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Abstract
In this work, we study a model of traffic flow along a one-way, one lane, road or street,
the so-called car-following problem. We first present a historical evolution of models of
this type corresponding to a successive improvement of requirements, to explain some real
traffic phenomena. For both mathematical reasons and a better explanation of some of those
phenomena, we consider more convenient and accurate requirements which lead to a better
non-linear model with reaction delays, from several sources. The model can be written as an
ordinary nonlinear delay differential equation. It has equilibrium solutions, which correspond
to steady traffic. The mentioned reaction delays introduce perturbation terms in the equation,
leading to of instabilities of equilibria and changes of the structure of the solutions. For some
of the values of the delays, they may become oscillatory. We make a number of simulations
to show these changes for different values of delays. We also show that, for certain values
of the delays the above mentioned change of structure (representing regimes of real traffic)
corresponds to a Hopf bifurcation.
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1 Introduction

In this work we first present some models for traffic flow in which, as usual, there exists
among the basic variables some relationships coming from basic and suitable physical laws.
The selection of one of such laws or another leads to different models of traffic flow. Besides,
we focus on a particular feature of the traffic flow, not very often dealt with, such as the delays
involved, important enough to be taken into account to improve significantly the models or to
build more realistic and accurate ones. There are some evident delays, as the one caused by
an accident, which certainly modify the traffic conditions. For self-driven vehicles, reaction
delays tend to be smaller than those of human-driven vehicles, and typically occur due to the
delays in sensing some information, processing it and acting. In the context of human-driven
vehicles, our investigation on the impact of the reaction delay enhances phenomenological
insights into the emergence and evolution of traffic congestion. For example, a peculiar
phenomenon as the emergence of a backpropagating congestion wave in motorway traffic,
seemingly coming out of nowhere, has been observed in the real world. In traffic, the
phenomenon of stop-and-go waves (known as a start-stop waves, or a ‘phantom jam’) has
been empirically studied by many authors. Some studies have shown that a change in driver’s
sensitivity (for instance, a sudden deceleration) can lead to such oscillatory behavior. Similar
oscillations could also result from an increase in the driver’s reaction delay.

When dealing with the delay equations arising in car-following problems, and in order to
obtain more refined models, it seems convenient to consider the delay as the total effect of
different causes (see [24] among others). One of them is the time between drivers’ perception
of changes or hazards ahead, becoming aware of them and acting accordingly. Another part
of the reaction time would be the processing of the information, and the actions taken on
the mechanisms of the car. It can be seen that the different processes mentioned above lead
to different overall amounts of time. However, in modeling, the time spent on each step has
a different degree of variability and importance with respect to the others. For example, in
certain cases, some of them can be considered constants and the others not. In some models,
as in electric cars, the mechanical response is almost immediate and the mechanic delay is
almost zero. In some other cases, as in self driven cars, the driver’s delay is usually smaller
than the human one.

Concerning the driver, there has been an evolution of models characterized by increas-
ingly sophisticated assumptions about the driver behavior. These models have progressed
from the assumption that drivers behave according to the safe following rule, through early
assumptions that the distance is based on the reaction time required to perceive the need to
decelerate and apply the brakes, to the General Motors’ models (GM) (see e.g. [1]) in which
is adopted the assumption that the car-following response (acceleration or deceleration) was
a function of a stimulus, represented by the relative velocity of the leading vehicle, and “sen-
sitivity”, which itself is a function of the spacing between vehicles. The search for the large
stimulus used by drivers in car-following appears to represent the most concerted effort to
explore the psychological factors in car-following. According to [12], the most successful
stimulus is the relative speed divided by spacing, and the least successful stimulus is just the
spacing between the vehicles. Later models incorporated the possibility that the following
drivers may use information from more than one vehicle ahead to anticipate the actions of
the leading vehicle. There are further models taking into account several other features, some
of them still open, as those considering the comparison of the driver’s estimation of spacing
with the actual spacing, or more realistic ones, where the delay may be dependent of the state
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of the system, such as relative positions or velocities. In some other fields this situation has
been considered, as in [3] and in the references therein, mainly [18].

By taking the delay as central in the analysis of the change of stability of the solutions,
we can also analyze the time-delayed traffic dynamics in a control problem perspective. In
several works, within a large family of problems, the delay is a tool for control (see e.g. [4,
5, 24]).

We then consider a different non-linear car-following model with a reaction delay. For a
single lane, it can be written as an ordinary nonlinear delay differential equation defined by a
sigmoidal function, to better fit most of mathematically reasonable assumptions taken from
real traffic. This new class of traffic-flow models is introduced in Sect. 2. The choice of a
family of sigmoidal function has much interest by itself because, due to their properties, they
are better adapted to the conditions to be verified by the variables of the new problemwewish
to study. Their properties have proved also useful in the study of problems in other important
and very different fields, such as the modeling of activation potential in biological neural
networks, or where the conditions on the (very different) variables whose relationships are
to be modeled are similar. Superposition of certain sets of sigmoidal functions can be used
to approximate some other functions of one or several variables in different normed spaces
(see, for example, [10]) in order to obtain a best approximation to non sigmoidal models.

We study this new model in Sect. 3. There exists equilibrium solutions which correspond
to steady traffic. The reaction delay terms introduce perturbations for this equation and its
solutions, which change their structure. We study the stability of these changes. First we look
for the roots, and its nature, of the quasi-characteristic equation of the linearized equation
(Sect. 3.1). This will give regions of the values of the parameters, mainly the delays, for which
to expect different behavior (constant, oscillatory, periodic, etc.). From the numerical point of
view (Sect. 3.2), wemake simulations for this type ofDifferential Delay Equation (DDE).We
have adapted to this case some numerical methods for differential equations without delays
and to first order system of delay differential equations. Our simulations may provide also a
way to find suitable values of parameters for a proper behavior of the cars. The simulation
studies show changes of structure. In particular, when the delays vary, a phenomenon known
as Hopf bifurcation seems to appear (Sect. 4).

2 Some car-followingmodels

Car-following theory is an important research direction in thefield of intelligent transportation
systems. It describes the one-by-one following process of vehicles on the same lane in traffic
flow, and one of its important issues is congestion control. The follow-the-leader theory of
traffic is a theory pertaining to single-lane dense traffic with no passing, and is based on the
assumption that each driver reacts in some specific way to a stimulus from the car (or cars)
ahead of and/or behind him.

There are different ways towards the modeling of traffic flow:
Macroscopic models where traffic is viewed as a compressible fluid formed by vehicles.

The traffic flow can be characterized by macroscopic parameters like the mean velocity or
the mean flow and without inflow from and outflow to other ways: to build these models, it is
assumed that the car velocity u is a known function of the density ρ, u = u (ρ) , and that the
total number of cars is conserved. As a consequence, the density and velocity must satisfy a
conservation law, the continuity equation in one dimension

∂tρ + ∂x (ρu) = 0.

123



180 Page 4 of 19 J. F. Padial, A. Casal

These models lead to (hyperbolic) partial differential equations, [2, 20], among others, and
references therein.

Microscopic modelswhere an individual vehicle is represented by a particle and the vehicle
traffic is treated as a system of interacting particles driven far from equilibrium. The traffic
flow can be considered as the motion of a single particle (vehicle) known as the microscopic
approach (e. g. see [15]).

Car-following model is based on the idea that each driver controls a vehicle under the
stimuli from the preceding vehicle, which can be expressed by a function of the headway
distance or the relative velocity of two successive cars. The models introduce a delay term
associated to the driver reaction. The basic differential difference equations of the follow-
the-leader theory express the idea that each driver of a vehicle responds to a given stimulus
according to a relation such as

response = sensitivity ∝ stimulus.

Car-following models are commonly classified into classes depending on the logic used:

(i) Gazis–Herman–Rothery models (GM). These models state that the following vehicle’s
acceleration is proportional to the speed of the follower, the speed difference between
follower and leader and the space in between (see [1, 15]).

(ii) Safety-distance models, which are based on the assumption that the follower always
keeps a safe distance to the vehicle in front (see [12]).

(iii) Psycho-physical car-following models, which use thresholds for, e. g., the minimum
speed difference between follower and leader perceived by the follower (see [24]).

Traffic micro-simulation models are commonly used to estimate macroscopic traffic mea-
sures. The response has been taken as the acceleration of the vehicle, since a driver actually
has a direct control of this quantity through the gas and brake pedals. The stimulus could be a
functional of the positions of a number of cars and their speed, and, perhaps, also some other
parameters (this may lead to linear or nonlinear models). The sensitivity was initially taken
as a constant and later as inversely proportional to the spacing of the leading and following
car. Other functionals for the sensitivity can be considered. The various modifications of the
sensitivity functional have been made, in general, as attempts to account for experimental
and observational data. These have been obtained from both phenomenological observations
on a single-lane traffic flow in tunnels (there are some classical experiments in the Lincoln
Tunnel of New York [15]) and from other follow-the-leader experiments.

In this work, by taking into account the driver’s reaction time, the resulting model is a
family of functional differential equations with, a parameters dependent, sigmoidal function.
We study the stability of the equilibrium state by investigating the location of the roots of the
quasi-characteristic equation. We carry out both numerical and graphical simulations. This
gives us regions of values of the parameters for which the equilibrium solution changes its
stability modifying its structure and giving rise, eventually, to some kind of oscillatory and
periodic solutions.

2.1 A follow-the-leader General Motors’model (GM)

In this subsection we present and analyze some previous car-following models built from a
follow-the-leader General Model (GM). Let us consider a car following another, under the
following assumptions:

(i) The cars flow on a single lane.
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(ii) If t is the time (assuming that the initial time t0 = 0), for the car n at the time t, Xn (t)
is its position, X ′

n(t) is its velocity, and X ′′
n (t) is its acceleration.

(iii) The driver n (following car) adjust his speed with respect to the speed of the car n + 1
(the leading car).

(iv) There exist a time lag τn reaction of the following car to the actions of the leading car.
As said above,

τn = τdn + τmn

with τdn is the reaction delay of the driver and τmn is the mechanic delay of his car.

A first analysis is to consider that the acceleration (or deceleration) of car n is proportional
to the perceived difference with respect to car n + 1. Mathematically,

X ′′
n (t + τn) = u

(
X ′

n+1 (t) − X ′
n (t)

)
.

Now we can distinguish if u is a constant or a nonconstant function depending, for instance,
of the distance between cars, the relative velocity, etc.

When u is a constant function, the car-following model is linear. In this case, the acceler-
ation (response) is directly proportional to the relative velocity (stimulus) (see [8]).

When u is a nonconstant function, the car-following model is nonlinear. Several relation-
ships can be considered, usually a certain power (to be determined) of the following car’s
speed. Moreover, Gazis et al. [14] found that the above equation could not quite explain the
traffic situation in higher density since, in it, the behavior of the drivers that follows does
not just take into account the relative spacing between cars. In order to make the model
more realistic, they defined u as a real function of the distance between two cars, that is
u = u (Xn+1 (t) − Xn (t)), and choosing u as

u = c
1

Xn+1 (t) − Xn (t)
,

which implies

X ′′
n (t + τn) = c

1

Xn+1 (t) − Xn (t)

(
X ′

n+1 (t) − X ′
n (t)

)

In 1961, Edie (see [11]) modified the model again and considered that the velocity of vehicle
itself also influence the behavior of driver. In consequence, the GM model can be expressed,
more generally, as

X ′′
n (t + τn) = c

X ′
n (t)m

(Xn+1 (t) − Xn (t))l

(
X ′

n+1 (t) − X ′
n (t)

)
(1)

wherem and l ∈ R are nonnegative constants to be determined by experimental data. The key
to the selection of a model from this set of models (GM), is the specification of parameters m
and l. In the following years, a large amount ofwork on the definition of the ‘best’ combination
of m and l was done, but without a uniform result (see Table 1).

However, in these models, the distance between successive vehicles can be arbitrarily
close when the leading and the following vehicles have identical speed, which seems to
be somewhat unrealistic. This is one of the reason why we propose a refined new class of
traffic-following models (see [7]) defined by a sigmoidal function.
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Table 1 Models according to
different values of m and l (see
[1] and its references)

Resources m l

Chandler et al. (1958) 0 0

Gazis et al. (1959) 0 1

Herman and Potts (1961) 0 1

Helly (1959) 1 1

Gazis et al. (1961) 0–2 1–2

May and Keller (1967) 0.8 2.8

Heyes and Ashworth (1972) −0.8 1.2

Hoefs (1972) 1.5/0.2/0.6 0.9/0.9/3.2

Treiterer and Myers (1974) 0.7/0.2 2.5/1.6

Ceder and May (1976) 0.6 2.4

Ceder and May (1976) 0/0 3/0–1

Aron (1988) 2.5/2.7/2.5 0.7/0.3/0.1

Ozaki (1993) 0.9/ − 0.2 1/0.2

2.2 A new car-followingmodel as a Delay Differential Equation (nDDE)

We introduce a multiparameter car-following model defined by a specific class of functions
avoiding the above inconvenient and satisfying the other requirements. In this car traffic
situation, we will focus our attention only in two cars, one leader and its follower. We
introduce a new notation. Let us consider that, at the instant t, X0 (t) is the position of the
leading car and X1 (t) is that of the following car. We assume that the velocity of the leading
car (i. e. X ′

0 (t)) is a given positive constant v0. Thus, X0(t) = v0t + x0, with x0 its initial
position that, without loss of generality, we can assume as x0 = 0.

Let us define the separation between the cars as

s1 (t) = X0 (t) − X1 (t) = v0t − X1 (t) .

Thus, the relative velocity and the relative acceleration of the following car are

s′
1 (t) = v0 − X ′

1 (t) and s′′
1 (t) = −X ′′

1 (t) .

Combining those relations with the car-following differential equation, we obtain from (1)
a second order delay differential equation in terms of the separation between the cars and
relative velocity, that is,

−s′′
1 (t + τ1) = X ′′

1 (t + τ1) = cX ′
1 (t)m X ′

0 (t) − X ′
1 (t)

(X0 (t) − X1 (t))l

s′′
1 (t + τ1) = −c

(
v0 − s′

1 (t)
)m s′

1 (t)

s1 (t)l

Notice that s′′
1 is a function of (v0, s1(t), s′

1(t)) and then the above delay equation is
autonomous. This allow us to study the changes of structure of solutions as aHopf Bifurcation
problem for these equations.

Remark 1 If we assume that the velocity of the leader is not a constant (we can consider that
X ′
0(t) is a data of the problem and so is its acceleration X ′′

0 (t)), then the relative velocity and
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the relative acceleration of the following car are

s′
1 (t) = X ′

0(t) − X ′
1 (t) and s′′

1 (t) = X ′′
0 (t) − X ′′

1 (t) .

Combining those relations with the car-following differential equation, we obtain from (1),
as before, a second order delay differential equation in terms of the separation between the
cars, the relative velocity and also the velocity and acceleration of the leader, that is,

s′′
1 (t + τ1) = −c

(
X ′
0(t) − s′

1 (t)
)m s′

1 (t)

s1 (t)l
+ X ′′

0 (t + τ1).

(notice that s′′
1 is function of (t, τ1, s1(t), s′

1(t)), and then the above delay equation is non
autonomous).

Remark 2 For several cars, assuming that the leader has a constant velocity v0 and the rest
of the cars adapt their velocities to their corresponding leaders, we can obtain the following
system:

s′′
1 (t + τ1) = −c

(
v0 − s′

1 (t)
)m s′

1 (t)

s1 (t)l

...

s′′
i (t + τi ) = −c

(
X ′

i−1(t) − s′
1 (t)

)m s′
i (t)

si (t)l
+ X ′′

i−1(t + τi )

where, for any i = 2, 3, . . ., si−1(t) = Xi−2(t) − Xi−1(t), X ′
i−1(t) = X ′

i−2(t) − s′
i−1(t),

X ′′
i−1(t) = X ′′

i−2(t) − s′′
i−1(t) (recursively it is possible to get a coupled system in terms of

si , s′
i , s′′

i and finally with v0) and τi are the delay for the different vehicles.
The purpose of this work is to study the behavior of the two first cars related with the
bifurcation phenomenon.

Remark 3 We will only consider two vehicles. The leader goes at a constant velocity v0 and
the follower tries to adapt its velocity X ′

1(t) to that of the leader, but with a reaction time τ1.
In what follows this is the only reaction time to consider, so we will call τ := τ1. For the
same reason, in what follows all function or parameters associated to the follower will appear
without any subindex (as, for example, s, the parameters a, b, k, d, ... that will appear later).

We should add some other requirements for the model. For example, X0 (t) − X1 (t) = 0
must be avoided. Of course, from the reality, but also because this situation leads to addi-
tional an unnecessary mathematical difficulties. So, we consider, in general, that the relative
acceleration (deceleration) is a prescribed function of s (t) , s′ (t), i.e.

s′′ (t + τ) = −g
(
s (t) , s′ (t)

)

where the real function g
(
s, s′) with

(
s, s′) ∈ R

2 must satisfy some conditions:

(i) For any v0 there exists an m (we will refer to it in Sect. 3.1), minimum recommended
distance between cars. We assume that the car following the leader is in an equilibrium
state when there is no speed difference with the leading car, that is s′ (t) = 0; and when
it follows it at the safe minimum distance s (t) = m, thus the velocity of the following
car is constant and then the acceleration is zero, that is g (m, 0) = 0 at the equilibrium
point.
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(ii) There is a maximum acceleration of the following car, a > 0, thus g
(
s, s′) ≤ a, and

a maximum deceleration, b < 0, thus b ≤ g
(
s, s′). So, b ≤ g

(
s, s′) ≤ a for all(

s, s′) ∈ R
2

(iii) If the relative velocity s′ (t) = 0,

X ′′
1 (t) = g (s, 0)

⎧
⎨

⎩

> 0 if s > m
= 0 if s = m
< 0 if s < m

.

If the relative velocity s′ (t) > 0 (increasing the distance between cars), the car that
follows would accelerate even when the distance s(t) < m. If the relative velocity
s′ (t) < 0 (decreasing the distance between cars), the car that follows would decelerate
even when the distance s(t) > m.

(iv) Moreover, g is increasing with respect to s.

On the other hand, we want to include in the modeling the temperament of the driver
(ddriver ) that follows and that of the mechanic of its vehicle (dmechanic), meaning a sort of
intensity of the response (in some references this type of parameters are called aggresivity
both for the drivers and the cars [23]). We will also take into account a parameter k which
determine the driver’s intensity of the action according to the safe distance and the minimum
relative velocity which the driver is able to perceive (which is not neither the real relative
velocity nor the real safe distance, but the driver’s perception of them). A suitable choice is
to take k = m/w, where m is the safe minimum distance and w is the relative velocity that
the driver can perceive.

As a convenient functions satisfying the above conditions, we consider a class of sigmoidal
functions. In particular, we will take a function g of the distance between the cars s and of
the speed difference s′:

g
(
s, s′) = a − (a + b)

1 + b
a ed(s−m+ks′) , ∀ (

s, s′) ∈ R
2, (2)

with d a function of ddriver and dmechanic. For the numerical simulation, we will take d =
1/(ddriver · dmechanic). This choice responds to the effect caused in g by assuming that the
higher the temperament (increasing ddriver and dmechanic) the desired speed is reached in less
time (and therefore in space). In the function g, this effect is achieved by making d smaller.
Finally our model would be

s′′ (t + τ) = −g
(
s (t) , s′ (t)

) = −a + (a + b)

1 + b
a ed(s(t)−m+ks′(t)) . (3)

In the rest of the text we will refer to this model by nDDE (new car-following traffic model).
For the Eq. (3) in the next sections we study the stability of constant solutions, linearizing
the equation and studying its quasi-characteristic roots and we obtain numerical and graph-
ical simulations. We find certain values for the delay parameter for which it is possible to
control the change of structure of the solutions of the equation, from constant to oscillatory
and a Hopf bifurcation. These results of transition from constant to oscillatory behavior,
would correspond to the transition of steady traffic to the above mentioned phantom jam
phenomenon.
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3 Analysis and simulation for the nDDEmodel

3.1 Quasi-characteristic equation of the linearized equation

We assume that in the equilibrium point, s = m and s′ = 0, the influence of s′ was to move
the sigmoid left or right. Also, the sigmoid keeps the same shape and that the relationship
between s and s′ is linear. To study the stability of the equilibrium point we will study the
linearized equation in the neighborhood of s = m and s′ = 0.

Taking x = σ − m + kω and g̃ (x) = g (σ, ω), the McLaurin series in x = 0 of g̃ is
g̃ (x) = d ab

a+b x + O
(
x2

)
. In particular

g (σ, ω) = d
ab

a + b
(σ − m + kω) + Higher Order Terms

Considering the McLaurin series of g̃ (x) (= g (σ, ω)) in (3)

s′′ (t + τ)= −g̃
(
s (t) − m + ks′ (t)

) + Higher Order Terms

= −d
ab

a + b

(
s (t) − m + ks′ (t)

) + Higher Order Terms

Making the change of variables S = s − m and renaming the coefficients, we obtain

S′′ (t + τ) = −DK S′ (t) − DS (t) (4)

with D = d ab
a+b and K = k. The quasi-characteristic equation for this delay equation is

w2ewτ + DKw + D = 0. (5)

Finally, making u = wτ we obtain

u2eu + DK τu + Dτ 2 = 0.

To study stability of the equilibrium position, we analyze the real and imaginary parts of the
roots. We write u = x + iy, and the above transcendental equation can be written, separating
the real and imaginary parts as

0 = (
(x2 − y2) cos(y) − 2xy sin(y)

)
ex + Dτ 2 + DK τ x

+ [((x2 − y2) sin(y) + 2xy cos(y)
)

ex + DK τ y]i .
We represent the curves of real and imaginary parts equal to zero for different values of the
parameters

(
(x2 − y2) cos (y) − 2xy sin (y)

)
ex + Dτ 2 + DK τ x = 0,

(
(x2 − y2) sin(y) + 2xy cos(y)

)
ex + DK τ y = 0. (6)

The above system has infinite solutions. The solutions u of this system are complex functions
of τ , that is, u = u (τ ). We are interested in non constant solutions u corresponding to real
part negative (x (τ ) < 0) which are stable oscillating solutions. When the real part is positive
(x (τ ) > 0) we have unstable oscillating solutions and finally for real part equal to zero
(x (τ ) = 0) they are periodic solutions.

For the numerical simulation, we will take a particular case of g corresponding to the
following parameters: a = 2.0576 m/s2, b = 1.5677m/s2, d = 0.1124, m = 44.4444m,
k = m/w = 11.3890 s (w = 3.9024 m/s). For the simulation we consider that dmechanic =
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Fig. 1 Graphics of solutions of the system (6) for two delay time values

ddriver = 2.9829 and thus d = 0.1124. Thus D = 0.1000 and K = 11.3890. We study the
graphical solutions for different values of τ for the last system. Given τ0 > 0 small enough,
we fix our attention in a root of the (6) close to the origin. Graphically (see Fig. 1), we can
see how the root moves in such a way that its real part changes from negative value (left
graphic) to positive one (right graphic) when τ > τ0 increases.

So, the variation of the roots when τ varies may lead to a change of the structure of the
solutions because the real part function x (τ ) crosses the imaginary axes. This change of
structure suggests the appearance of the phenomenon known as Hopf bifurcation (Sect. 4).
In the next section we show numerical solutions for the nDDE (3).

3.2 Numerical simulation. Structure of solutions

For the numerical study of the nonlinear initial value problem for the nDDE (3), we give
initial values (functions, since we are dealing with a delay differential equations) for the
separation of the car s0 (t) and the relative velocity s′

0 (t) in the interval t ∈ [−τ, 0], obtained
the nonlinear initial value problem

s′′ (t + τ) = −g
(
s′ (t) , s (t)

)
, t ≥ 0 (7)

φ(θ) = φ0(θ), θ ∈ [−τ, 0] (8)

with φ(θ) :=
(

s
s′

)
(θ) and φ0(θ) :=

(
s0
s′
0

)
(θ), regular enough. Under the regularity

conditions, the results of existence, uniquenes and continuous dependence on the initial data
and forward continuation are fulfilled [17]. We are interested in the behaviour of solutions
for large values of time.We consider the sigmoidal function g defined in (2) given by specific
values of the parameters taking in Sect. 3.1. These test values comes from experimental data
and those which allow to improve the graphic visibility of the behavior of the solution (see
e.g. [13] and its references). We use the code dde23 of Matlab R2018a for the numerical
simulation. For the numerical simulation, we fix a constant velocity of the leader car, v0,
at 80 km/h = 22.2222 m/s and for the follower, its velocity is 100 km/h = 27.7778 m/s
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(a)

(b) (c)

Fig. 2 Delay time τ = 1.2 s. The solution is oscilatory and stable. The follower keeps always positive distances
from the leader (0 < s (t) ≈ m for large t)

constant in [−τ, 0]. Thus, the relative velocity s′(θ) = X ′
0(θ) − X ′

1(θ) = −5.5556 m/s
for any θ ∈ [−τ, 0]. On the other hand, the initial distance between vehicles it was taken
at 20m plus the safety distance m = 44.4444 m. So, the initial function distance will be
s(θ) = (20 + m) + s′(θ)θ = 64.4444 − 5.5556θ for all θ ∈ [−τ, 0]. That is

φ0(θ) =
(
64.4444 − 5.5556 θ

−5.5556

)
, θ ∈ [−τ, 0]. (9)

For different values of time delay τ > 0 and fixing for any of them the same initial functional
data (9) and the parameters stated above, we obtain the following graphic solutions (see Figs.
2, 3).
Each graphic have three parts: (a) is the graphic of the s, s′ and s′′ with respect to time; (b)
show the 2D-curve

(
s′, s′′) and (c) the 3D-curve

(
s, s′, s′′). We can see for the stable cases,

that the curve
(
s′, s′′) converges to the equilibrium point (0, 0). The curve

(
s, s′, s′′) also

converges to the equilibrium point (m, 0, 0). On the other hand, we can see how the curve(
s, s′, s′′) locally lies in the plane defined by the linear part of the nDDE (4). For the unstable
case the curve

(
s, s′, s′′) goes away from the plane after a large time.
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(a)

(b) (c)

Fig. 3 Delay time τ = 6.5 s. The solution is oscillatory and unstable. Mathematically the oscillations increase
their amplitude. The follower hit the leader at some time

The simulation studies show interesting effects on the dynamics of solutions of the system
associated to our car-following model. In particular, there are changes of structure in its
solutions as the delays vary. There are equilibrium states of the system, stable or unstable,
and as the delay vary, a given equilibrium, a stable solution, may loss its stability and other
equilibria may branch off. Very often this happens to constant solutions which lead to time
periodic oscillations. This way to appear these nonconstant solutions is a phenomenon known
as Hopf bifurcation. Depending on the type of dynamical system, the formulation of such a
phenomenon takes different forms (see, for example, [9, 19, 21, 22]). The study of bifurcation
could be considered from different points of view as, for example, by using the Poincaré–
Lindstedt method (see e. g. [6]) which might allow to find a series expansion of the periodic
solutions in powers of the delay. Here we will base our study on the method used by, for
instance, in [16, Ch. 11, Section 1.1]. We study this phenomenon in the next section.

4 Hopf bifurcation

The equation of the model in this work (7) can be considered as an example of what is called a
Retarded Functional Differential Equation (RFDE). One definition of these equations in one
of their proper settings can be found in Hale [16] or Lunel and Hale [17]. To the study of the
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bifurcation, we will refer and state the Hopf Bifurcation Theorem as in Hale [16, Theorem
1.1, p. 246].

Let Rn the n-dimensional linear vector space over the real numbers with euclidean norm
|·|, C([a, b] , R

n) is the Banach space of continuous functions mapping the interval [a, b]
into R

n with the topology of uniform convergence. Consider a given number τ ∈ R, τ > 0
and let C := C([−τ, 0],Rn) and the norm of an element φ ∈ C by ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|.

Given two real numbers σ, A ≥ 0 and x ∈ C([σ − τ, σ + A] ,Rn), then for any t ∈
[σ, σ + A] we define xt (θ) = x(t + θ) with θ ∈ [−τ, 0]. Given D a subset of R × C, we
consider the functional F : D ⊂R × C([−τ, 0],Rn) → R

n such that

d

dt+
x (t) = F(τ, xt ) (10)

where d
dt+ represents the right-hand derivative, and in the following we denote by x′ = d

dt+ x.
We say that the relation (10) is a Retarded Functional Differential Equation on D, a RFDE
associated with F (we denote by RFDE(F) if we need to emphasize the equation is defined
by F).

Definition 1 Given τ > 0 and C := C2([−τ, 0],Rn), a function x is said to be a solution
of the Retarded Functional Differential Equation (10) on D ⊂R × C for a given functional
F : D → R

n , if there are σ and A ≥ 0, such that x ∈ C2([σ − τ, σ + A] ,Rn), (t, xt ) ∈ D
and x satisfies Eq. (10) for any t ∈ [σ, σ + A].

In the same framework as in Definition 1, we introduce the

Definition 2 [IVP] For given σ ≥ 0, φ ∈ C, we say that x(σ,φ,F) is a solution of the initial
value problem for the Retarded Functional Differential Equation (10) on D ⊂R × C for a
given functional F : D → R

n , with initial value φ at σ , or a solution through (σ,φ), if there
is a real number A ≥ 0 such that x(σ,φ,F) is a solution of Eq. (10) on [σ − τ, σ + A) and
xσ (σ,φ,F) = φ.

In this sense, solutions of RFDE could be viewed as curves in a Banach space. In the above
mentioned references [16] and [17], suitable definitions and results of the fundamental theory,
such as those on existence, uniqueness, continuous dependence and differentiability on data
and parameters, regularity with respect to initial conditions and continuation are given (in
these equations is important to distinguish between forward and backwards continuation).
Answers on these questions depend of the regularity of the above function F.

We recall the formulation of the Hopf bifurcation Theorem 1.1 of [16] for RFDE (10). Let
F be of class k ≥ 2,F (τ, 0) = 0 for all τ ∈ R, C := C ([−τ, 0] ,Rn) and xt (θ) = x(t + θ)

with θ ∈ [−τ, 0]. Define L : R × C →R
n by

L (τ ) ψ = Fφ (τ, 0) ψ (11)

with ψ ∈ C, where Fφ (τ, 0) is the derivative of F (τ, φ) with respecto to φ ∈ C at φ = 0 and
define

f (τ, φ) = F (τ, φ) − L (τ ) φ.

We have to consider also the following hypotheses:

(H1) The linear RFDE(L (0)) (that is, x′ = Fφ (0, 0) xt ) has a simple purely imaginary
characteristic root u0 = y0i �= 0 and all characteristic roots u(u = x + yi) are
different of u0, u0 (conjugate of u0) and satisfy u �= hu0 for any integer h.
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By Lemma 2.2 of Section 7.2 of [16], There exist τ0 > 0 and simple characteristic root u (τ )

of the linear RFDE(L (τ )) (that is, x′ = Fφ (τ, 0) xt ) such that has a continuous derivative
u′ (τ ) for |τ | < τ0. Moreover, we assume that

(H2) Re(u′(0)) �= 0 (transversality condition).

We introduce the additional notation of [16], tomake the statement of the result more specific.
By taking τ0 sufficiently small, we may assume Im u (τ ) �= 0 for |τ | < τ0 and obtain a
function φτ ∈ C which is continuosly differentiable in τ and allows to define a basis for the
solutions of the RFDE(L (τ )) corresponding to u (τ ). The functions


τ := (Re φτ , Im φτ )

form a corresponding basis for the characteristic roots u0 (τ ), u0 (τ ). Similarly, a basis�τ for
the adjoint equation can be obtained, with 〈�τ ,
τ 〉 = I . Decomposing C by (u0 (τ ) , u0 (τ ))

as C = Pτ ⊕ Qτ , then 
τ is a basis for Pτ . We know that


τ (θ) = 
τ (0) exp B (τ ) θ, −τ ≤ θ ≤ 0,

and the eigenvalues of the 2×2matrix B (τ ) are u0 (τ ) and u0 (τ ). By a change of coordinates
and maybe redefining the parameter τ we may assume that

B (τ ) = y0B0 + τ B1 (τ )

with

B0 =
(

0 1
−1 0

)
, B1 =

(
1 γ (τ)

−γ (τ) 1

)

where γ (τ) is continuosly differentiable on 0 ≤ |τ | < τ0. We can now state the Hopf bifur-
cation theorem and we refer to the conclusions stated in this theorem as a Hopf Bifurcation.

Theorem 1 [16, Theorem 1.1, p. 246] Suppose F (τ, φ) has continuous first derivatives
with respect to τ, φ, F (τ, 0) = 0 for all τ and Hypothesis (H1) and (H2) are satisfied.
Then there are constants a0 > 0, τ0 > 0, δ0 > 0, functions τ (a) ∈ R, ω (a) ∈ R, and an
ω (a) −periodic function x∗ (a), with all functions being continuously differentiable in a for
|a| < a0, such that x∗ (a) is a solution of Eq. (10) with

x∗
0 (a)Pτ = 
τ(a)y∗ (a) , x∗

0 (a)Qτ = z∗
0 (a)

where y∗ (a) = col (a, 0) + o (|a|), z∗
0 (a) = o (|a|) as |a| −→ 0. Furthermore, for

|τ | < τ0, |ω − (2π/y0) | < δ0, every ω−periodic solution of equation (10) with ‖xt‖ < δ0
must be of the above type except for a translation in phase.

Our particular car-following modeling has led us to a RFDE in which the delay τ is a
parameter including, namely, the different reaction times corresponding to the drivers, to
the mechanic of the cars and to some others related to them. Our interest is to give an
explanation on how the structure of the solutions can change, from constant to oscillatory
solutions, when the delay parameter varies. To do that, we will write the second order delay
differential equation (7) in the form of first order delay system (10). As usual, we introduce
two functions z1 (t) = s (t)−m and z2 (t) = s′ (t). We rescale the time by making t̄ = t +τ ,
and we rename t̄ as t obtaining the equivalent system

{
z′
1 (t) = z2 (t)

z′
2 (t) = −g (z1(t − τ) + m, z2 (t − τ)) .
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As before, let us consider the RFDE with

F : D ⊂R × C2([−τ, 0],R2)→R
2 (12)

F (σ, zt ) = (
z2t ,−g

(
z1t + m, z2t

))
(13)

with σ ∈ R, z = (z1, z2) ∈ C2([−τ, 0],R2) and zit (t) = zi (t + θ), θ ∈ [−σ, 0], i = 1, 2.
By the definition of g, notice that F (σ, φ) has a continuous first and second continuous

derivatives in φ for all σ real and φ in C := C2([−τ, 0],R2) and F(σ, 0) = 0 for all σ > 0
(notice that 0 = (0, 0) is the equilibrium point for (13) and (m, 0) is the equilibrium point
for (7) and that g(m, 0) = 0). These properties on F and the initial condition (8) ensure
affirmative and convenient answers to the basic fundamental theory [16, Chap. 2].

Theorem 2 For F defined in (13), there exists τ0 > 0 such that the problem RFDE (8), (10)
for this τ0 has a periodic solution.

Proof For the proof of this result we use the Hopf bifurcation Theorem 1. To do that, we
need to prove that the hypothesis (H1) and (H2) are fulfilled.

By the definition (11) of L, the simple purely imaginary characteristic root of the
RFDE(L (τ )) can be identify with the simple purely imaginary characteristic roots of system
(6). To prove (H1) we compute the root u = x + iy of the system (6 ). From the Implicit
Function Theorem, there exist τ0 such that 0 < τ < τ0 there exist solutions for (6). Now we
obtain the purely imaginary roots u0 = y0i , taking x = 0. From the last system we obtain
that y0 has to verify the following system

−y2 sin(y) + DK τ y = 0,

−y2 cos (y) + Dτ 2 = 0.

Solving in τ , we obtain that

y0± (τ ) = ±τ

√
2

2
D1/2

(√
K 4D2 + 4 + K 2D

)1/2 �= 0, τ > 0.

Let u0± = y0± i . Thus (H1) is fulfilled.
We need to check that the transversality condition (H2) holds when x = 0. We derivate

implicitly the quasi-characteristic equations (5). Let J1 (x, y) be the real part of left hand
side of (5) and J2 (x, y) the imaginary part of left hand side of (5) denoting w = x + iy.
Now the Eq. (5) is

J1 (x, y) + J2 (x, y) i = 0,

with

J1 (x, y) = (
x2 − y2

)
exτ cos (yτ) − 2xyexτ sin (yτ) + DK x + D,

J2 (x, y) = 2xyexτ cos (yτ) + (
x2 − y2

)
exτ sin (yτ) + DK y

(see (6)). To obtain x ′ := d
dτ

x (τ ) and y′ := d
dτ

y (τ ), we derivate the last equation:

∂

∂x
J1 (x, y) x ′ + ∂

∂ y
J1 (x, y) y′ = 0,

∂

∂x
J2 (x, y) x ′ + ∂

∂ y
J2 (x, y) y′ = 0.
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We are interested in nontrivial solutions for this linear system in
(
x ′, y′). Thus, we impose

the condition that the range of the matrix of system is one. So we compute the determinant
of the matrix of the system

�(x, y) =

∣
∣
∣
∣
∣
∣∣

∂

∂x
J1(x, y)

∂

∂ y
J1(x, y)

∂

∂x
J2(x, y)

∂

∂ y
J2(x, y)

∣
∣
∣
∣
∣
∣∣
.

The hypothesis of transversality (H2) is equivalent to verify that the derivative of the real part
in the point (0, y) is different from zero. So, we solve �(0, y) = 0. Calculating the partial
derivatives and substituting above and computing for x = 0, we obtain

∂

∂x
J1 (0, y) = K D − 2y sin (yτ) − y2τ cos (yτ) ,

∂

∂ y
J1 (0, y) = −2y cos (yτ) + y2τ sin (yτ) ,

∂

∂x
J2 (0, y) = 2y cos (yτ) − y2τ sin (yτ) ,

∂

∂ y
J2 (0, y) = K D − 2y sin (yτ) − y2τ cos (yτ) ,

� (0, y) =
∣∣∣∣∣

K D − 2y sin (yτ) − y2τ cos (yτ) −2y cos (yτ) + y2τ sin (yτ) ,

2y cos (yτ) − y2τ sin (yτ) K D − 2y sin (yτ) − y2τ cos (yτ)

∣∣∣∣∣
,

� (0, y) = (
K D − 2y sin (yτ) − y2τ cos (yτ)

)2 + (
2y cos (yτ) − y2τ sin (yτ)

)2
.

For the values such that � is zero the (H2) of the Hopf conditions is fulfilled and there are
changes of the structure from constant to periodic solutions according with the numerical
results. To look for solutions to equation �(0, y) = 0, it is equivalent to look for solutions
to the following nonlinear system

K D − 2y sin (yτ) − y2τ cos (yτ) = 0

2y cos (yτ) − y2τ sin (yτ) = 0.

Taking in the account z = yτ , and the fact that τ > 0 and y �= 0, we can obtain numericaly
that �(0, 0.501389) ≈ 10−9 for τ = 2.147780, K = 11.389 and D = 0.1. For these
parameters we solve numerically the problem (7)–(8) by using the code dde23 of Matlab
R2018a. Additionally this procedure allows us to present graphically the appearance (see
Fig. 4) of a periodic solution for the problem (7)–(8). ��

In these phenomena we obtain a transition from a constant distance between two vehicles
to another behavior which is oscillatory and this change can be noticed in the real traffic.
This change of the structure, a bifurcation, is due to a delay in the action of the driver and
the vehicle.

Numericaly, we only can show the behavior of solution in ’windows’ of finite time,
to perceived oscillations of numerical solution in suchs ’time windows’ (see Fig. 5). We
compute, for any delay τ , the mean of oscilations of numerical solution within the time
intervals [0, 20], [20, 20 + 20], ..., [ti , ti + 20], ..., [1340, 1360] (from the physical point of
view, we have done numerical simulations for almost four hours of car-following). We can
see that for any fixed time interval (for instance the curve (τ, t ∈ [300, 320], ampitude))
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(a)

(b)
(c)

Fig. 4 Delay time τ = 2.147780. A stable periodic solution appears. The follower doesn’t get a constant
velocity as the leader

Fig. 5 Graph of the delay, time intervals and amplitudes (initial conditions given in (9))
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the stationary solutions appear (the oscilation is zero) for small enough delay. The curve
shows a typical diagram of bifurcation. The changes from constant to oscillatory behaviour
are represented in the red curve at the plane (delay, time, 0). Figure 5 show that for large
time, the behavior of solution for τ constant goes from oscilatory to constant behavior, for
example the curve for τ = 1.38 s or τ = 1−48 s. Nevertheless, we have not done numerical
simulation for large enouhg time in order to get the constant behavior to curve with τ = 1.53
s.When the changes of the structure consist in the change of a stationary solution, as it is from
a constant to a periodic solution the process we obtain a Hopf Bifurcation. This situation is
obtained in Theorem 2 for τ = 2.147780 s for large time.

The delay as a reaction time, mainly that of drivers, may also depends on the relative
distances or velocities, that is, the state of the system. So, it would be interesting to extend
this results to that case [3], although the approach to the study of periodic behaviour is
somewhat different. The result obtained in this work could also be extended by looking for
the solutions as a series expansion of powers of τ [6].
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