
RACSAM (2022) 116:43
https://doi.org/10.1007/s13398-021-01189-y

ORIG INAL PAPER

On a new type of boundary condition

Pablo Pedregal1

Received: 2 July 2021 / Accepted: 6 November 2021 / Published online: 27 November 2021
© The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2021

Abstract
Pushed by inverse problems in conductivity in the 3-dimensional setting, we introduce
new types of boundary conditions for variational and PDE problems, that in some sense
cover the middle space between the classical Dirichlet and Neumann conditions, meant in a
essentially different way with respect to mixed boundary conditions. These new boundary
conditions are associated with special subspaces of Sobolev spaces between H1

0 (�) and the
full space H1(�). Though problems can be considered in W 1,p(�) for p �= 2, in this initial
contribution we just examine existence and optimality for regular variational problems under
typical assumptions within the scope of H1(�). In addition to the existence of minimizers,
we would like to stress the intriguing form of optimality at the boundary ∂�. We especially
treat the case N = 3, which is the most interesting case, and describe similar conditions in
any dimension N ≥ 2. The numerical approximation definitely requires new ideas.

Keywords Sobolev subspaces · Variational problems · Optimality conditions

Mathematics Subject Classification 35J20 · 35J25 · 49K20

1 Introduction

We would like to examine some new types of boundary conditions for variational problems
and PDEs that are motivated by the application of some variational methods to inverse
problems in conductivity in the 3-dimensional situation. The 2-dimensional situation has
been analyzed recently in [7]. Check also [2] for different ideas for the 3-dimensional case.
Though one can deal with the general case N ≥ 2, for the sake of definiteness, we will restrict
attention most of the time to the case N = 3 to better understand the ideas. For dimension
N = 1, the situation is meaningless essentially because the boundary of an interval is a
disconnected set consisting of two isolated points. We will point out to this difficulty later.
In some sense, this new type of boundary condition is a middle point between the classical
Dirichlet and Neumann conditions as they are associated with subspaces between H1

0 (�)
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and H1(�). We will comment on the situation in full generality in the final section. Some
of the ideas that motivated this analysis are also reminiscent of similar ones in [3]. We have
found no more references in this regard.

Let � ⊂ R
3 be a domain as smooth as we may need it to be. We can think of � as

a ball, to make things more transparent. For an arbitrary function w ∈ H1(�) with range
J ≡ imagew ⊂ R, an interval, consider the following subspaces of H1(�)

Lw = {ψ(w) : ψ : J → R, measurable, ψ(w) ∈ H1(�)},
Hw = Lw + H1

0 (�).

Functions of the form ψ(w) for ψ ∈ W 1,∞(J ) belong to Lw if � is bounded, for example.
Note how Lw is a subspace of H1(�) given the conditions assumed on feasible functions ψ

in Lw. It will be more precisely defined below (see Sect. 3). It is elementary to realize that
indeed

H1
0 (�) ⊂ Lw + H1

0 (�) ⊂ H1(�),

for any w ∈ H1(�) \ H1
0 (�). Intuitively, functions v ∈ Hw are such that their traces on ∂�

only depend on w in the sense that v = ψ(w) on ∂� for arbitrary real functions ψ .
Any other additional, given function v0 ∈ H1(�), determines the linearmanifold v0+Hw.

In fact, if v0 ∈ Hw , then such linear manifold yields back the subspace Hw . To avoid this
special situation in which v0 + Hw is, in fact, the same subspace Hw , we must make sure
that v0 /∈ Hw . We want to understand the variational problem

Minimize in v ∈ v0 + Hw : 1

2

∫
�

|∇v(x)|2 dx, (1.1)

or more generally

Minimize in v ∈ v0 + Hw : 1

2

∫
�

φ(∇v(x), v(x), x) dx, (1.2)

for a convex integrand

φ(v, v, x) : R3 × R × � → R

under the additional standard quadratic growth condition

c(|v|2 + v2 − 1) ≤ φ(v, v, x) ≤ C(|v|2 + v2 + 1).

There are three main initial points of interest:

(1) existence of optimal solutions v ∈ v0 + Hw;
(2) form of boundary requirements for such a minimizer v;
(3) numerical approximation of v.

We will focus, in this first contribution, on the first two issues. For the third one, new ideas
are necessary as the usual finite element software packages are not typically prepared to deal
with this kind of boundary conditions. Our main results are the following.

Theorem 1.1 Under the specified assumptions, there areminimizers v ∈ v0+Hw for problem
(1.2). If, in addition, the integrandφ is strictly convex in pairs (v, v) for each individual x ∈ �,
then the minimizer is unique.

The form of the associated boundary condition for a minimizer v is quite appealing and
unexpected.
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Theorem 1.2 Under technical conditions that are specified below, a minimizer v ∈ v0 +Hw

of problem (1.2) is a weak solution of

−div[∇vφ(∇v, v, x)] + φv(∇v, v, x) = 0 in �,

together with
∫

{w=λ}∩∂�

∇vφ(∇v(x), v(x), x) · n(x) dx = 0 (1.3)

for every λ ∈ J (recall J = imagew), where n is the outer, unit normal to ∂�.

Note how optimality condition (1.3) is an average condition on the normal component over
level sets of w restricted to ∂�.

To see more clearly the structure of such problems, and gain some initial intuition with
this kind of boundary conditions, let us state briefly the conclusions of our results for the
following particular case:

(1) domain � = B, the unit ball of R3;
(2) quadratic integrand

φ(v, v, x) = 1

2
|v|2 + 1

2
v2 − f (x)v,

for a certain f ∈ L2(�);
(3) w(x) = x1, v0 ≡ 0.

It is elementary to conclude that we are looking at the problem

Minimize in v ∈ H1(B) :
∫
B

[
1

2
|∇v(x)|2 + 1

2
v(x)2 − f (x)v(x)

]
dx

subject to the condition that the restriction of v to ∂B is a function of x1 alone. There is a
uniqueminimizer v for such a problem, according to our results below. Optimality conditions
lead to the PDE-problem

−�v + v = f in B,

together with

v(x) = ψ(x1) on ∂B

for a certain unknown functionψ of a single variable, that is determined through the condition
∫

{x1=λ}∩∂�

∇v(x) · n(x) dx = 0

for every λ ∈ [−1, 1].
Before starting with our analysis, it is worth to devote some time to explain the reasons

that motivate such boundary conditions, beyond its purely mathematical interest. It will also
help us in better appreciating its nature and its geometrical meaning.

We know that when the normal derivative is involved in differential problems, one has to
pay attention to the translation-invariant issue. We briefly comment on such situation too.
The last section indicates the changes in a higher-dimensional scenario in full generality.
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2 Inverse problems in conductivity

Our discussion in this section is, for the most part, informal. Our only aim is to motivate
how the condition v ∈ v0 + Hw arises in some problems, and how it can be interpreted
geometrically.

A typical Calderón problem in dimension 3 (for one measurement) reads as follows:

For a pair of boundary data (u◦, v◦) taken from a suitable class on ∂�, find a conduc-
tivity coefficient

γ (x) : � → R
+

such that the unique solution u of the problem

div(γ∇u) = 0 in �, u = u◦ on ∂�, (2.1)

complies with

γ∇u · n = v◦ on ∂� (2.2)

as well.

The literature on this problem is quite abundant (check, for instance, the two recent gen-
eral sources [1], [5]). The so-called Dirichlet-to-Neumann operator is one main tool in this
analysis.

A variational perspective on this problem, as developed in [7] for the 2-dimensional case,
aims at determining the conductivity coefficient γ through the solution of a non-linear, non-
convex vector variational problem. In the 3-dimensional case, problem (2.1) can be formally
interpreted as

γ∇u = ∇v ∧ ∇w in �, u = u◦ on ∂�, (2.3)

for suitable functions v and w, while the Neumann condition (2.2) becomes

(∇v ∧ ∇w) · n = v◦ on ∂�.

Some times the functions v andw in (2.3) are referred to as Clebsch potentials. If wemultiply
(2.3) by ∇w, and divide through by γ , we find

∇u ∧ ∇w = 1

γ
(∇v ∧ ∇w) ∧ ∇w.

This identity is informing us that

div

[
1

γ
(∇v ∧ ∇w) ∧ ∇w

]
= 0 in �. (2.4)

If the coefficient γ is unknown, we can always try to recover it through the quotient

γ = |∇v ∧ ∇w|
|∇u| .

If we replace this formula in the two equations (2.1) and (2.4), we arrive at the two coupled
equations

div

[ |∇v ∧ ∇w|
|∇u| ∇u

]
= 0 in �, (2.5)
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div

[ |∇u|
|∇v ∧ ∇w| (∇v ∧ ∇w) ∧ ∇w

]
= 0 in �, (2.6)

that must be completed with the boundary conditions

u = u◦, (∇v ∧ ∇w) · n = v◦ on ∂�.

It turns out that the two previous PDEs correspond exactly to the Euler-Lagrange equations
for the functional

E(u, v) =
∫

�

|∇u(x)| |∇v(x) ∧ ∇w(x)| dx (2.7)

where the function w(x) is assumed to be given. The boundary condition for u is clear as it
is a standard Dirichlet condition. The one for v as

(∇v ∧ ∇w) · n = v◦ on ∂� (2.8)

is not so. The strategy to determine or approximate the unknown conductivity coefficient γ
from the measurement (u◦, v◦) is then to solve system (2.5)–(2.6) as the optimality system
of the functional E in (2.7) under the given boundary condition u = u◦ for u, and (2.8)
for v. We would like to argue that this boundary condition is of the form described in the
Introduction.

Suppose v0 is a particular function such that (2.8) holds

(∇v0 ∧ ∇w) · n = v◦ on ∂�.

Proposition 2.1 The boundary condition (2.8) for v is equivalent to

v ∈ v0 + Hw,

with the notation introduced earlier.

Proof Thanks to the linearity of condition (2.8) with respect to v, it suffices to check that

v ∈ Hw ⇐⇒ (∇v ∧ ∇w) · n = 0 on ∂�.

We can write (2.8), for v◦ = 0, in the form

∇v · (∇w ∧ n) = 0 on ∂�. (2.9)

For vectors a ∈ R
3, we will write

a = a · n n + at

for the decomposition of a in the n-direction, and its corresponding orthogonal component
to n for any unit vector n ∈ R

3. If at points x on ∂�, n = n(x) indicates the outer, unit
normal, (2.9) becomes

∇v t · (∇w t ∧ n) = 0 on ∂�,

because the contribution in this equation of both ∇v and ∇w along the normal direction
n vanishes. Since now both vectors ∇v t , ∇w t are orthogonal to n, the previous equation
amounts to

∇v t ‖ ∇w t on ∂�,
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and this in turn implies that there is a functional relationship between v and w on ∂�, i.e.

v = ψ(w) on ∂�.

This exactly means that v ∈ Hw . ��
The conclusion is then

v ∈ Hw ⇐⇒ v = ψ(w) on ∂�

⇐⇒ ∇v · (∇w ∧ n) = 0 on ∂� ⇐⇒ ∇v t ‖ ∇w t on ∂�.

Note how these identifications furnish the right way to interpret the boundary condition on
left-hand side: v ∈ Hw when the level curves of v, restricted to ∂�, are the same as those
of w. This boundary condition restricts, in this way, the level curves of feasible functions on
∂�.

The 3-dimensional inverse-conductivity problem for a single measurement (u◦, v◦) can
be treated in three steps as follows.

(1) Select a non-constant function w ∈ H1(�), and find v0 ∈ H1(�) such that

v◦ = ∇v0 · (∇w ∧ n) on ∂�.

(2) Find a solution (u, v) of the coupled, non-linear system of PDEs

div

[ |∇v ∧ ∇w|
|∇u| ∇u

]
= 0 in �, (2.10)

div

[ |∇u|
|∇v ∧ ∇w| (|∇w|21 − ∇w ⊗ ∇w)∇v

]
= 0 in �, (2.11)

under the boundary conditions

u − u◦ ∈ H1
0 (�), v − v0 ∈ Hw (2.12)

on ∂�.
(3) Put

γ = |∇v ∧ ∇w|
|∇u| in �.

The interesting fact is that the pair (u, v) solution of the impressive non-linear system (2.10)–
(2.11) under boundary conditions (2.12) can be sought (in fact this is the only way one can
deal with such a system) as a minimizer for the variational problem

Minimize in (u, v) ∈ H1(�;R2) :
∫

�

|∇u| |∇v ∧ ∇w| dx (2.13)

under

u − u◦ ∈ H1
0 (�), v − v0 ∈ Lw + H1

0 (�).

The description of this procedure to solve the inverse-conductivity problem is purely formal
since it is not clear how to handle either Steps 1 or 2. Note that problem (2.13) is a vector,
non-(quasi)convex, non-coercive problem with an unfamiliar boundary conditions for v. It
is a specific problem under the most adverse of circumstances. Yet some interesting things
can be tried out as in the 2-dimensional [7], and even the 3-dimensional cases [2]. We plan
to address the analysis of that particular problem from this perspective in the future.
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3 The subspace Lw

Once we have motivated the interest of such a boundary condition

v ∈ v0 + Lw + H1
0 (�)

for a fixed, given function w ∈ H1(�), we would like to investigate the two fundamental
issues related to the corresponding variational problem

Minimize in v ∈ v0 + Lw + H1
0 (�) :

∫
�

φ(∇v(x), v(x), x) dx (3.1)

for a certain integrand

φ(v, v, x) : R3 → R

which is C1 with respect to variables (v, v). Those two basic questions are the existence of
minimizers, and the form of optimality conditions that such minimizers should comply with.

Before we prove existence of minimizers, we ought to define more precisely the subspace
Lw . To this end, we use Sobolev spaces with weights as introduced and considered in many
places (see the classic monographs [6] or [8]). We do it in a very particular situation.

Definition 3.1 (1) A weight ω(λ) in J ⊂ R is a measurable strictly positive function in J .
(2) For a weight ω(λ) : J → R

+, we define the weighted Lebesgue space

L2
ω(J ) =

{
ψ, measurable :

∫
J
φ(λ)2ω(λ) dλ < ∞

}
.

(3) For two given weights ωi (λ) : J → R
+, i = 0, 1, we define the corresponding weighted

Sobolev space

H1
ω0,ω1

(J ) = {ψ ∈ L2
ω0

(J ) : ψ ′ ∈ L2
ω1

(J )}.
Associated with the function w ∈ H1(�) with range J , we define its two corresponding
weights

ω0(λ) = |{w = λ} ∩ �| =
∫

{w=λ}∩�

dS(x), (3.2)

ω1(λ) =
∫

{w=λ}∩�

|∇w(x)|2 dS(x), (3.3)

where dS(x) is the appropriate dimensional Lebesgue measure.
To have a more intuitive feeling about these spaces, let us look at some simple situations.

Example 3.1 Consider the class of functions in H1(B), for the unit ball B of R3, that are
functions u = u(x1) of x1 alone. It is not difficult to conclude that the property characterizing
these functions is∫ 1

−1
u(x1)

2(1 − x21 ) dx1 +
∫ 1

−1
u′(x1)2(1 − x21 ) dx1 < ∞.

In this particular case both ω0 and ω1 are equal to

ω(λ) = (1 − λ2),

and H1
ω,ω(−1, 1) is precisely the class of functions u = u(x1) of one variable x1 in the

interval (−1, 1) that, in fact, belong to H1(B).
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Example 3.2 In the same domain B, the unit ball in R3, take

w(x) = w(x1, x2, x3) = x3
1 + x21 + x22

.

The level surfaces are paraboloids of various apertures. For this case, we have

ω0(λ) = |{x3 = λ(1 + x21 + x22 )} ∩ B|
while

ω1(λ) =
∫

{x3=λ(1+x21+x22 )}∩B
|∇w(x)|2 dS(x),

for λ ∈ (−1, 1). The class of real functions ψ(λ) for λ ∈ (−1, 1) such that the composition
ψ ◦ w belongs to H1(B) is just H1

ω0,ω1
(−1, 1).

Computing these twoweightsω0 andω1 is an interesting exercise inMultivariate Calculus.
For instance

ω0(λ) =
{ π

6λ2
[
(1 + 4λ2r(λ)2)3/2 − 1

]
, λ ∈ [−1, 1] \ {0},

π, λ = 0,

where

r(λ) = 1 −
(√

2 + 1

4λ2
− 1

2λ

)2

.

A similar computation can lead to a more explicit formula for

ω1(λ) =
∫

{x3=λ(1+x21+x22 )}∩B
1 + 4x23 (x

2
1 + x22 )

(1 + x21 + x22 )
2

dS(x).

Definition 3.2 For a function w ∈ H1(�) with range J ⊂ R, we put

H1
w(J ) = H1

ω0,ω1
(J )

for weights given in (3.2) and (3.3).

From Measure Theory, we know that

dx|� = dS(x)|{w=λ}∩� ⊗ dλ|J ,

and thus integrals of the form
∫

�

G(x)φ(w(x)) dx (3.4)

can be computed through the decomposition
∫
J
φ(λ)

[∫
{w=λ}∩�

G(x) dS(x)

]
dλ, (3.5)

for a measurable G such that the product G(x)ψ(w(x)) turns out to be integrable in �. In
particular,
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∫
�

|ψ ◦ w(x))|2 dx =
∫
J
|ψ(λ)|2

[∫
{w=λ}∩�

1 dS(x)

]
dλ

=
∫
J
|ψ(λ)|2ω0(λ) dλ

according to (3.2), while∫
�

|∇(ψ ◦ w)(x)|2 dx =
∫

�

ψ ′(w(x))2|∇w(x)|2 dx

=
∫
J
ψ ′(λ)2

[∫
{w=λ}∩�

|∇w(x)|2 dS(x)

]
dλ

=
∫
J
ψ ′(λ)2ω1(λ) dλ,

according to (3.3). These calculations clearly show that

H1
w(J ) ⊂ Lw.

Definition 3.3 We take

Lw ≡ H1
w(J )

which is a closed subspace of H1(�).

4 Existence

We are now ready to deal with our basic existence result.

Theorem 4.1 Let the density

φ(v, v, x) : R3 × R × � → R

be convex in the v-variable, and coercive in the sense

c(|v|2 + v2 − 1) ≤ φ(v, v, x), v ∈ R
3, v ∈ R, x ∈ �, c > 0. (4.1)

Then problem (3.1) admits, at least, one optimal solution. If, in addition, φ is assumed to be
strictly convex in pairs (v, v), the solution is unique.

Though the proof may look straightforward, it requires a preliminary interesting discussion
because the subspace Hw of H1(�), as the sum of two additional closed subspaces Lw and
H1
0 (�), may not be a direct sum, i.e. the intersection might not be the trivial subspace. This,

in particular, would imply that Hw might not be weakly closed, or simply closed for that
matter being a subspace. Once this trouble is overcome, the proof is elementary along the
direct method of the Calculus of Variations.

Proof Suppose first that the function w ∈ H1(�) is such that the two subsets of R

J ≡ {w(x) : x ∈ �}, J∂ ≡ {w(x) : x ∈ ∂�}, (4.2)

are the same one. Note that this condition is impossible in dimension N=1 because ∂�would
be a discrete subset. We claim that, in this situation, the intersection Lw ∩ H1

0 (�) is trivial.

123



43 Page 10 of 14 P. Pedregal

Indeed, if ψ(w) ∈ H1
0 (�), then we must have ψ |J∂ = 0, which, under our hypothesis,

implies ψ |J = 0. This clearly means that ψ(w) ≡ 0.
On the other hand, both subspaces, independently, are closed in H1(�), and then one can

define the two continuous (non-orthogonal) projections

π1 : Lw + H1
0 (�) �→ Lw, π2 : Lw + H1

0 (�) �→ H1
0 (�),

in such a way that

‖πi u‖ ≤ C‖u‖, i = 1, 2, u ∈ Hw,C > 0.

We claim thatHw is then closed (or weakly closed) in H1(�). To briefly check this, suppose
that

u j = ψ j (w) + v j → u in H1(�).

By the just indicated properties of the projections and the fact that both Lw and H1
0 (�) are

closed, for suitable subsequences that we do not care to relabel, we would have

ψ j (w)⇀ψ(w), v j⇀v,

for some ψ ∈ H1
w(J ), and v ∈ H1

0 (�). By the uniqueness of limits, we must necessarily
have u = ψ(w) + v and u ∈ Hw . Again, since Hw is a subspace, it is also weakly closed.

With this information at our disposal, the proof of our result is now straightforward.
Indeed, if {v0 + v j } is minimizing, then by the coercivity (4.1), {v j } is uniformly bounded in
Hw in such a way that a non-relabeled subsequence converges weakly to some v ∈ Hw by
our discussion above. The sum v0 + v is feasible for our problem, and the convexity implies
that it is a minimizer.

It remains to remove the constraint related to the two subsets J and J∂ in (4.2). But this
is easy if we realize that the subspace Hw only depends upon w through its values at the
boundary ∂�. This is precisely the effect of adding H1

0 (�) to Lw. Said differently,

w1 − w2 ∈ H1
0 (�) implies Hw1 = Hw2 . (4.3)

In particular, given w we can change it to ŵ respecting the same boundary conditions but
enjoying property (4.2) without changing Hw. This is always possible, thanks to the classic
maximum principle, as we can take ŵ to be, for instance, the harmonic function sharing with
w the boundary values along ∂�.

The uniqueness under strict convexity is standard. ��
According to (4.3), we will always assume, without further notice, that the function w is

taken to enjoy (4.2).

5 Optimality

Optimality conditions for the minimizer u of problem (3.1) is the second most important
issue to be understood. Since the relevant part of the functional concerning optimality and
how it is reflected on a condition on the boundary is the dependence of the integrand φ on
variable v = ∇v, we will reduce the main argument to such a simplified situation.

Theorem 5.1 Suppose φ(v) : R3 → R is a C1-integrand for which,

c(|v|2 − 1) ≤ φ(v) ≤ C(|v|2 + 1),
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|∇φ(v)| ≤ C(|v| + 1).

If v is a minimizer of the problem

Minimize in v ∈ v0 + Hw :
∫

�

φ(∇v(x)) dx

then v ∈ v0 + Hw is a weak solution of

div[∇φ(∇v)] = 0 in �,

together with ∫
{w=λ}∩∂�

∇φ(∇v(x)) · n(x) dx = 0

for every λ ∈ J , where n is the outer, unit normal to ∂�.

Proof As usual, one can perform variations of the form v + εV for arbitrary V ∈ Hw , and
demand that

0 = d

dε

∣∣∣∣
ε=0

∫
�

φ(∇v(x) + ε∇V (x)) dx.

Under our hypotheses in the form of bounds on both φ and its gradient ∇φ, it is legitimate
to take the derivative under the integral sign and conclude

0 =
∫

�

∇φ(∇v(x)) · ∇V (x) dx

for all such V . We can select first V ∈ H1
0 (�) (by taking ψ ≡ 0), and conclude, through a

usual integration by parts, that

div[∇φ(∇v)] = 0 in �.

Once we have this information, for a general function of the form V = ψ(w), we would
conclude, again by a usual integration by parts, that∫

∂�

∇φ(∇v(x)) · n(x)ψ(w(x)) dx = 0 (5.1)

for all feasible ψ . If we put

G(x) ≡ ∇φ(∇v(x)) · n(x),

a similar discussion as the one related to (3.4) and (3.5) but restricted to ∂� instead of �,
leads to expressing (5.1) in the form∫

J

∫
{w=λ}∩∂�

G(x)ψ(w(x)) dS(x)|{w=λ} dλ.

Recall that w is assumed to have been selected so that J and J∂ are the same subset of R.
Those integrals therefore become

0 =
∫
J
ψ(λ)G(λ) dλ, G(λ) =

∫
{w=λ}∩∂�

G(x) dS(x)|{w=λ} .

The arbitrariness of ψ ∈ H1
w(J ) forces, if all these integrals vanish, to

0 =
∫

{w=λ}∩∂�

G(x) dS(x)|{w=λ} ,
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for all λ ∈ J . This condition is nothing but∫
{w=λ}∩∂�

∇φ(∇v(x)) · n(x) dx = 0

for all λ ∈ J . ��

6 The situation of translation-invariance

Because of the relevance of problem (1.1),wewould like to address its solution. The particular
ingredient to be taken into account is the fact thatLw is translation invariant (adding a constant
to an element of Lw , keeps the function in the same subspace) if � is bounded. This implies
that an additional normalization constraint must be enforced in case functionals are also
translation invariant, like the one in problem (1.1), much in the same way as with Neumann
boundary conditions. In such situations, we put

L2
0(�) =

{
u ∈ L2(�) :

∫
�

u(x) dx = 0

}
,

and regard Lw as incorporating this integral constraint

Lw �→ Lw ∩ L2
0(�).

Other normalization conditions can be used in the same way.
Once this peculiarity has been taken care of, the application of our results on existence

and optimality are exactly like the ones in the previous section. The following is a direct
corollary of the previous results. It refers to problem (1.1)

Minimize in v ∈ v0 + Hw : 1

2

∫
�

|∇v(x)|2 dx (6.1)

where

Hw = Lw ∩ L2
0(�) + H1

0 (�).

Corollary 6.1 (1) There is a unique minimizer v ∈ v0 + Hw for problem (6.1).
(2) The minimizer v ∈ v0 + Hw is harmonic in �, �v = 0, and∫

{w=λ}∩∂�

∇v(x) · n(x) dx = 0

for all λ ∈ J .

7 Amore general framework

Once the main idea for the previous analysis has been settled, it is not difficult to treat other
more general situations.

Let � ⊂ R
N be a domain, and let

w(x) : � → R
n, n ≤ N ,

be a mapping such that:
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(1) w ∈ H1(�;Rn);
(2) D = w(�) is a domain in R

n ; and
(3) D = w(∂�), as well.

Definition 7.1 We define the space

H1
w(D) = {
 ∈ L2

ω0
(D) : ∇
 ∈ L2

ω1
(D;Rn)}

where this time

ω0( y) = |{w = y} ∩ �| =
∫

{w= y}∩�

1 dS(x), y ∈ D, (7.1)

ω1( y) =
∫

{w= y}∩�

∇w(x)∇w(x)T dS(x) ∈ R
n×n, y ∈ D. (7.2)

The space L2
A(D;Rn), for a positive-definite matrix field A( y) ∈ R

n×n , contains all mea-
surable fields u : D → R

n such that∫
D
u( y)TA( y)u( y) d y < ∞.

Mimicking the previous discussion, we introduce the following spaces.

Definition 7.2 We introduce the closed subspace

Lw = {
 ◦ w : 
 ∈ H1
w(D)}

of H1(�;Rn). Even more, ifW is itself a closed subspace of H1
w(D), we can also consider

Lw,W = {
 ◦ w : 
 ∈ W}
as a closed subspace of H1(�;Rn).

For a typical example where the subspaceW could be taken as a proper subspace of H1
w(D),

one can think of

W = {
 ∈ H1
w(D) : 
|D̂ ≡ 0}

for a subset D̂ ⊂ D. In the particular case n = 1, where D = J is an interval of R,

W = {ψ ∈ H1
w(J ) : ψ( Ĵ ) = 0}

for Ĵ ⊂ J . Ĵ could be just one single point, or a discrete subset.
Suppose one suchw ∈ H1(�;Rn) has been chosen, and a suitable subspaceW of H1

w(D)

selected, as described above. For a density

φ(u, u, x) : RN × R × � → R

that is convex in the variable u and coercive in the sense

c(|v|2 + v2 − 1) ≤ φ(v, v, x), v ∈ R
N , v ∈ R, x ∈ �, c > 0,

we consider the variational problem

Minimize in v ∈ v0 + Hw :
∫

�

φ(∇v(x), v(x), x) dx, (7.3)

where Hw = Lw + H1
0 (�), and an additional v0 /∈ Hw has been suitably selected.

The following two results have identical proofs than their earlier versions.
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Theorem 7.1 Under the assumptions given, there is a minimizer v ∈ v0 + Hw of problem
(7.3). If, in addition, φ(v, v, x) is strictly convex in pairs (v, v), then the minimizer is unique.

Theorem 7.2 Suppose φ(v) : RN → R is a C1-integrand for which,

c(|v|2 − 1) ≤ φ(v) ≤ C(|v|2 + 1),

|∇φ(v)| ≤ C(|v| + 1).

If v is a minimizer of the problem

Minimize in v ∈ v0 + Hw :
∫

�

φ(∇v(x)) dx

then v ∈ v0 + Hw is a weak solution of

div[∇φ(∇v)] = 0 in �,

together with ∫
{w= y}∩∂�

∇φ(∇v(x)) · n(x) dx = 0

for every y ∈ D, where n is the outer, unit normal to ∂�.
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