a j − ai | ≤ 4rρ(ai ) + 2k−1rρ(ai ) < 2krρ(ai ).

It follows that |a j − ai | < 2kr min(ρ(a j ), ρ(ai )) which is in contradiction with (3.12).
Therefore, for z ∈ Dr (a j )

|kai (z)|e−ϕ(z) � 1

ρ(a j )

(
1

2k−2r

)N

� 1

ρ(a j )

(
1

2

)Nk

. (3.14)

Combining (3.13) and (3.14), it turns out that

||Z ||pSp �
(
1

2

) Npk
2 ∑

j∈J

cpj Gr ( f )(a j )
pρ(a j )

p
2
∑

i∈J :i �= j

(

sup
z∈Dr (a j )

|kai (z)|e−ϕ(z)

)p/2

.

(3.15)

Set r0 = 3r . Let j ∈ J be fixed.

∑

i∈J :i �= j

(

sup
z∈Dr (a j )

|kai (z)|e−ϕ(z)

)p/2

≤
∑

{i :|a j−ai |≤r0ρ(a j )}

(

sup
z∈Dr (a j )

|kai (z)|e−ϕ(z)

)p/2

+
∞∑

n=0

∑

{i :2nr0ρ(a j )<|a j−ai |≤2n+1r0ρ(a j )}

(

sup
z∈Dr (a j )

|kai (z)|e−ϕ(z)

)p/2

. (3.16)

By (2.1) and (2.3), the first part of (3.16) can be estimated as

∑

{i :|a j−ai |≤r0ρ(a j )}

(

sup
z∈Dr (a j )

|kai (z)|e−ϕ(z)

)p/2

�
∑

{i :|a j−ai |≤r0ρ(a j )}
ρ(a j )

−p/2.
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By (2.1), we know that a j ∈ D2r0(ai )when |a j −ai | ≤ r0ρ(a j ). From the finite multiplicity
property (2.2), we deduce that

∑

{i :|a j−ai |≤r0ρ(a j )}
ρ(a j )

−p/2 ≤ ρ(a j )
−p/2

∞∑

i=1

χD2r0 (ai )(a j ) � ρ(a j )
−p/2.

It follows that

∑

{i :|a j−ai |≤r0ρ(a j )}

(

sup
z∈Dr (a j )

|kai (z)|e−ϕ(z)

)p/2

� ρ(a j )
−p/2. (3.17)

For each i with 2nr0ρ(a j ) < |a j − ai | ≤ 2n+1r0ρ(a j ), we get

|w j,i − ai | ≥ |a j − ai | − |a j − w j,i |
> 2nr0ρ(a j ) − rρ(a j )

=
(

2n − 1

3

)

r0ρ(a j )

≥ 1

2
· 2nr0ρ(a j ).

By (2.4), the second part of (3.16) is estimated as

∞∑

n=0

∑

{i :2nr0ρ(a j )<|a j−ai |≤2n+1r0ρ(a j )}

(

sup
z∈Dr (a j )

|kai (z)|e−ϕ(z)

)p/2

�
∞∑

n=0

∑

{i :2nr0ρ(a j )<|a j−ai |≤2n+1r0ρ(a j )}

[

sup
z∈Dr (a j )

(
1

ρ(z)

ρ(z)ρ(ai )N−1

|w j,i − ai |N
)]p/2

�
∞∑

n=0

(
1

2

)nNp/2

ρ(a j )
−Np/2

∑

{i :2nr0ρ(a j )<|a j−ai |≤2n+1r0ρ(a j )}
ρ(ai )

(N−1)p/2.

By the definition of L and the triangle inequality, it is easy to see that, for ai ∈ Dr02n+1
(a j ),

Dr0(ai ) ⊆ D[1+(1+‖ρ‖Lr0)2n+1]r0(a j ).

We can choose N satisfying (N − 1)p/4 ≥ 1. Therefore, by the finite multiplicity property
(2.2), we have

∑

{i :2nr0ρ(a j )<|a j−ai |≤2n+1r0ρ(a j )}
ρ(ai )

(N−1)p/2

≤
⎛

⎝
∑

{i :2nr0ρ(a j )<|a j−ai |≤2n+1r0ρ(a j )}
ρ(ai )

2

⎞

⎠

(N−1)p/4

�

⎛

⎜
⎜
⎝

∞∑

i=1

∫

D[1+(1+‖ρ‖Lr0)2n+1]r0 (a j )

χDr0 (ai )(w)d A(w)

⎞

⎟
⎟
⎠

(N−1)p/4

123



Schatten class Hankel operators... Page 15 of 19 23

=

⎛

⎜
⎜
⎝

∫

D[1+(1+‖ρ‖Lr0)2n+1]r0 (a j )

∞∑

i=1

χDr0 (ai )(w)d A(w)

⎞

⎟
⎟
⎠

(N−1)p/4

�
∣
∣
∣D[1+(1+‖ρ‖Lr0)2n+1]r0(a j )

∣
∣
∣
(N−1)p/4

� 2n(N−1)p/2ρ(a j )
(N−1)p/2.

On the other hand, we know that

∞∑

n=0

(
1

2

)np/2

=
∞∑

n=0

(
1

2p/2

)n

≤ C .

Hence,

∞∑

n=0

∑

{i :2nr0ρ(a j )<|a j−ai |≤2n+1r0ρ(a j )}

(

sup
z∈Dr (a j )

|kai (z)|e−ϕ(z)

)p/2

� ρ(a j )
−p/2. (3.18)

From (3.17), and (3.18), we deduce that

∑

i∈J :i �= j

(

sup
z∈Dr (a j )

|kai (z)|e−ϕ(z)

)p/2

� ρ(a j )
−p/2,

which, together with (3.15), further implies that

||Z ||pSp ≤ C1

(
1

2

) Npk
2 ∑

j∈J

cpj Gr ( f )(a j )
p. (3.19)

Notice that

‖BH f A‖p
Sp

≤ C2 sup
j∈J

cpj and C3

∑

j∈J

cpj Gr ( f )(a j )
p ≤ ‖Y‖p

Sp
≤ C4

(
‖BH f A‖p

Sp
+ ‖Z‖p

Sp

)
.

One can choose k to be sufficiently large such that

C5 := C3 − C4C1

(
1

2

) Npk
2

> 0.

Finally, we obtain
∑

j∈J

cpj Gr ( f )(a j )
p ≤ C−1

5 C4C2 sup
j∈J

cpj

for every collection J . Applying the duality between l1 and l∞, we get the desired result.
Now we treat the case 1 ≤ p < ∞. Let {e j }∞j=1 be an orthonormal basis of A2

ϕ . We define

an operator T on A2
ϕ such that

T e j = χDr (a j )H f (ka j )

(∫

Dr (a j )
|H f (ka j )|2e−2ϕd A

) 1
2

:= s jχDr (a j )H f (ka j ).
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Then T is bounded. In fact, for g ∈ A2
ϕ , by Cauchy–Schwarz inequality and the finite

multiplicity property, we have

|Tg(z)|2 =
∣
∣
∣
∣
∣
∣

∞∑

j=1

〈g, e j 〉s jχDr (a j )(z)H f (ka j )(z)

∣
∣
∣
∣
∣
∣

2

≤
⎛

⎝
∞∑

j=1

χDr (a j )(z)

⎞

⎠

⎛

⎝
∞∑

j=1

|〈g, e j 〉|2s2jχDr (a j )(z)|H f (ka j )(z)|2
⎞

⎠

�
∞∑

j=1

|〈g, e j 〉|2s2jχDr (a j )(z)|H f (ka j )(z)|2.

Hence,

||Tg||2ϕ �
∫

D

∞∑

j=1

|〈g, e j 〉|2s2jχDr (a j )(z)|H f (ka j )(z)|2e−2ϕ(z)d A(z)

=
∞∑

j=1

|〈g, e j 〉|2s2j
∫

Dr (a j )

|H f (ka j )(z)|2e−2ϕ(z)d A(z)

=
∞∑

j=1

|〈g, e j 〉|2 = ||g||2ϕ.

By Theorem 1.27 of [35], we get

||H f ||pSp � ||T ∗H f A||pSp �
∞∑

j=1

|〈T ∗H f Ae j , e j 〉|p

=
∞∑

j=1

|s j 〈H f ka j , χDr (a j )H f ka j 〉|p

=
∞∑

j=1

⎛

⎜
⎝

∫

Dr (a j )

|H f (ka j )|2e−2ϕd A

⎞

⎟
⎠

p/2

=
∞∑

j=1

⎛

⎜
⎝

∫

Dr (a j )

∣
∣
∣
∣
∣
f − 1

ka j

P( f ka j )

∣
∣
∣
∣
∣

2

|ka j |2e−2ϕd A

⎞

⎟
⎠

p/2

�
∞∑

j=1

⎛

⎜
⎝

1

|Dr (a j )|
∫

Dr (a j )

∣
∣
∣
∣
∣
f − 1

ka j

P( f ka j )

∣
∣
∣
∣
∣

2

d A

⎞

⎟
⎠

p/2

≥
∞∑

j=1

Gr ( f )(a j )
p.

(B) ⇒ (C): Let {a j }∞j=1 be a (ρ, r )-lattice. Then {a j }∞j=1 is also a (ρ, 3r )-lattice (just replace

s with a smaller one, for example s/3). Suppose
∑∞

j=1 G3r ( f )(a j )
p < ∞. Since Dr (z) ⊆

D3r (a j ) for z ∈ Dr (a j ), there holds
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∫

D

Gr ( f )(z)
pρ(z)−2d A(z) ≤

∞∑

j=1

∫

Dr (a j )

Gr ( f )(z)
pρ(z)−2d A(z)

�
∞∑

j=1

sup
z∈Dr (a j )

Gr ( f )(z)
p

�
∞∑

j=1

G3r ( f )(a j )
p < ∞.

(C) ⇒ (D): Suppose Gr ( f )(z) ∈ L p(D, ρ−2d A). Decompose f = f1 + f2 as in Lemma
3.3. Then f1 ∈ C1(D) and

|ρ(z)∂̄ f1(z)| + Mr/28(∂̄ f )(z) + Mr/28( f2)(z) ≤ CGr ( f )(z).

By Lemma 3.4, we have

||Mr (ρ∂̄ f1)||L p(D,ρ−2d A) � ||Mr/28(ρ∂̄ f1)||L p(D,ρ−2d A) ≤ C ||Gr ( f )||L p(D,ρ−2d A) < ∞
and

||Mr ( f2)||L p(D,ρ−2d A) � ||Mr/28( f2)||L p(D,ρ−2d A) ≤ C ||Gr ( f )||L p(D,ρ−2d A) < ∞.

(D) ⇔ (E) is just Lemma 3.4.
To prove that (D) implies (A), we need to consider the multiplication operators M f2 and

Mρ∂̄ f1 . Let φ to be f2 or ρ∂̄ f1. With the assumption Gr ( f )(z) ∈ L∞ and Lemma 3.3, we

have Mr (φ)(z) ∈ L∞. We assert that Mφ is bounded from A2
ϕ to L2

ϕ . In fact, by Lemma 2.6
with p = 2, for g ∈ A2

ϕ ,

||Mφg||2L2
ϕ

=
∫

D

|g|2e−2ϕ |φ|2d A

�
∫

D

|g(z)|2e−2ϕ(z)̂|φ|2r (z)d A(z)

=
∫

D

|g(z)|2e−2ϕ(z)Mr (φ)(z)2d A(z)

≤ ||Mr (φ)||2L∞||g||2L2
ϕ

Since for any g, h ∈ A2
ϕ , there holds

〈M∗
φMφg, h〉 = 〈Mφg, Mφh〉 = 〈T|φ|2g, h〉.

It follows that M∗
φMφ = T|φ|2 on A2

ϕ . By Theorem 1.26 of [35], we know that Mφ ∈ Sp if
and only if M∗

φMφ = T|φ|2 ∈ Sp/2. According to Theorem 2.1, T|φ|2 ∈ Sp/2 if and only if

|̂φ|2r (z) ∈ L p/2(D, ρ−2d A), or equivalently,Mr (φ)(z) ∈ L p(D, ρ−2d A). Hence,Mφ ∈ Sp .
By Lemma 3.6, we know that ||H f1(g)||L2

ϕ
� ||gρ∂̄ f1||L2

ϕ
and ||H f2(g)||L2

ϕ
� || f2g||L2

ϕ
. It

follows that H f1 and H f2 belong to Sp which leads to H f ∈ Sp . The proof is complete. ��

123



23 Page 18 of 19 Z. Zeng et al.

4 Simultaneousmembership of Hf and Hf̄ in Sp

As an application of our result, we provide a characterization of simultaneous membership of
H f and H f̄ in Sp . Previously known characterizations for those f such that both H f and H f̄
are in Sp were given in terms of the mean oscillation of f by Zhu [35] and Xia [31] for the
Bergman space and by Xu [31] and Pau [26] in the context of the weighted Bergman spaces.
We show that an analogous statement of [26] remains true with ϕ ∈ W for all 0 < p < ∞.
To this end, we give the notion of mean oscillation. Let f ∈ L2

loc(D) and r > 0. The mean
oscillation of f at z ∈ D is defined by

MOr ( f )(z) =
⎛

⎜
⎝

1

Dr (z)

∫

Dr (z)

| f − f̂r (z)|2 d A
⎞

⎟
⎠

1/2

.

The following lemma shows the connection between MOr ( f )(z) and Gr ( f )(z).

Lemma 4.1 Suppose ρ ∈ L, 0 < r < ∞, 0 < p ≤ ∞ and f ∈ L2
loc(D). Then Gr ( f ) ∈

L p(D, ρ−2 d A) and Gr ( f̄ ) ∈ L p(D, ρ−2 d A) if and only if MOr ( f ) ∈ L p(D, ρ−2 d A).
Moreover,

‖Gr ( f )‖L p(D,ρ−2 d A) + ‖Gr ( f̄ )‖L p(D,ρ−2 d A) � ‖MOr ( f )‖L p(D,ρ−2 d A).

Proof It is trivial that

Gr ( f )(z) ≤ MOr ( f )(z) and Gr ( f̄ )(z) ≤ MOr ( f )(z).

As shown in the proof of Lemma 6.2 of [13], the reverse inequality

MOr ( f )(z) � Gr ( f )(z) + Gr ( f̄ )(z),

is easy to modify. We leave the detail to interested readers. ��
Combining the previous lemma with Theorem 3.1, we obtain the characterization of
simultaneous membership of H f and H f̄ in Sp .

Theorem 4.1 Let ϕ ∈ W with 1√
�ϕ

� ρ ∈ L0, 0 < p < ∞, 0 < r ≤ α, and f ∈ S such

that Gr ( f ) ∈ L∞. Then both H f and H f̄ in Sp if and only if MOr ( f ) ∈ L p(D, ρ−2 d A).
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