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Abstract
We present new consistent goodness-of-fit tests for exponential distribution, based on the
Desu characterization. The test statistics represent theweighted L2 and L∞ distances between
appropriate V-empirical Laplace transforms of random variables that appear in the character-
ization. In addition, we perform an extensive comparison of Bahadur efficiencies of different
recent and classical exponentiality tests. We also present the empirical powers of new tests.

Keywords Goodness-of-fit · Exponential distribution · Laplace transform · Bahadur
efficiency · V-statistics
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1 Introduction

To justify the use of more complicated models for lifetime data, one of the first steps is
to reject the most simple one, the exponential. For this purpose numerous tests have been
developed and are available in the literature.

The classical, and most commonly used procedure, is to apply one of universal time-
honored goodness-of-fit tests based on empirical distribution function, such as Kolmogorov–
Smirnov, Cramér–von Mises, Anderson–Darling. To make them applicable to the case of
a composite null hypothesis, the Lilliefors modification with estimated rate parameter is
frequently used.

Another approach is to use tests tailor-made for testing exponentiality. Such tests usually
employ some special properties of the exponential distribution. Various integral transform
related properties have been exploited: characteristic functions (see e.g. [17,19,20]); Laplace
transforms (see e.g. [18,24,30]); and other integral transforms (see e.g. [25,29]). Other pos-
sible properties include maximal correlations (see [15,16,48]), entropy (see [1]), etc.
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An important type of such properties are the characterizations of the exponential dis-
tribution. Many of them, being relatively simple, are very suitable for construction of
goodness-of-fit tests. This is especially true for the equidistribution-type characterizations.
Since the equality in distribution can be expressed inmanyways (equality of distribution func-
tions, densities, integral transforms, etc.), many different types of test statistics are available.
Tests that use U-empirical and V-empirical distribution functions, of integral-type (integrated
difference) and supremum-type, can be found in Nikitin and Volkova [42], Volkova [53],
Jovanović et al. [23], Milošević and Obradović [33], Milošević [31], Nikitin and Volkova
[43]. Weighted integral-type and L2-type tests that use U- or V-empirical Laplace transforms
are presented in Milošević and Obradović [32] and in Cuparić et al. [11].

The common approach to explore the quality of tests is to find their power against different
alternatives. Several papers are devoted to comparative power studies of exponentiality tests
(see e.g. [3,20,51]).

Another popular choice for the quality assessment is the asymptotic efficiency. In this
regard, however, no extensive study has been done. In this paper our aim is to compare the
exponentiality tests using the approximate Bahadur efficiency (see [5]).

We opt for the approximate Bahadur efficiency since it is applicable to asymptotically
non-normally distributed test statistics, and moreover it can distinguish tests better than
some other types of efficiencies like Pitman or Hodges–Lehmann (see [36]).

Consider the setting of testing the null hypothesis H0 : θ ∈ Θ0 against the alternative
H1 : θ ∈ Θ1. Let us suppose that for a test statistic Tn , under H0, the limit limn→∞ P{Tn ≤
t} = F(t), where F is non-degenerate distribution function, exists. Further, suppose that
limt→∞ t−2 ln(1−F(t)) = − aT

2 , and that the limit in probability Pθ limn→∞ Tn = bT (θ) >

0, exists for θ ∈ Θ1. The relative approximate Bahadur efficiency with respect to another
test statistic Vn is

e∗
T ,V (θ) = c∗

T (θ)

c∗
V (θ)

,

where
c∗
T (θ) = aT b

2
T (θ) (1)

is the approximate Bahadur slope of Tn . Its limit when θ → 0 is called the local approximate
Bahadur efficiency.

The tests we consider may be classified into three groups according to their limiting
distributions: asymptotically normal ones; those whose asymptotic distribution coincides
with the supremum of some Gaussian process; and those whose limiting distribution is an
infinite linear combination of independent and identically distributed (i.i.d.) chi-squared
random variables.

For the first group of tests, the coefficient aT is the inverse of the limiting variance. For the
second, it is the inverse of the supremum of the covariance function of the limiting process
(see [28]). For the third group, aT is the inverse of the largest coefficient in the corresponding
linear combination (see [55]), which is also equal to the largest eigenvalue of some integral
operator.

The goal of this paper is twofold. First, we propose two new classes of characterization
based exponentiality tests. One of them is of weighted L2-type, and the other, for the first
time, is based on L∞ distance between two V -empirical Laplace transforms of the random
variables that appear in the characterization.

Secondly, we perform an extensive efficiency comparison. Unlike for the remaining two,
for the third group of tests, the efficiencies have not been calculated so far. This is due to
the fact that the largest eigenvalue in question usually cannot be obtained analytically. We
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overcome this problem using a recently proposed approximation procedure from Božin et al.
[9].

The rest of the paper is organized as follows. In Sect. 2 we propose new tests and explore
their asymptotic properties. In Sect. 3 we give a partial review of test statistics for testing
exponentiality, together with their Bahadur slopes. Section 4 is devoted to the comparison of
efficiencies. In Sect. 5 we present the powers of new tests. Appendices A and B contain all
the proofs, while the tables with Bahadur efficiencies are given in Appendix C.

2 New test statistics

In this sectionwe present two newexponentiality tests based on the following characterization
from Desu [12].

Characterization 1 Let X1, ..., Xm be independent copies of a random variable X with pdf
f (x). Then for each m, X and m ·min(X1, ..., Xm) have the same distribution if and only if
for some λ > 0 f (x) = λe−λx , for x ≥ 0.

It is accustomed for goodness-of-fit testing purposes to use this characterization for
m = 2 (see e.g. [37,52]). Although some distributions different from exponential for which
2min(X1, X2) and X1 are equally distributed exist and can be constructed (see [21]), they
are of no practical interest and this special case is often referred to as Desu’s characterization
(see [38, Theorem 3]).

Let X1, X2, ..., Xn be a random sample from a non-negative continuous distribution. To
test the null hypothesis that the sample comes from the exponential distribution E(λ), with
an unknown λ > 0, we examine the difference L(1)

n (t) − L(2)
n (t), of V-empirical Laplace

transforms of X and 2min(X1, X2).
Clearly, if null hypothesis is true, the difference L(1)

n (t) − L(2)
n (t) will be small for each

t . Taking this into account we propose the following two classes of test statistics, with their
large values considered significant:

MD
n,a =

∫ ∞

0

(1
n

n∑
i1=1

e−tYi1 − 1

n2

n∑
i1,i2=1

e−t2min(Yi1 ,Yi2 )
)2
e−at dt;

LD
n,a = sup

t>0

∣∣∣
(1
n

n∑
i1=1

e−tYi1 − 1

n2

n∑
i1,i2=1

e−t2min(Yi1 ,Yi2 )
)
e−at

∣∣∣,

where Yi = Xi
X̄n

, i = 1, 2, . . . , n, is the scaled sample.
The sample is scaled to make the test statistic ancillary for the parameter λ and the purpose

of the tuning parameter a is tomagnify different types of deviations from the null distribution.

Remark 1 The supremum in the expression for test statistic LD
n,a is calculated using greed

search over fixed interval [0, A] with suitably chosen large value of A.
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2.1 Asymptotic properties under H0

Notice that MD
n,a is a V-statistic with estimated parameter λ̂, i.e. it can be represented in the

form

MD
n,a = MD

n,a (̂λn) = 1

n4
∑

i1,i2,i3,i4

H(Xi1 , Xi2 , Xi3 , Xi4 ; a, λ̂n),

where H is

H(x1, x2, x3, x4; a, λ̂n) = 1

4!
∑

π∈Π(4)

(
1

a + λ̂nxπ(1) + λ̂nxπ(3)

− 1

a + λ̂nxπ(1) + 2λ̂n min{xπ(3), xπ(4)}
− 1

λ̂nxπ(3) + 2λ̂n min{xπ(1), xπ(2)}
+ 1

a + 2λ̂n min{xπ(1), xπ(2)} + 2λ̂n min{xπ(3), xπ(4)}
)

,

where Π(4) is the set of all permutations of {1, 2, 3, 4}, and λ̂n is the reciprocal sample
mean.

Similarly, for a fixed t , the expression in the absolute parenthesis of the statistics LD
n,a is

a V-statistics that can be represented as

1

n2
∑
i1,i2

Φ(Xi1 , Xi2 ; t, a, λ̂n), (2)

where

Φ(x1, x2; t, a, λ̂n) = 1

2

(
e−t λ̂n x1 + e−t λ̂n x2 − e−t λ̂n2min(x1,x2)

)
e−at

is a symmetric function of its arguments.
From the law of large number for V-statistics with estimated parameters (see [22]), both

statistics converge in probability to zero if and only if the equidistribution in the Desu’s
characterization is satisfied, which happens under H0. Under H1, when the equidistribution
does not hold, both test statistics converge to a positive number, from where follows their
consistency.

The asymptotic behaviour of MD
n,a is given in the following theorem.

Theorem 2 Let X1, ..., Xn be i.i.d. with exponential distribution. Then

nMD
n,a

D→ 6
∞∑
k=1

δkW
2
k ,

where δk, k = 1, 2, ..., is the sequence of eigenvalues of the integral operator A defined by
Aq(x) = ∫ ∞

0 h̃2(x, y; a)q(y)dF(y), with h̃2(x, y) = E(H(·)|X1 = x, X2 = y) being the
second projection of kernel H(X1, X2, X3, X4; a, λ), and Wk, k = 1, 2, ..., are independent
standard normal variables.

The asymptotic behaviour of LD
n,a is given in the following theorem.
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Theorem 3 Let X1, ..., Xn be i.i.d. with exponential distribution. Then

√
nLD

n,a
D→ sup

t>0
|η(t)|,

where η(t) is a centered Gaussian process with the covariance function

K (s, t) = e−a(s+t)st(4 + 8s + 4s2 + 8t + 15st + 6s2t + 4t2 + 6st2)

(1 + s)(1 + t)(1 + s + t)(2 + 2s + t)(2 + s + 2t)(3 + 2s + 2t)
, s, t ≥ 0.

(3)

2.2 Approximate Bahadur slope

Let G = {G(x; θ), θ > 0} with corresponding densities {g(x; θ)} be a family of alternative
distribution functions with finite expectations, such thatG(x, θ) = 1−e−λx , for some λ > 0,
if and only if θ = 0, and the regularity conditions for V-statistics with weakly degenerate
kernels from Nikitin and Peaucelle [39, Assumptions WD] are satisfied.

The approximate local Bahadur slopes ofMD
n,a and L

D
n,a , for close alternatives, are derived

in the following theorem.

Theorem 4 For the statistics MD
n,a and LD

n,a and a given alternative density g(x, θ) from G,

the local Bahadur approximate slopes are given by

(1)

c∗
M (θ) = δ−1

1

∞∫

0

∞∫

0

h̃2(x, y)g
′
θ (x; 0)g′

θ (y; 0)dxdy · θ2 + o(θ2), θ → 0,

where δ1 is the largest eigenvalue of the integral operator A with kernel h̃2;
(2)

c∗
L(θ) = 1

supt K (t, t)
sup

(
2

∫ ∞

0
ϕ̃1(x; t)g′

θ (x; 0)dx
)2 · θ2 + o(θ2), θ → 0,

where ϕ̃1(x; t) = E(Φ(·)|X1 = x) with Φ being defined in (2).

Proof See Appendix A. 
�
To calculate the slope ofMD

n,a , one needs to find the largest eigenvalue δ1. Since it cannot be
obtained analytically, we use the approximation introduced in Božin et al. [9]. The procedure
utilizes the fact that δ1 is the limit of the sequence of the largest eigenvalues of linear operators
defined by (m + 1) × (m + 1) matrices M (m) = ||m(m)

i, j ||, 0 ≤ i ≤ m, 0 ≤ j ≤ m, where

m(m)
i, j = h̃2

(
i

m
B,

j

m
B

)√
e− i

m B − e− i+1
m B ·

√
e− j

m B − e− j+1
m B · 1

1 − e−B
, (4)

when m tends to infinity and B is constant chosen in such way that F(B) approaches 1.

3 Other exponentiality tests—a partial review

In this section we present test statistics of some classical and some recent goodness-of-fit
tests for the exponential distribution, along with their Bahadur local approximate slopes. For
some of the test statistics, the Bahadur local approximate slope (or exact slope which locally
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coincides with the approximate one) is available in the literature and for the others we derive
them in Appendix B.

As indicated in Introduction, we classify the tests according to their asymptotic distribu-
tion. The first group contains asymptotically normally distributed statistics.

– The test proposed by Epps and Pulley [13] based on the expected value of the exponential
density, with test statistic

EPn = √
48

(
1

n

n∑
j=1

e
− X j

Xn − 1

2

)
.

Its approximate Bahadur slope is

c∗
EP (θ) = 3

( ∞∫

0

(
4e−x + x

)
g′
θ (x; 0)dx

)2

· θ2 + o(θ2)

– The score test for the Weibull shape parameter proposed by Cox and Oakes [10]

COn = 1 + 1

n

n∑
i=1

(
1 − Xi

Xn

)
ln

Xi

Xn
.

Its approximate slope is

c∗
CO(θ) = 6

π2

( ∞∫

0

(
(1 − x) ln x + (1 − γ )x

)
g′
θ (x; 0)dx

)2

· θ2 + o(θ2)

– A test based on Gini coefficient from Gail and Gastwirth [14]

G∗
n =

∣∣∣ 1

2n(n − 1)Xn

n∑
i, j=1

|Xi − X j | − 1

2

∣∣∣.

The approximate slope is (see [40])

c∗
G(θ) = 12

( ∞∫

0

(
2e−x + x

2

)
g′
θ (x; 0)dx

)2

θ2 + o(θ2).

– The score test for the gamma shape parameter proposed byMoran [35] and Tchirina [49]

MOn =
∣∣∣γ + 1

n

n∑
i=1

ln
Xi

Xn

∣∣∣.

Its approximate slope is (see [49])

c∗
MO(θ) =

(π2

6
− 1

)−1
( ∞∫

0

(ln x − x)g′
θ (x; 0)dx

)2

θ2 + o(θ)

– Characterization based integral-type tests
Let the relation

ω1(X1, ..., Xm)
d= ω2(X1, ..., X p), (5)
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where X1, . . . , Xmax{m,p} are i.i.d. random variables, characterize the exponential distri-
bution. Then the following types of test statistics have been proposed:

In =
∫ ∞

0

(
H (ω1)
n (t) − H (ω2)

n (t)
)
dFn(t),

where H (ω1)
n (t) and H (ω2)

n (t) are V -empirical distribution functions ofω1 andω2, respec-
tively, and Fn is the empirical distribution function, and

Jn,a =
∫ ∞

0

(
L(ω1)
n (t) − L(ω2)

n (t)
)
e−at dt, (6)

where L(ω1)
n (t) and L(ω2)

n (t) are V -empirical Laplace transforms of ω1 and ω2, respec-
tively, applied to the scaled sample, and a > 0 is the tuning parameter.
From these groups of tests we take the following representatives

– I (1)
n,k , proposed in Jovanović et al. [23], based on the Arnold and Villasenor charac-
terization, where ω1(X1, ..., Xk) = max(X1, ..., Xk) and
ω2(X1, ..., Xk) = X1 + X2

2 + · · · Xk
k (see [4,34]);

– I (2)
n , proposed in Milošević and Obradović [33], based on the Milošević-Obradović
characterization, where ω1(X1, X2) = max(X1, X2) and
ω2(X1, X2, X3) = X1 + min(X2, X3) (see [34]);

– I (3)
n , proposed in Milošević [31], based on the Obradović characterization, where

ω1(X1, X2, X3) = max(X1, X2, X3) and
ω2(X1, X2, X3, X4) = X1 + med(X2, X3, X4) (see [45]);

– I (4)
n , proposed in Volkova [53], based on the Yanev-Chakraborty characterization,
where ω1(X1, X2, X3) = max(X1, X2, X3) and
ω2(X1, X2, X3) = X1

3 + max(X2, X3) (see [54]);
– IDn based on the Desu characterization 1;
– IPn based on the Puri–Rubin characterization, where ω1(X1) = X1 and

ω2(X1, X2) = |X1 − X2| (see [46]);
– JDn,a , proposed in Milošević and Obradović [32], based on the Desu characterization

1;
– JPn,a , proposed in Milošević and Obradović [32], based on the Puri–Rubin character-

ization.

Since these statistics are very similar, we give general expressions for their Bahadur
approximate slopes.
Statistics In are non-degenerate V-statistics with some kernel Ψ and their approximate
slope is (see [39])

c∗
I (θ) = 1

Varψ(X1)

( ∫
ψ(x)g′

θ (x; 0)dx
)2 · θ2 + o(θ2), (7)

where ψ(x) = EΨ (·|X1 = x).
Statistics Jn,a are, due to the sample scaling, non-degenerate V-statistics with estimated
parameters. Nevertheless, the formula (7) is applicable here also, withΨ being the kernel
of the test statistic as if the scalingwere done using the real value ofλ (see [32] for details).

The second group contains statistics whose limiting distribution is the supremum of some
centered Gaussian process.
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– Lilliefors modification of the Kolmogorov–Smirnov test

K Sn = sup |Fn(t) − (1 − e
− t

X̄n )|.
The approximate slope is (see [41])

c∗
K S(θ)= 1

sup
x≥0

(e−2x (ex − x2 − 1))
sup
x≥0

(
xex

∞∫

0

G ′
θ (u; 0)du − G(x; 0)dx

)2

·θ2

+ o(θ2).

– Characterization based supremum-type tests
Using the characterizations of the type (5), another proposed type of test statistics is

Dn = sup
t>0

∣∣∣H (ω1)
n (t) − H (ω2)

n (t)
∣∣∣.

From this group of tests we take the following representatives:
D(1)
n,k , proposed in Jovanović et al. [23]; D(2)

n , proposed in Milošević and Obradović

[33]; D(3)
n , proposed in Milošević [31]; D(4)

n , proposed in Volkova [53], based on the
same characterizations as for the respective integral-type statistics, DD

n based on Desu
characterization 1 and DP

n based on Puri–Rubin characterization [46]. Statistics from this
group are asymptotically distributed as a supremum of some non-degenerate V-empirical
processes, and the expression in the absolute parenthesis, for a fixed t is a V-statistic with
some kernel Ψ (X1, . . . , Xmax{m,p}; t). Their approximate slopes is (see [37])

c�
D(θ) = 1

supt>0 Varψ(X1; t) supt>0

( ∫
ψ(x; t)g′

θ (x; 0)dx
)2 · θ2 + o(θ2),

where ψ(x; t) = EΨ (·; t |X1 = x).

The third group contains statistics whose limiting distribution is an infinite linear combi-
nation of i.i.d. chi-squared random variables. Each of the presented statistics, except the last
one, is of the form

Tn =
∫ ∞

0
U 2
n (t; μ̂)w(t)dt,

where Un(t; μ̂) is an empirical process of order 1 with estimated parameter. It also can be
viewed as a weakly degenerate V-statistics with estimated parameters, with some kernel
Φ(X1, X2; μ̂), where μ = Eθ X1. Then, the Bahadur approximate slope of such statistic is

c∗(θ)= 1

2δΦ

∞∫

0

∞∫

0

(
2Φ(x, y; 1)g′

θ (x; 0)g′
θ (y; 0)+4Φ ′

μ(θ)(x, y; 1)μ′
θ (0)g

′(x; 0)g(y; 0)

+ Φ ′′
μ2(θ)

(x, y; 1)(μ′
θ (0))

2g(x; 0)g(y; 0)
)
dxdy · θ2 + o(θ2), (8)

where δΦ is the largest eigenvalue of the integral operator

Aq(s) =
∫ ∞

0
K (s, t)w(t)q(t)dt,

where K (s, t) = limn→∞ nCov(Un(t),Un(s)) is the limiting covariance function.
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Hence it suffices to present only the kernels and limiting covariance functions of test
statistics. We consider the following tests:

– Lilliefors modification of the Cramér–von Mises test

ω2
n =

∫ ∞

0
(Fn(t) − (1 − e

− t
X̄n ))2

1

X̄n
e
− t

X̄n dt .

Its kernel is

Φω2(x, y;μ(θ)) = e−max( x
μ(θ)

,
y

μ(θ)
) − e− x

μθ − e− y
μ(θ) + 1

2
(e−2 x

μ(θ) + e−2 y
μ(θ) ) + 1

3
;

and the covariance function is

Kω2(s, t) = e− 3
2 s− 3

2 t (emin(s,t) − 1 − st).

– Lilliefors modification of the Anderson–Darling test

ADn =
∫ ∞

0

(Fn(t) − (1 − e
− t

X̄n ))2

X̄n(1 − e
− t

X̄n )

dt .

Its kernel is

ΦAD(x, y;μ(θ)) = x

μ(θ)
+ y

μ(θ)
− 1 − ln(emax( x

μ(θ)
,

y
μ(θ)

) − 1).

and the covariance function is

KAD(s, t) = e−s−t (emin(s,t) − 1 − st)√
(1 − e−s)(1 − e−t )

.

– A test proposed by Baringhaus and Henze [7]

BHn =
∫ ∞

0

(
(1 + t)ψ ′

n(t) + ψn(t)
)2
e−at dt,

where ψn(t) is the empirical Laplace transform. Its kernel is

ΦBH(x, y;μ(θ)) = (1 − x)(1 − y)

x + y + aμ(θ)
− xμ(θ) + yμ(θ) − 2xy

(aμ(θ) + x + y)2
+ 2xyμ(θ)

(aμ(θ) + x + y)3
;

and the covariance function is

KBH (s, t) = 1 + s + t + 2st

(1 + s + t)3
− 1

(1 + s)2(1 + t)2
.

– The test proposed by Henze [17]

HEn =
∫ ∞

0

(
ψn(t) − 1

1 + t

)2
e−at dt;

Its kernel is

ΦHE(x, y;μ(θ))=1+ μ(θ)

aμ(θ) + x + y
+aea Ei(−a)+ea+ x

μ(θ) Ei

(
−

(
a+ x

μ(θ)

))

+ ea+ y
μ(θ) Ei

(
−

(
a + y

μ(θ)

))
;

and the covariance function is

KHE (s, t) = s2t2

(s + t + 1)(s + 1)2(t + 1)2
.
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– The test proposed by Henze and Meintanis [18]

Wn =
∫ ∞

0

(
ψn(t) − 1

1 + t

)2
(1 + t)2e−at dt .

Its kernel is

ΦW (x, y;μ(θ)) = 1

a
− μ(θ)(μ(θ)(1 + a) + x)

(aμ(θ) + x)2
− μ(θ)(μ(θ)(1 + a) + y)

(aμ(θ) + y)2

+ 2μ3(θ)

(aμ(θ) + x + y)3
+ 2μ2(θ)

(aμ(θ) + x + y)2
+ μ(θ)

aμ(θ) + x + y
;

and the covariance function is

KW (s, t) = s2t2

(s + t + 1)(s + 1)(t + 1)
.

– Two tests proposed by Henze and Meintanis [19]

HMn =
∫ ∞

0
(sn(t) − tcn(t))

2ωi (t)dt, i = 1, 2,

where ω1(t) = e−at and ω2(t) = e−at2 . Their kernels are

ΦHM1(x, y;μ(θ)) = aμ2(θ)

2(a2μ2(θ) + (x − y)2)
− aμ2(θ)

2(a2μ2(θ) + (x + y)2)

+ a2μ2(θ) − 3(x − y)2

(a2μ2(θ) + (x − y)2)3
+ a2μ2(θ) − 3(x + y)2

(a2μ2(θ) + (x + y)2)3

− 2aμ3(θ)(x + y)

(a2μ2(θ) + (x + y)2)2
,

and

ΦHM2(x, y;μ(θ)) =
√

π

4
√
a

((
1

2a
− x + y

aμ(θ)
− (x − y)2

4a2μ2(θ)
− 1

)
e
− (x+y)2

4aμ2(θ)

+
(
1 + 1

2a
− (x − y)2

4a2μ2(θ)

)
e
− (x−y)2

4aμ2(θ)

)
;

and the covariance function is

KHM (s, t) = st(s2 + t2 + 1)

(1 + (s − t)2)(1 + (s + t)2)
− st

(1 + s2)(1 + t2)
.

– Characterization based L2-type test proposed by Cuparić et al. [11].

MP
n,a =

∫ ∞

0

(
L(1)
n (t) − L(2)

n (t)
)2
e−at dt . (9)
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Its slope is

c∗
M (θ) = (2δ1)

−1

∞∫

0

∞∫

0

[
1

6
ea−x−yEi(−a)

(
a(ex − 2)(ey − 2) − ex − ey + 4

)

+ 1

6
e−a−x−y

(
Ei(a)(4a + ex + ey − 4) − (Ei(a + x)(4(a + x − 1) + ey)

+ Ei(a + y)(4(a + y − 1) + ex ) − 4(a + x + y − 1)Ei(a + x + y))
)
− 1

2

+ 1

3
(e−x + e−y) + 1

6(a + x + y)

]
g′(x; 0)g′(y; 0)dxdy · θ2 + o(θ2).

4 Comparison of efficiencies

In this section we calculate approximate local relative Bahadur efficiencies of test statistics
introduced in Sects. 2 and 3 with respect to the likelihood ratio test (see [6]). Likelihood
ratio tests are known to have optimal Bahadur efficiencies and they are therefore used as
benchmark for comparison.

The alternatives we consider are the following:

– a Weibull distribution with density

g(x, θ) = e−x1+θ

(1 + θ)xθ , θ > 0, x ≥ 0; (10)

– a gamma distribution with density

g(x, θ) = xθe−x

Γ (θ + 1)
, θ > 0, x ≥ 0; (11)

– a linear failure rate (LFR) distribution with density

g(x, θ) = e−x−θ x2
2 (1 + θx), θ > 0, x ≥ 0; (12)

– a mixture of exponential distributions with negative weights (EMNW(β)) with density

g(x, θ) = (1 + θ)e−x − θβe−βx , θ ∈
(
0,

1

β − 1

]
, x ≥ 0;

On Figs. 1, 2, 3 and 4, there are plots of local approximate Bahadur efficiencies as a
function of the tuning parameter. For tests with no such parameter straight lines are drawn.
To avoid too many lines on the same plot, there are three separate plots given for each
alternative, each corresponding to one of the classes of tests from Sect. 3. The exact values
of local Bahadur efficiencies are available in Table 3 in Appendix C.

As a rule we can notice that, in the class of supremum-type statistics, new test LD
n,a is by

far the most efficient. On the other hand, supremum-type test based on characterizations that
use U-empirical distribution functions, are the least efficient among all considered tests.

The impact of the tuning parameter, for the tests that have got it, is also visible in all
the figures. It is interesting to note that this impact is different for various tests in terms of
monotonicity of the plotted functions.

Another general conclusion is that the ordering of the tests depends on the alternative and
that there is no most efficient test to be recommended in any situation.
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42 Page 12 of 26 M. Cuparić et al.

Fig. 1 Local approximate Bahadur efficiencies w.r.t. LRT for a Weibull alternative

Fig. 2 Local approximate Bahadur efficiencies w.r.t. LRT for a Gamma alternative

The CO andMO tests are known to be locally optimal forWeibull and gamma alternatives,
respectively, so they are the most efficient in these cases. However, there are quite a few other
tests that perform verywell in there cases. In the case of the LFR alternative, themost efficient
are EP and HM(1)

n,a and HM(2)
n,a . It it interesting that for other alternatives the latter two tests

are among the least efficient.
In the case of the EMNW alternative, the integral and supremum-type tests based on the

characterizations via Laplace transforms, as well as most of the L2 test reach, for some value
of the tuning parameter, an efficiency close to one.
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Fig. 3 Local approximate Bahadur efficiencies w.r.t. LRT for a LFR alternative

Fig. 4 Local approximate Bahadur efficiencies w.r.t. LRT for a EMNW(3) alternative

5 Powers of new tests

In this section we present the simulated powers of our new tests against different alternatives.
The list of alternatives is chosen to be in concordance with the papers with extensive power
comparison studies. The alternatives are:

– a Weibull W (θ − 1) distribution with density (10);
– a gamma Γ (θ − 1) distribution with density (11);
– a half-normal HN distribution with density

g(x) =
√

2

π
e− x2

2 , x ≥ 0;
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– a uniform U distribution with density

g(x) = 1, 0 ≤ x ≤ 1;
– a Chen’s CH(θ) distribution with density

g(x, θ) = 2θxθ−1ex
θ−2(1−ex

θ
), x ≥ 0;

– a linear failure rate LF(θ) distribution with density (12);
– a modified extreme value EV (θ) distributions with density

g(x, θ) = 1

θ
e
1−ex

θ
+x , x ≥ 0;

– a log-normal LN (θ) distribution with density

g(x, θ) = 1

x
√
2πθ2

e
− (ln x)2

2θ2 , x ≥ 0;

– a Dhillon DL(θ) distribution with density

g(x, θ) = θ + 1

x + 1
(ln(x + 1))θe−(ln(x+1))θ+1

, x ≥ 0.

The powers, for aforementioned alternatives, and different choices of the tuning param-
eter are estimated using the Monte Carlo procedure with 10000 replicates at the level of
significance 0.05.

The results are presented in Tables 1 and 2. In addition, we provide the bootstrap expected
power estimate for data-driven optimal value of the tuning parameter (see [2] for details).
Some steps to overcome "random nature" of selected parameters are made in Tenreiro [50],
but some questions still remain open and are planned for future research.

We can see from tables that all the sizes of our tests are equal to the level of significance,
and that the powers range from reasonable to high. In comparison to the other exponentiality
tests (see [11,51]) we can conclude that our tests are serious competitors to the most powerful
classical and recent exponentiality tests.

6 Conclusion

In this paper we proposed two new consistent scale-free tests for the exponential distribution.
In addition, we performed an extensive comparison of efficiency of recent and classical
exponentiality tests.

We showed that our tests are very efficient and powerful and can be considered as serious
competitors to other high quality exponentilaity tests.

From the comparison study, the general conclusion is that there is no uniformly best
test, since the performance is different for different alternatives. However, the tests based on
integral transforms, due to their flexibility because of the tuning parameter, generally tend to
have higher efficiency, and they are recommended to use.
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Appendix A: Proofs of theorems

Proof (Theorem 2) Our statistic MD
n,a (̂λn) can be rewritten as

MD
n,a (̂λn) =

∫ ∞

0

⎛
⎝ 1

n2

n∑
i1,i2=1

ξ(Xi1 , Xi2 , t; aλ̂n)

⎞
⎠

2

e−at dt

=
∫ ∞

0
Vn(t, λ̂n)

2e−at dt .

Here Vn(t; λ̂n), for each t > 0, is a V -statistic of order 2 with an estimated parameter, and
kernel

ξ(x1, x2, t; a, λ̂n) = 1

2

(
e−t λ̂n x1 + e−t λ̂n x2 − e−t λ̂n2min(x1,x2)

)
.

Since the function ξ(x1, x2, t; a, γ ) is continuously differentiable with respect to γ at the
point γ = λ we may apply the mean value theorem. We have

Vn(t; λ̂n) = Vn(t; λ) + (̂λn − λ)
∂Vn(t; γ )

∂γ
|γ=λ∗ , (13)

for some λ∗ between λ and λ̂n . From the Law of large numbers for V-statistics [47, 6.4.2.],
the partial derivative ∂Vn(t;γ )

∂γ
converges to

E
(
2t min{X1, X2}e−2t min{X1,X2}γ − t X1e

−t X1γ
)

= 0. (14)

Since
√
n(̂λn − λ) is stochastically bounded, it follows that statistics

√
nVn(t; λ̂n) and√

nVn(t; 1) are asymptotically equally distributed. Therefore, nMD
n,a (̂λn) and nM

D
n,a(λ) will

have the same limitingdistribution.Henceweneed to derive limitingdistributionofnMD
n,a(λ).

First notice that MD
n,a(λ) is a V -statistic with symmetric kernel H . Also, since the distri-

bution of MD
n,a(λ) does not depend on λ we may assume that λ = 1.

It is easy to show that its first projection of kernel H on X1 is equal to zero. After some
calculations, we obtain that its second projection on (X1, X2) is given by

h̃2(u, v; a) = E(H(X1, X2, X3, X4; a, 1)|X1 = u, X2 = v)

= 1

6

(
3 + 1

a + u + v
− 2e−u

a + 2u + v
− 2e−v

a + u + 2v
− (4 − a)ea Ei(−a)

+e
a+v
2

(
Ei

( − a + v

2

) − Ei
( − a + 2u + v

2

)) + ea+u
(
4Ei(−a − 2u)

−Ei(−a − u)
)

+ e
a+u
2

(
Ei

( − a + u

2

) − Ei
( − a + u + 2v

2

))

+ea+v
(
4Ei(−a − 2v) − Ei(−a − v)

)
− 2(e−u + e−v)

+e
a
2

(
− (4 + a + 2u)Ei(−a

2
− u) + (a + 4)Ei(−a

2
)

+(a + 2(2 + u + v))Ei(−a

2
− u − v) − (4 + a + 2v)Ei(−a

2
− v)

)

123



42 Page 18 of 26 M. Cuparić et al.

+ e−u−v

a + 2(u + v)
(2a + 4(1 + u + v))

)
,

where Ei(x) = − ∫ ∞
−x

e−t

t dt is the exponential integral. The function h̃2 is non-constant for
any a > 0. Hence, kernel h is degenerate with degree 2.

Since the kernel H is bounded and degenerate, from the theoremon asymptotic distribution
ofU-statistics with degenerate kernels [26, Corollary 4.4.2], and theHoeffding representation
of V -statistics, we get that, MD

n,a(1), being a V -statistic of degree 2, has the following
asymptotic distribution

nMD
n,a(1)

d→ 6
∞∑
k=1

δkW
2
k , (15)

where {δk} are the eigenvalues of the integral operator Ma defined by

Maq(x) =
∫ +∞

0
h̃2(x, y; a)q(y)dF(y), (16)

and {Wk} is the sequence of i.i.d. standard Gaussian random variables. 
�
Proof (Theorem 3) The test statistic can be represented as

LD
n,a = sup

t≥0
|Vn(t; λ̂n)e

−at |, (17)

where {Vn(t; λ̂n)} is a V -empirical process introduced in the proof of Theorem 2.
Substituting s = e−t in (17) we can express our statistic as

LD
n,a = sup

s∈(0,1)
|Vn(− ln s; λ̂n)s

a |,

thus obtaining, as a core of the statistic, the process Vn(− ln s; λ̂n), s ∈ (0, 1), defined on
C[0, 1] equipped with supremum norm.

Next we show that the difference between
√
nLD

n,a and
√
n sups∈(0,1) |Vn(− ln s; λ)sa |

(for a fixed λ) tends uniformly to zero and proceed finding the limiting distribution of the
latter.

This is, taking into account (13), equivalent to limn→∞ sups∈(0,1) Rn(s) = 0, where

Rn(s) = sa
∣∣∣ 1
n2

∑
i, j

(
− 2 ln smin{X1, X2}s2min{X1,X2}γ + ln sX1s

X1γ
)∣∣∣

= − ln s · sa
∣∣∣ 1
n2

∑
i, j

(
2min{X1, X2}s2min{X1,X2}γ − X1s

X1γ
)∣∣∣.

From (14) we know that the expression in the absolute parentheses tends to zero for each
s, and using [44, Lemma 1] we get that its supremum also tends to zero. Since − ln s · sa is
bounded function, sups Rn(s) tends also to zero.

Since, for a fixed s,
√
nVn(− ln s; λ) is a non-degenerate V-statistic,

√
nVn(− ln s; λ)

is asymptotically normally distributed. The same holds for finite-dimensional distributions
of the process

√
nVn(− ln s; λ). In addition, it can be shown that

√
nVn(− ln s; λ) satisfies

conditions from Billingsley [8, Theorem 12.3], and is, therefore, tight in C[0, 1]. Therefore
it converges weakly to a zero mean Gaussian process {η�(s)} with covariance function

K �(u, v) = K (− ln u,− ln v),

where K is defined in (3).
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Since the supremum is continuous on C[0, 1], using the continuous mapping theorem we
get that

√
n sups∈(0,1) |Vn(− ln s; λ)sa | converges to sups∈(0,1) |η�(s)sa |, which is the same

as supt>0 |η(t)e−at |. This completes the proof. 
�
Proof (Lemma 4) Using the result of Zolotarev [55], the logarithmic tail behavior of limiting

distribution function of M̃D
n,a (̂λn) =

√
nMD

n,a (̂λn) is

ln(1 − FM̃a
(t)) = − t2

12δ1
+ o(t2), t → ∞.

Therefore, aM̃a
= 1

6δ1
. The limit in probability Pθ of M̃n,a (̂λn)/

√
n is

bM̃a
= √

bM (θ).

The expression for bM (θ) is derived in the following lemma.

Lemma A1 For a given alternative density g(x; θ) whose distribution belongs to G, we have
that the limit in probability of the statistic MD

n,a (̂λn) is

bM (θ) = 6

∞∫

0

∞∫

0

h̃2(x, y; a)g′
θ (x; 0)g′

θ (y; 0)dxdy · θ2 + o(θ2), θ → 0.

Proof For brevity, denote x = (x1, x2, x3, x4) and G(x; θ) = ∏4
i=1 G(xi ; θ). Since Xn

converges almost surely to its expected value μ(θ), using the Law of large numbers for
V -statistics with estimated parameters (see [22]), MD

n,a (̂λn) converges to

bM (θ)=Eθ (H(X, a;μ(θ)))

=
∫

(R+)4

( μ(θ)

2min{x1, x2}+2min{x3, x4}+aμ(θ)
− μ(θ)

x1+2min{x3, x4}+aμ(θ)

− μ(θ)

x3 + 2min{x1, x2} + aμ(θ)
+ μ(θ)

x1 + x3 + aμ(θ)

)
dG(x; θ).

We may assume that μ(0) = 1 since the test statistic is ancillary for λ under the null
hypothesis. After some calculations we get that b′

M (0) = 0 and that

b′′(0) =
∫

(R+)4
H(x, a; 1) ∂2

∂θ2
dG(x, 0) = 6

∫
(R+)2

h̃2(x, y)g
′
θ (x; 0)g′

θ (y; 0)dxdy.

Expanding bM (θ) into the Maclaurin series

bM (θ) = bM (0) + b′
M (0) · θ + b′′

M (0)θ2 + o(θ2), θ → 0,

we complete the proof. 
�
Now we pass to the statistic LD

n . The tail behaviour of the random variable supt>0 |nt | is
equal to the inverse of supremum of its covariance function, i.e. the aL = 1

supt>0 K (t,t) (see
[27,36]).

Similarly like before, since Xn converges almost surely to its expected value μ(θ), using
the Law of large numbers for V -statistics with estimated parameters [22], Vn(t, a; λ̂)e−at

converges to
bL(θ; t) = Eθ (Φ(X1, X2; t, a, μ(θ))).
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Expanding bL(θ; t) in the Maclaurin series we obtain

bL(θ; t) = 2
∫ ∞

0
ϕ̃1(x, t; a)g′

θ (x; 0)dx · θ + o(θ),

where ϕ̃1(x, t; a) = E(Φ(X1, X2, t; a, 1)|X1 = x1).
SinceV-empiricalLaplace transforms aremonotonous functions, aGlivenko-Cantelli-type

theorem holds, see Novoa-Muñoz and Jiménez-Gamero [44, Lemma 1]. Hence, the limit in
probability under the alternative for statistics LD

n,a is equal to supt≥0 |bL(θ; t)|. Inserting this
into the expression for the Bahadur slope completes the proof. 
�

Appendix B: Bahadur approximate slopes

Proof Approximate local Bahadur slope of statistics EP and CO
Those statistics can be represented as

Tn = 1

n

n∑
i=1

Φ(X; μ̂),

where Φ(x; γ ) is continuously differentiable with respect to γ at point γ = μ. It was shown
that the limiting distribution of

√
nTn is zero mean normal with variance σ 2

Φ (see [10,13]).
Hence, the coefficient aT is equal to 1

σ 2
Φ

.

Further, we have

b(θ) = Eθ (Φ(X;μ(θ))) =
∞∫

0

Φ(x;μ(θ))dG(x; θ)

b′(θ) =
∞∫

0

∂

∂μ
Φ(x;μ(θ))

∂

∂θ
μ(θ)dG(x; θ) +

∞∫

0

Φ(x;μ(θ))
∂

∂θ
dG(x; θ).

Then it holds that

b(θ) = b(0) + b′(0)θ + o(θ)

=
(

μ′(0)
∞∫

0

Φ ′(x; 1)g(x; 0)dx +
∞∫

0

Φ(x; 1)g′(x; 0)dx)
)

θ + o(θ).

From this we obtain the expression for cT (θ). 
�
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Proof Approximate local Bahadur slope of statistics BH, HE, Wn, HM, ω2 and AD
Let T be the one of considered statistics. It was shown that the limiting distribution of nTn

is
∑∞

i=1 δiW 2
i , where {Wi } is the sequence of i.i.d. standard normal variables and {δi } the

sequence of eigenvalues of certain covariance operator. Using the result of Zolotarev in [55],
we have that the logarithmic tail behavior of limiting distribution function of T̃n = √

nTn is

ln(1 − FT̃ (s)) = − s2

2δ1
+ o(s2), s → ∞.

Next, the limit in probability of T̃n/
√
n is bT̃ (θ) = √

bT (θ). Statistic Tn can be represented
as

Tn = 1

n2

n∑
k, j=1

Φ(Xk, X j ; μ̂).

As before, we may assume thatμ(0) = 1. Since the sample mean converges almost surely
to its expected value, by using the Law of large numbers for V -statistics with estimated
parameters (see [22]), we can conclude that the limit in the probability of statistic Tn is equal
to the one of

bT (θ) = Eθ (Φ(X1, X2;μ(θ))) =
∞∫

0

∞∫

0

Φ(x, y;μ(θ))g(x; θ)g(y; θ)dxdy.

We get that b′
T (0) = 0 and that

b′′
T (0)=2

∞∫

0

∞∫

0

Φ(x, y; 1)g′
θ (x; 0)g′

θ (y; 0)dxdy

+ 4μ′(0)
∞∫

0

∞∫

0

Φ ′(x, y; 1)g(x; 0)g′
θ (y; 0)dxdy

+ (μ′(0))2
∞∫

0

∞∫

0

Φ ′′(x, y; 1)g(x; 0)g(y; 0)dxdy,

Expanding bT (θ) into Maclaurin series we obtain expression for bT . 
�

Appendix C: Tables of efficiencies
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Table 3 Relative Bahadur
efficiency with respect to LRT

Weibull Gamma LFR EMNW (3)

EPn 0.876 0.694 0.750 0.937

COn 1 0.943 0.608 0.917

Gn 0.876 0.694 0.750 0.937

MOn 0.943 1 0.388 0.814

I (1)n,2 0.621 0.723 0.104 0.694

I (1)n,3 0.664 0.708 0.159 0.799

I (2)n 0.750 0.796 0.208 0.844

I (3)n 0.746 0.701 0.308 0.916

I (4)n 0.649 0.638 0.206 0.835

IPn 0.821 0.788 0.337 0.949

IDn 0.697 0.790 0.149 0.746

JPn,0.2 0.750 0.856 0.171 0.751

JPn,0.5 0.812 0.843 0.262 0.888

JPn,1 0.846 0.820 0.349 0.955

JPn,2 0.868 0.792 0.445 0.985

JPn,5 0.882 0.756 0.566 0.987

JPn,10 0.884 0.733 0.637 0.974

JDn,0.2 0.526 0.731 0.053 0.370

JDn,0.5 0.674 0.826 0.117 0.608

JDn,1 0.771 0.857 0.198 0.786

JDn,2 0.842 0.854 0.305 0.917

JDn,5 0.889 0.813 0.465 0.991

JDn,10 0.896 0.775 0.569 0.994

K S 0.538 0.503 0.356 0.686

D(1)
n,2 0.092 0.093 0.052 0.149

D(1)
n,3 0.152 0.138 0.106 0.230

D(2)
n 0.277 0.267 0.155 0.396

D(3)
n 0.258 0.212 0.213 0.364

D(4)
n 0.079 0.066 0.067 0.122

DP
n 0.437 0.448 0.192 0.592

DD
n 0.158 0.174 0.073 0.247

ω2
n 0.808 0.701 0.588 0.958

ADn 0.909 0.863 0.573 0.996

BHn,0.2 0.905 0.928 0.421 0.914
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Table 3 continued Weibull Gamma LFR EMNW (3)

BHn,0.5 0.932 0.877 0.534 0.987

BHn,1 0.926 0.810 0.638 0.996

BHn,2 0.894 0.726 0.749 0.956

BHn,5 0.823 0.611 0.878 0.848

BHn,10 0.771 0.542 0.956 0.767

HEn,0.2 0.923 0.928 0.420 0.927

HEn,0.5 0.940 0.868 0.542 0.991

HEn,1 0.928 0.799 0.647 0.992

HEn,2 0.893 0.719 0.752 0.949

HEn,5 0.822 0.609 0.873 0.846

HEn,10 0.761 0.536 0.935 0.758

Wn,0.2 0.790 0.914 0.224 0.688

Wn,0.5 0.905 0.922 0.382 0.909

Wn,1 0.935 0.864 0.528 0.991

Wn,2 0.917 0.772 0.677 0.983

Wn,5 0.842 0.638 0.842 0.877

Wn,10 0.774 0.550 0.924 0.776

HM(1)
n,0.2 0.324 0.448 0.049 0.271

HM(1)
n,0.5 0.560 0.621 0.174 0.643

HM(1)
n,1 0.691 0.642 0.361 0.865

HM(1)
n,2 0.715 0.557 0.612 0.855

HM(1)
n,5 0.591 0.373 0.895 0.582

HM(1)
n,10 0.452 0.254 0.951 0.382

HM(2)
n,0.2 0.633 0.579 0.320 0.818

HM(2)
n,0.5 0.673 0.533 0.520 0.828

HM(2)
n,1 0.656 0.468 0.683 0.742

HM(2)
n,2 0.603 0.391 0.825 0.616

HM(2)
n,5 0.504 0.295 0.931 0.451

HM(2)
n,10 0.430 0.238 0.942 0.355

M(P)
n,0.2 0.734 0.832 0.183 0.754

M(P)
n,0.5 0.787 0.827 0.253 0.865

M(P)
n,1 0.822 0.814 0.324 0.929

M(P)
n,2 0.850 0.794 0.407 0.969

M(P)
n,5 0.873 0.764 0.523 0.985
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Table 3 continued Weibull Gamma LFR EMNW (3)

M(P)
n,10 0.881 0.742 0.601 0.979

M(D)
n,0.2 0.533 0.712 0.080 0.443

M(D)
n,0.5 0.645 0.788 0.130 0.610

M(D)
n,1 0.729 0.825 0.191 0.750

M(D)
n,2 0.803 0.838 0.275 0.873

M(D)
n,5 0.867 0.820 0.413 0.971

M(D)
n,10 0.889 0.789 0.520 0.992

L(D)
n,0.2 0.738 0.798 0.259 0.821

L(D)
n,0.5 0.799 0.815 0.323 0.902

L(D)
n,1 0.844 0.815 0.394 0.957

L(D)
n,2 0.875 0.800 0.479 0.988

L(D)
n,5 0.892 0.766 0.588 0.990

L(D)
n,10 0.891 0.740 0.652 0.976
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