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Abstract

We present new consistent goodness-of-fit tests for exponential distribution, based on the
Desu characterization. The test statistics represent the weighted L2 and L distances between
appropriate V-empirical Laplace transforms of random variables that appear in the character-
ization. In addition, we perform an extensive comparison of Bahadur efficiencies of different
recent and classical exponentiality tests. We also present the empirical powers of new tests.

Keywords Goodness-of-fit - Exponential distribution - Laplace transform - Bahadur
efficiency - V-statistics
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1 Introduction

To justify the use of more complicated models for lifetime data, one of the first steps is
to reject the most simple one, the exponential. For this purpose numerous tests have been
developed and are available in the literature.

The classical, and most commonly used procedure, is to apply one of universal time-
honored goodness-of-fit tests based on empirical distribution function, such as Kolmogorov—
Smirnov, Cramér—von Mises, Anderson-Darling. To make them applicable to the case of
a composite null hypothesis, the Lilliefors modification with estimated rate parameter is
frequently used.

Another approach is to use tests tailor-made for testing exponentiality. Such tests usually
employ some special properties of the exponential distribution. Various integral transform
related properties have been exploited: characteristic functions (see e.g. [17,19,20]); Laplace
transforms (see e.g. [18,24,30]); and other integral transforms (see e.g. [25,29]). Other pos-
sible properties include maximal correlations (see [15,16,48]), entropy (see [1]), etc.
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An important type of such properties are the characterizations of the exponential dis-
tribution. Many of them, being relatively simple, are very suitable for construction of
goodness-of-fit tests. This is especially true for the equidistribution-type characterizations.
Since the equality in distribution can be expressed in many ways (equality of distribution func-
tions, densities, integral transforms, etc.), many different types of test statistics are available.
Tests that use U-empirical and V-empirical distribution functions, of integral-type (integrated
difference) and supremum-type, can be found in Nikitin and Volkova [42], Volkova [53],
Jovanovi¢ et al. [23], MiloSevi¢ and Obradovié [33], MiloSevi¢ [31], Nikitin and Volkova
[43]. Weighted integral-type and L2-type tests that use U- or V-empirical Laplace transforms
are presented in MiloSevi¢ and Obradovi¢ [32] and in Cuparic et al. [11].

The common approach to explore the quality of tests is to find their power against different
alternatives. Several papers are devoted to comparative power studies of exponentiality tests
(see e.g. [3,20,51]).

Another popular choice for the quality assessment is the asymptotic efficiency. In this
regard, however, no extensive study has been done. In this paper our aim is to compare the
exponentiality tests using the approximate Bahadur efficiency (see [5]).

We opt for the approximate Bahadur efficiency since it is applicable to asymptotically
non-normally distributed test statistics, and moreover it can distinguish tests better than
some other types of efficiencies like Pitman or Hodges—Lehmann (see [36]).

Consider the setting of testing the null hypothesis Hy : 0 € ® against the alternative
Hj : 6 € ©1. Let us suppose that for a test statistic 7,, under Hy, the limit lim,_, o, P{7,, <
t} = F(t), where F is non-degenerate distribution function, exists. Further, suppose that
lim; oo t 2 In(1 = F(¢)) = —%T, and that the limit in probability Py lim,,_,~ T, = b7 (0) >
0, exists for & € @;. The relative approximate Bahadur efficiency with respect to another
test statistic V), is

x _cr®
eT,v( ) ;(9)’
where
c(0) = arb(9) (D

is the approximate Bahadur slope of 7,. Its limit when & — 0 is called the local approximate
Bahadur efficiency.

The tests we consider may be classified into three groups according to their limiting
distributions: asymptotically normal ones; those whose asymptotic distribution coincides
with the supremum of some Gaussian process; and those whose limiting distribution is an
infinite linear combination of independent and identically distributed (i.i.d.) chi-squared
random variables.

For the first group of tests, the coefficient ar is the inverse of the limiting variance. For the
second, it is the inverse of the supremum of the covariance function of the limiting process
(see [28]). For the third group, ar is the inverse of the largest coefficient in the corresponding
linear combination (see [55]), which is also equal to the largest eigenvalue of some integral
operator.

The goal of this paper is twofold. First, we propose two new classes of characterization
based exponentiality tests. One of them is of weighted L2-type, and the other, for the first
time, is based on L*° distance between two V-empirical Laplace transforms of the random
variables that appear in the characterization.

Secondly, we perform an extensive efficiency comparison. Unlike for the remaining two,
for the third group of tests, the efficiencies have not been calculated so far. This is due to
the fact that the largest eigenvalue in question usually cannot be obtained analytically. We
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overcome this problem using a recently proposed approximation procedure from BoZin et al.
[9].

The rest of the paper is organized as follows. In Sect. 2 we propose new tests and explore
their asymptotic properties. In Sect. 3 we give a partial review of test statistics for testing
exponentiality, together with their Bahadur slopes. Section 4 is devoted to the comparison of
efficiencies. In Sect. 5 we present the powers of new tests. Appendices A and B contain all
the proofs, while the tables with Bahadur efficiencies are given in Appendix C.

2 New test statistics

In this section we present two new exponentiality tests based on the following characterization
from Desu [12].

Characterization 1 Let X1, ..., X,, be independent copies of a random variable X with pdf
f(x). Then for each m, X and m - min(X1, ..., X,y) have the same distribution if and only if
for some ). > 0 f(x) = re ™, for x > 0.

It is accustomed for goodness-of-fit testing purposes to use this characterization for
m = 2 (see e.g. [37,52]). Although some distributions different from exponential for which
2min(X1, X;) and X are equally distributed exist and can be constructed (see [21]), they
are of no practical interest and this special case is often referred to as Desu’s characterization
(see [38, Theorem 3]).

Let X1, X2, ..., X;, be a random sample from a non-negative continuous distribution. To
test the null hypothesis that the sample comes from the exponential distribution £ (1), with
an unknown A > 0, we examine the difference L‘,,(,l)(t) — Lﬁlz) (1), of V-empirical Laplace
transforms of X and 2 min(X, X»).

Clearly, if null hypothesis is true, the difference Eﬁ,l)(t) — llf,z) (t) will be small for each
t. Taking this into account we propose the following two classes of test statistics, with their
large values considered significant:

n

© 1 2 1 . 2
/ (7 Z e_tYil — = Z 6—12 min(Y;, ,Y,-z)) e—atdt;
0\ n

i1=1 i1,ir=1

D
Mn,a
n

1 & 1 .
LnDa _ Sup‘<f Z oY _ — Z e—lZmln(l/i],Yi2))e—at
’ t>0 n n

i1=1 i1,ix=1

)

where Y; = % i=1,2,...,n,is the scaled sample.
The sample is scaled to make the test statistic ancillary for the parameter A and the purpose
of the tuning parameter a is to magnify different types of deviations from the null distribution.

Remark 1 The supremum in the expression for test statistic L,?u is calculated using greed
search over fixed interval [0, A] with suitably chosen large value of A.
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2.1 Asymptotic properties under Hy

Notice that M,? 4 1s a V-statistic with estimated parameter A, i.e. it can be represented in the
form

1

MP, = MP, () = = Z H(Xi,. Xy, Xy, Xiy: a, hn),
i1,02,03,i4
where H is
. 1 |
H(x1, 22, %3, X430, hn) = Z _ ]
Crenr \¢ T AnXz) + AnXr3)
1
a+ inxn(l) + 2%, min{xz3), Xz}

1
AnXr3) 4 2k Minfxz (1), X7 (2))

| )
a + 2k, minfxz (1), X7y} + 2 Min{xr 3y, Xr@)} /)

where I1(4) is the set of all permutations of {1, 2, 3,4}, and )A\,, is the reciprocal sample
mean.

Similarly, for a fixed ¢, the expression in the absolute parenthesis of the statistics L,?u is
a V-statistics that can be represented as

1 «
—5 22X, Xiyit,a, k), (@)
i1,i2
where

~ 1 s 3 5 . _
(X1, X2 1., hy) = > (e taxt 4 g=thaxa _ tl,,2m1n(x1,x2)) ot

is a symmetric function of its arguments.

From the law of large number for V-statistics with estimated parameters (see [22]), both
statistics converge in probability to zero if and only if the equidistribution in the Desu’s
characterization is satisfied, which happens under Hy. Under H;, when the equidistribution
does not hold, both test statistics converge to a positive number, from where follows their
consistency.

The asymptotic behaviour of M,?u is given in the following theorem.

Theorem 2 Let Xy, ..., X,, be i.i.d. with exponential distribution. Then
D o0
nMP, = 6§ W,
k=1

where 8,k = 1,2, ..., is the sequence of eigenvalues of the integral operator A defined by
Ag(x) = fooo ha(x,y; a)q(y)dF (y), with hao(x,y) = E(H(-)|X1 = x, Xo = y) being the
second projection of kernel H(X1, X2, X3, Xa;a, L), and Wy, k = 1,2, ..., are independent
standard normal variables.

The asymptotic behaviour of LnDﬂ is given in the following theorem.

@ Springer



New consistent exponentiality tests... Page50f26 42

Theorem 3 Let X, ..., X,, be i.i.d. with exponential distribution. Then
D
VaLP = sup ()],
t>0
where 1(t) is a centered Gaussian process with the covariance function
e a6t st (4 + 8s + 4s? + 8¢ + 155t + 652t + 412 + 6512)
, s

A+ +D)A+s+DQ2+2s +1)2+ s +2t)(3+ 25 + 21)

) jl

K(s,t) =
3)

2.2 Approximate Bahadur slope

Let G = {G(x;0), 8 > 0} with corresponding densities {g(x; #)} be a family of alternative
distribution functions with finite expectations, such that G(x, 8) = 1 — e~ forsome A > 0,
if and only if & = 0, and the regularity conditions for V-statistics with weakly degenerate
kernels from Nikitin and Peaucelle [39, Assumptions WD] are satisfied.

The approximate local Bahadur slopes of Mfa and L,E?a, for close alternatives, are derived
in the following theorem.

Theorem 4 For the statistics Mf . and L%?a and a given alternative density g(x, 0) from G,

the local Bahadur approximate slopes are given by

()
o0 0
cis® =571 [ [ Fax. 316 x: 01gy 0y - 6% + 06%).0 = 0,
00
where 81 is the largest eigenvalue of the integral operator A with kernel ha;
2

1 © 2
* _ ~ . /(e .p2 2
c;(0) = 781113, KD sup (2/0 @1(x;1)gp (x; O)dx) 0+ 0(0°),0 — 0,
where §1(x;t) = E(®(-)| X1 = x) with @ being defined in (2).
Proof See Appendix A. O

To calculate the slope of M, fa ,one needs to find the largest eigenvalue & . Since it cannot be
obtained analytically, we use the approximation introduced in BoZin et al. [9]. The procedure
utilizes the fact that §; is the limit of the sequence of the largest eigenvalues of linear operators
defined by (m + 1) x (m + 1) matrices M = ||m§f’;.>||, 0<i<m0<j<m,where

~ (i, i _ixl i _itt 1
m}f?zh(gl?%l?)\/e T N T S @)

when m tends to infinity and B is constant chosen in such way that F(B) approaches 1.

3 Other exponentiality tests—a partial review
In this section we present test statistics of some classical and some recent goodness-of-fit

tests for the exponential distribution, along with their Bahadur local approximate slopes. For
some of the test statistics, the Bahadur local approximate slope (or exact slope which locally
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coincides with the approximate one) is available in the literature and for the others we derive
them in Appendix B.

As indicated in Introduction, we classify the tests according to their asymptotic distribu-
tion. The first group contains asymptotically normally distributed statistics.

— The test proposed by Epps and Pulley [13] based on the expected value of the exponential
density, with test statistic

1< X5
EPn:V48<7 e X"_5>.

n

Its approximate Bahadur slope is
0 2
@) = 3(/ (4e—x n x)gg(x; O)dx) 62 4+ 0(6%)
0
— The score test for the Weibull shape parameter proposed by Cox and Oakes [10]

COp=1+ - Z( )1;

Its approximate slope is

e0 2
6
cEo®) = ?(/‘ ((l —x)Inx+ (1 — y)x)gé(x; 0)dx> R 0(92)
0
— A test based on Gini coefficient from Gail and Gastwirth [14]

G = )Zn(n—l)X Z' |_7‘

i,j=1

The approximate slope is (see [40])
% 2
ch(0) = 12(/ <Ze_x n %)gé(x; 0)dx> 02 + 0(6?).
0

— The score test for the gamma shape parameter proposed by Moran [35] and Tchirina [49]

I X;

1

Monz‘y+;_§11n7
i=

n
Its approximate slope is (see [49])
2

O = (% - 1) 1</(1nx —x)g)(x; O)dx> 6+ 0(6)
0

— Characterization based integral-type tests
Let the relation

d
o1 (X1, oos X)) = 02(X1, ...y Xp), ©)
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where X1, ..., Xmax{m,p) are i.i.d. random variables, characterize the exponential distri-
bution. Then the following types of test statistics have been proposed:

L= " (@) - 1Y@ )dFao),
0

where H,ﬁ”“ ) (t) and H,sz) (t) are V -empirical distribution functions of @ and w;, respec-
tively, and F,, is the empirical distribution function, and

o
Tna = / (L,‘,“’”(r) - L;W(t))e—“fdr, (6)
0

where L,(,w‘) (t) and L,(1w2)(t) are V-empirical Laplace transforms of @ and w,, respec-
tively, applied to the scaled sample, and @ > 0 is the tuning parameter.
From these groups of tests we take the following representatives

- I}S,Z, proposed in Jovanovi¢ et al. [23], based on the Arnold and Villasenor charac-

terization, where w; (X1, ..., Xx) = max(Xy, ..., X;) and
@2(X1, ooy Xp) = X1 + 52+ X (see [4,34]);

- 1,52), proposed in Milosevi¢ and Obradovi¢ [33], based on the Milosevi¢-Obradovi¢
characterization, where w (X1, X») = max(X, X») and
(X1, X2, X3) = X1 + min(X2, X3) (see [34]);

— I,”’, proposed in MiloSevi¢ [31], based on the Obradovi¢ characterization, where
w1 (X], XQ, X3) = max(Xl, X2, X3) and
(X1, X2, X3, X4) = X1 + med(X2, X3, X4) (see [45]);

- 1,54), proposed in Volkova [53], based on the Yanev-Chakraborty characterization,
where w1 (X1, X2, X3) = max(Xq, X», X3) and
(X1, X2, X3) = % + max (X2, X3) (see [54]);

- I,,D based on the Desu characterization 1;

- If based on the Puri—Rubin characterization, where w1 (X)) = X and
@2 (X1, X2) = | X1 — X2l (see [46]);

- fa, proposed in Milosevi¢ and Obradovié [32], based on the Desu characterization
L

- J,f 4> proposed in MiloSevi¢ and Obradovié [32], based on the Puri-Rubin character-
ization.

Since these statistics are very similar, we give general expressions for their Bahadur
approximate slopes.

Statistics I, are non-degenerate V-statistics with some kernel ¥ and their approximate
slope is (see [39])

1

GO = Sarp )

2
( f Y ()85 (x5 0)dx) -6 + 0(6%), ™
where ¥ (x) = EWV (-|X] = x).
Statistics J, 4 are, due to the sample scaling, non-degenerate V-statistics with estimated
parameters. Nevertheless, the formula (7) is applicable here also, with ¥ being the kernel
of the test statistic as if the scaling were done using the real value of A (see [32] for details).

The second group contains statistics whose limiting distribution is the supremum of some
centered Gaussian process.
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— Lilliefors modification of the Kolmogorov—Smirnov test

KS, =sup|F,(t) — (1 —e %n)].

The approximate slope is (see [41])

e 2
* l / . . 2
cxs@)= R Y ilig <xex f Gy(u; 0)du — G(x; O)dx) -0
x>0 B 0
2
+ 0(67).

— Characterization based supremum-type tests
Using the characterizations of the type (5), another proposed type of test statistics is

Dy, = sup |H\“V (t) — H\*? (1)|.
>0

From this group of tests we take the following representatives:

D,(:,)(, proposed in Jovanovic¢ et al. [23]; D,(f), proposed in MiloSevi¢ and Obradovié
[33]; D,(l3), proposed in MiloSevi¢ [31]; D,(,4), proposed in Volkova [53], based on the
same characterizations as for the respective integral-type statistics, D,? based on Desu
characterization 1 and Df based on Puri—Rubin characterization [46]. Statistics from this
group are asymptotically distributed as a supremum of some non-degenerate V-empirical
processes, and the expression in the absolute parenthesis, for a fixed ¢ is a V-statistic with

some kernel ¥ (X1, ..., Xmax{m,p}; t)- Their approximate slopes is (see [37])
(6) = ! sup (/ v(x; gl (x: O)dx)2 .02 4 0(6?)
b sup;~o Varyr (X5 1) 4150 Tee '

where ¥ (x;t) = EV(-; t| X1 = x).

The third group contains statistics whose limiting distribution is an infinite linear combi-
nation of i.i.d. chi-squared random variables. Each of the presented statistics, except the last
one, is of the form

o0
T, = / Uy (s pyw (o),
0
where U, (¢; [t) is an empirical process of order 1 with estimated parameter. It also can be

viewed as a weakly degenerate V-statistics with estimated parameters, with some kernel
@ (X1, X2; 1), where u = Eg X . Then, the Bahadur approximate slope of such statistic is

1 o0 X0
()= E//(”(x, ¥ Dgy(x; 0)gy (35 0)+4@,, ) (x, y; D (0)g' (x; 0)g(y; 0)
00

+ P (6, ¥ D (1 (0))°g (x5 0)g (3 0)>dxdy -6% +0(6%), ®)
where §¢ is the largest eigenvalue of the integral operator

Aq(s) = /OOK(S,f)w(t)Q(t)dt,
0

where K (s, 1) = limy,—, oo nCov(U,(t), U, (s)) is the limiting covariance function.
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Hence it suffices to present only the kernels and limiting covariance functions of test
statistics. We consider the following tests:

— Lilliefors modification of the Cramér—von Mises test

o L 1 —c
wh :/ (Fa(t) = (1 — e %)) —e Tudt.
0 X

n

Its kernel is

2-2

B0 (x, y; w(6)) = ¢ "G T — ¢TI — oD 4 %@—% +e7 ) + é;

and the covariance function is
3 3 :
K (s, 1) = e 25720 (eMin(:D) 1 _ gp),
— Lilliefors modification of the Anderson—Darling test

00 _ _ _;%n 2
ADn:/ (Fn(t_) (1 6, ) .
0 X,(l—e %)

Its kernel is

X y max (2=, —2)
Pap(r. yi p(0) =~ 21— In( T 1),
w@ @)

and the covariance function is
e—s—t(emin(s,t) — 1= St)
JaA =1 —e )
— A test proposed by Baringhaus and Henze [7]

KAD(Ss t) =

2
e

BH, — f (A + 0w + v e a.
0

where ¥, (t) is the empirical Laplace transform. Its kernel is

(=01 —y)  xu(®) +yu®) — 2xy 2yu®)
x+y+apn®) (ap(0) +x + y)? (ap (@) +x + )3’
and the covariance function is

PpH(x, y; u(0)) =

1 +s+1t+2st 1
(14+s+1)3 (148521 +1)2

Kpu(s,t) =

— The test proposed by Henze [17]

HE / ” (w ) — — )2 —at gy
= _ e 5
n ) n 1+1

Its kernel is

Dup(e. v p@) =1+—D i (—ay e T E (— (HL))
ap@)+x+y w(®)

at—s o y
+e HOEi | —la+——])];
( ( M(9)>>

and the covariance function is
s2t2
Kuye(s, 1) =

(s+1+D(s+ D20+ 1)2°
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— The test proposed by Henze and Meintanis [18]

I Ly 2 —at
Wn_/o (1//,,(t) let) (140241

Its kernel is

Pu o yi (@) = L - HOWO+a) 4+ p@ROU +a) +7)
WP = (ap(0) + x)2 (ap(0) + y)?

203 (6) 2u%(6) ne)
(ap@ +x+y)3  (apn@ +x+y)?  apn® +x+y’

and the covariance function is
522

Kw(s,t) = +ri+Ds+DE+ 1)

— Two tests proposed by Henze and Meintanis [19]
oo
HM, = / (50 (1) = ten ) wi (D1, i =1,2,
0

where w((t) = e " and w(¢) = ¢~ Their kernels are

ap’(0) ap®(9)
2@220) + (x = D 2au20) + (x + y)?)
a?u?(©) —3(x —y)* | a?p?(6) — 3(x + y)?
@p20) + (x — N3 (@p20) + (x + y)»)3
2a13(0) (x + y)
(@20 + (x + )P

Pymi (x, y; n(9)) =

and

o o 9 _ _ _ 4ap2 )
HM2 (X, y; 1 (0)) 4Ja\\2a  ap®) 4d2u26) ‘

1 =y -
1 [ . - dap=©) |,
+< Y2 2o )°

S ((Lorty oy )

and the covariance function is

st(s> + 12+ 1) st

K = G+ 6+0) A+ +1)

— Characterization based L>-type test proposed by Cupari¢ et al. [11].

My, = / (L - Lﬁlz)(t))ze’“’dt. ©)
0
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Its slope is
* -1 i 1 a—X—Yyg; X ) X
¢k, 0) = (281) // ce ’El(—a)(a(e —) (e’ —2) —e —ey—|—4)
0 0

+ éefafxfy (Ei(a)(4a +ef+e¥—4) — (Eila+x)d@+x—1)+¢&)
+Eil@a+y)@d@+y—-1+e)—4@+x+y— DEi(a+x +y)))—%

+ l(e"‘ +e )+ ;]g’(x; 0)g'(y; 0)dxdy - 0% + 0(6?).
3 6(a+x+y)

4 Comparison of efficiencies

In this section we calculate approximate local relative Bahadur efficiencies of test statistics
introduced in Sects. 2 and 3 with respect to the likelihood ratio test (see [6]). Likelihood
ratio tests are known to have optimal Bahadur efficiencies and they are therefore used as
benchmark for comparison.

The alternatives we consider are the following:

a Weibull distribution with density

g, ) =e " (1+0x".6>0,x>0; (10)

a gamma distribution with density

xPe

) =—",0>0,x>0; 11
8(x,0) rexn t >0 (an

a linear failure rate (LFR) distribution with density

X2
g, 0) =e T (146x),0 >0,x > 0; (12)

— a mixture of exponential distributions with negative weights (EMNW(g)) with density

1
g(x,0) =1 +0)e — Qﬂe_ﬁx, 0 e (O, ﬁ] ,x >0;

On Figs. 1, 2, 3 and 4, there are plots of local approximate Bahadur efficiencies as a
function of the tuning parameter. For tests with no such parameter straight lines are drawn.
To avoid too many lines on the same plot, there are three separate plots given for each
alternative, each corresponding to one of the classes of tests from Sect. 3. The exact values
of local Bahadur efficiencies are available in Table 3 in Appendix C.

As a rule we can notice that, in the class of supremum-type statistics, new test L,?a is by
far the most efficient. On the other hand, supremum-type test based on characterizations that
use U-empirical distribution functions, are the least efficient among all considered tests.

The impact of the tuning parameter, for the tests that have got it, is also visible in all
the figures. It is interesting to note that this impact is different for various tests in terms of
monotonicity of the plotted functions.

Another general conclusion is that the ordering of the tests depends on the alternative and
that there is no most efficient test to be recommended in any situation.
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Fig.2 Local approximate Bahadur efficiencies w.r.t. LRT for a Gamma alternative

The CO and MO tests are known to be locally optimal for Weibull and gamma alternatives,
respectively, so they are the most efficient in these cases. However, there are quite a few other
tests that perform very well in there cases. In the case of the LFR alternative, the most efficient

are EP and HM,(ll)a and HMﬁ,Zzl It it interesting that for other alternatives the latter two tests

are among the least efficient.
In the case of the EMNW alternative, the integral and supremum-type tests based on the
characterizations via Laplace transforms, as well as most of the L? test reach, for some value

of the tuning parameter, an efficiency close to one.
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Fig.4 Local approximate Bahadur efficiencies w.r.t. LRT for a EMNW(3) alternative

5 Powers of new tests

In this section we present the simulated powers of our new tests against different alternatives.
The list of alternatives is chosen to be in concordance with the papers with extensive power

comparison studies. The alternatives are:

— a Weibull W(# — 1) distribution with density (10);
— agamma " (0 — 1) distribution with density (11);
— ahalf-normal A N distribution with density

2 i
gx)=,/—e 7, x>0
v
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— auniform U distribution with density
gr)=1,0=<x=<1;
— a Chen’s C H(9) distribution with density

,(9
g(x,0) = 2050~ 1x" —201=¢ ) x> 0;

— a linear failure rate L F(0) distribution with density (12);
— amodified extreme value EV (0) distributions with density

| T
g(x.0) = 5819 x>0
— alog-normal LN (9) distribution with density
1 ~ (nx)?
g, 0) = ———=e 2 ,x>0;

x~/ 2162
— aDhillon DL(0) distribution with density

0+1
g(x,0) = —I [(nGx + 1)fe G+ 5 .
X

The powers, for aforementioned alternatives, and different choices of the tuning param-
eter are estimated using the Monte Carlo procedure with 10000 replicates at the level of
significance 0.05.

The results are presented in Tables 1 and 2. In addition, we provide the bootstrap expected
power estimate for data-driven optimal value of the tuning parameter (see [2] for details).
Some steps to overcome "random nature" of selected parameters are made in Tenreiro [50],
but some questions still remain open and are planned for future research.

We can see from tables that all the sizes of our tests are equal to the level of significance,
and that the powers range from reasonable to high. In comparison to the other exponentiality
tests (see [11,51]) we can conclude that our tests are serious competitors to the most powerful
classical and recent exponentiality tests.

6 Conclusion

In this paper we proposed two new consistent scale-free tests for the exponential distribution.
In addition, we performed an extensive comparison of efficiency of recent and classical
exponentiality tests.

We showed that our tests are very efficient and powerful and can be considered as serious
competitors to other high quality exponentilaity tests.

From the comparison study, the general conclusion is that there is no uniformly best
test, since the performance is different for different alternatives. However, the tests based on
integral transforms, due to their flexibility because of the tuning parameter, generally tend to
have higher efficiency, and they are recommended to use.
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Appendix A: Proofs of theorems

Proof (Theorem 2) Our statistic Mfa (’)\\n) can be rewritten as

2
D *© 1 . >
MP, () = / — D &y, Xip,traky) | e
0

i1,ip=1
0 o~
= / Val(z, )Ln)zeimdlt
0

Here V,, (t; Xn), for each t > 0, is a V -statistic of order 2 with an estimated parameter, and
kernel

-~ 1y . .
S(xl,xz, t:a, )‘n) — E <€ thpxy te tAnxy e Manm(xl,xz)> .

Since the function &(x1, x2, ; a, y) is continuously differentiable with respect to y at the
point y = A we may apply the mean value theorem. We have

aVu(t;v)

Va(t; k) = Va(t; 1) 4+ Gy — 1) ™

ly=2*. (13)
for some A* between A and 3:,1. From the Law of large numbers for V-statistics [47, 6.4.2.],
the partial derivative %}fy) converges to

E (2; min{X;, Xp}e~2 minX1.X2ly _ txle—fXW) —0. (14)

Since /n(x, — A) is stochastically bounded, it follows that statistics /7 V,(t; A,) and
/nV,(t; 1) are asymptotically equally distributed. Therefore, nMEa (o) and ana (») will
have the same limiting distribution. Hence we need to derive limiting distribution of n M Ea (A).
First notice that Mfa (A) is a V-statistic with symmetric kernel H. Also, since the distri-
bution of M,? « (1) does not depend on A we may assume that A = 1.
It is easy to show that its first projection of kernel H on X is equal to zero. After some

calculations, we obtain that its second projection on (X1, X») is given by

hy(u, via) = E(H(X1, X2, X3, X410, D|X1 = u, X2 = v)
1 1 Qe eV
— + J— —
6 at+u+v a+4+2u+v a+4+u+2v

o' (Bi(- “erv) — Ei(- 7‘”22”“))) + e (4Ei(—a —20)

a—+u . a—+u+2v
)= Ei(=—5)

+e“+”(4Ei(—a —2v) — Ei(—a — v)) —20e " 4oV

— (4 —a)e'Ei(—a)

—Ei(—a—w) + e (Ei( -

a a a
et (= @+a+2Ei(=5 — )+ @+ HEi(—3)

@+ 2@+ U+ O)EI(=S —u—v) — (+a+2)Ei(=3 - v)
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e—Ll—U

where Ei(x) = — ffi ?d t is the exponential integral. The function ﬁz is non-constant for
any a > 0. Hence, kernel / is degenerate with degree 2.

Since the kernel H is bounded and degenerate, from the theorem on asymptotic distribution
of U-statistics with degenerate kernels [26, Corollary 4.4.2], and the Hoeffding representation
of V-statistics, we get that, M Ea (1), being a V-statistic of degree 2, has the following
asymptotic distribution

o0
nMP,(1) % 63 s W2, (15)
k=1

where {4y} are the eigenvalues of the integral operator M, defined by

+oo
Maq(x) =/(; ha(x, y; a)g(y)dF(y), (16)

and {W;} is the sequence of i.i.d. standard Gaussian random variables. m]

Proof (Theorem 3) The test statistic can be represented as

LD, = sup |V, (t; ap)e™™], (17)
t>0

where {V,, (t; ’)?,,)} is a V-empirical process introduced in the proof of Theorem 2.
Substituting s = ¢! in (17) we can express our statistic as

LP, = sup |Vu(—Ins; )9,
' s€(0,1)

thus obtaining, as a core of the statistic, the process V,(—Ins; i,,), s € (0, 1), defined on
C[0, 1] equipped with supremum norm.

Next we show that the difference between /LD, and /i supc (g 1y [V (—Ins; 1)s%|
(for a fixed A) tends uniformly to zero and proceed finding the limiting distribution of the
latter.

This is, taking into account (13), equivalent to lim,—, oo SUPse(0,1) Rn (s) = 0, where

1 .
Ru(s) = 5% — Z ( —21Insmin{X|, X}s2minlX1 X2}y | lnlesX”’>‘

1’12
L]
1 ) .
ij

=—Ins s

From (14) we know that the expression in the absolute parentheses tends to zero for each
s, and using [44, Lemma 1] we get that its supremum also tends to zero. Since —In s - s¢ is
bounded function, sup, R, (s) tends also to zero.

Since, for a fixed s, /nV,(—Ins; 1) is a non-degenerate V-statistic, ,/nV,(—Ins; A)
is asymptotically normally distributed. The same holds for finite-dimensional distributions
of the process /nV, (—Ins; 1). In addition, it can be shown that \/nV,,(— Ins; A) satisfies
conditions from Billingsley [8, Theorem 12.3], and is, therefore, tight in C[0, 1]. Therefore
it converges weakly to a zero mean Gaussian process {*(s)} with covariance function

K*(u,v) = K(—Inu, —Inv),

where K is defined in (3).
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Since the supremum is continuous on C[0, 1], using the continuous mapping theorem we
get that \/ﬁsupse(o’l) [Va(—Ins; 1)s?| converges to sup¢ (g 1y 7" (s)s“|, which is the same
as sup,. o [7()e~?|. This completes the proof. O

Proof (Lemma 4) Using the result of Zolotarev [55], the logarithmic tail behavior of limiting

distribution function of 1\71,? a (’):,,) =,/ nM,?a (’):n) is

l‘2
In(1 — Fi (1) = ~ 1o +o(t?), t > .

Therefore, a i, = &. The limit in probability Py of 1\71,”1 (’):n) /A/n is
bii, = vVbm(6).
The expression for by (0) is derived in the following lemma.

Lemma A1 For a given alternative density g(x; 6) whose distribution belongs to G, we have
that the limit in probability of the statistic Mn? o) is

o0 00
bu(6) = 6 / / e, i a)gh (x: 0)g) (v: O)dxdy - 67 + 0(6%), 6 — 0.
0 0

Proof For brevity, denote x = (x1, x2, x3, x4) and G(x;60) = ]_[?:1 G(x;; 0). Since X,
converges almost surely to its expected value p(0), using the Law of large numbers for
V -statistics with estimated parameters (see [22]), M D (hn) converges to

by (0)=Eq¢(H(X, a; u(0)))

_ /( ) _ Q)
B 2min{xy, xo}+2 min{x3, x4} +au @) x;+2min{xs3, x4}+au(0)

(RH)*
0 0
B M ) n(®) )dG(x;e).
x3 + 2min{xy, x2} +aun®)  x1+ x3 +ap(d)
We may assume that ©«£(0) = 1 since the test statistic is ancillary for A under the null

hypothesis. After some calculations we get that b},(0) = 0 and that

/ 82 7
b"(0) = / " H(x,a; l)de(x,O) = 6/( . ho(x, y)gé(x; O)g(;(y; 0)dxdy.
(RT) RT)

Expanding b, (0) into the Maclaurin series
by (0) = by (0) + by, (0) - 6 + b}y (006 + 0(6%), 6 — 0,
we complete the proof. O

Now we pass to the statistic L. The tail behaviour of the random variable sup, . 1| is
equal to the inverse of supremum of its covariance function, i.e. the a; = P K@D (see
[27,36]).

Similarly like before, since X,, converges almost surely to its expected value (0), using
the Law of large numbers for V-statistics with estimated parameters [22], V, (¢, a; i)e’“’
converges to

br(0;1) = Eg(P (X1, X231, a, n(0))).
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Expanding by, (0; t) in the Maclaurin series we obtain

o0

br(8;1) = 2/ P1(x,t; a)gy(x; 0)dx - 0 + 0(0),
0

where @) (x, t;a) = E(® (X1, X2, t;a, D)|X] = x1).

Since V-empirical Laplace transforms are monotonous functions, a Glivenko-Cantelli-type
theorem holds, see Novoa-Muiioz and Jiménez-Gamero [44, Lemma 1]. Hence, the limit in
probability under the alternative for statistics L,?a is equal to sup,~q b (0; t)|. Inserting this
into the expression for the Bahadur slope completes the proof. O

Appendix B: Bahadur approximate slopes

Proof Approximate local Bahadur slope of statistics EP and CO
Those statistics can be represented as

1n
T, = — D(X:; L),
n n; X;

where @ (x; y) is continuously differentiable with respect to y at point y = . It was shown
that the limiting distribution of \/nT}, is zero mean normal with variance aé (see [10,13)).
Hence, the coefficient a7 is equal to giz

[

Further, we have

b(0) = Eg(@(X; pu(0))) :/@(x; wn(@)dG(x; 0)
0
b'(©) —734’( ; (9))i (0)dG( '9)+]o¢( ; (9))idG( )
= X, [ 89“ X X; Py: x;0).
0 0

Then it holds that
b(0) = b(0) + b'(0)0 + 0(0)

= (,LL’(O) / @' (x; g(x; 0)dx + / @ (x; g (x; O)dx))ﬁ +0(0).
0 0

From this we obtain the expression for ¢ (0). ]
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Proof Approximate local Bahadur slope of statistics BH, HE, Wn, HM, w? and AD

Let T be the one of considered statistics. It was shown that the limiting distribution of n7,
is Zﬁl i Wl.z, where {W;} is the sequence of i.i.d. standard normal variables and {§;} the
sequence of eigenvalues of certain covariance operator. Using the result of Zolotarev in [55],
we have that the logarithmic tail behavior of limiting distribution function of 7",1 = /nT, is

2

In(1 — Fz(s)) = —ZSTI + o(sz), s — 00.

Next, the limit in probability of YN‘H //n is b3(0) = +/b7(0). Statistic T, can be represented
as

&
T, = — DXy, Xi: 1),
n nzk;] (Xk /,u)

As before, we may assume that £ (0) = 1. Since the sample mean converges almost surely
to its expected value, by using the Law of large numbers for V -statistics with estimated
parameters (see [22]), we can conclude that the limit in the probability of statistic 7}, is equal
to the one of

oo o0
br(0) = Eg(@ (X1, X2; 1(6))) ://(D(x,y;u(@))g(x;@)g(y;g)dxdy.
0 0
We get that 7.(0) = 0 and that
[oeNee]
b0y =2 f f @ (x. y: 1)) (x: 0)g) (y: O)dxdy
00
[eeNe ]
+4M/(0)// @' (x, y; Dg(x; 0)gy(y; 0)dxdy
00

[oelNee]
+(1'(0)? / / @ (x, y; Dg(x; 0)g(y; 0)dxdy,
0 0
Expanding b7 (0) into Maclaurin series we obtain expression for br. O

Appendix C: Tables of efficiencies
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Table 3 Relative Bahadur
efficiency with respect to LRT

@ Springer

Weibull Gamma LFR EMNW(@3)
EP, 0.876 0.694 0.750 0.937
CO, 1 0.943 0.608 0917
Gn 0.876 0.694 0.750 0.937
MO, 0.943 1 0.388 0.814
) 0.621 0.723 0104  0.694
) 0.664 0.708 0159  0.799
JAs 0.750 0.796 0.208 0.844
s 0.746 0.701 0.308 0916
Jasy 0.649 0.638 0.206 0.835
P 0.821 0.788 0337 0.949
1P 0.697 0.790 0.149 0.746
IFos 0.750 0.856 0.171 0.751
s 0.812 0.843 0.262 0.888
P 0.846 0.820 0.349 0.955
P, 0.868 0.792 0.445 0.985
J7s 0.882 0.756 0.566 0.987
7P 0.884 0.733 0.637 0.974
VA 0.526 0.731 0.053 0.370
I 0.674 0.826 0.117 0.608
7P 0.771 0.857 0.198 0.786
JP, 0.842 0.854 0.305 0.917
IS 0.889 0.813 0.465 0.991
T 0.896 0.775 0569 0994
KS 0.538 0.503 0356 0.686
YA 0.092 0.093 0052 0.149
"} 0.152 0.138 0106 0.230
p® 0277 0.267 0.155 0.396
p 0.258 0212 0213 0.364
p® 0.079 0.066 0.067 0.122
pP 0.437 0.448 0.192 0.592
pP 0.158 0.174 0.073 0.247
w? 0.808 0.701 0.588 0.958
AD, 0.909 0.863 0.573 0.996
BHy 0.2 0.905 0.928 0.421 0914
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Table 3 continued

Weibull Gamma LFR EMNW(@3)
BH, 0 0.932 0.877 0.534  0.987
BH, | 0.926 0.810 0.638 099
BH, » 0.894 0.726 0.749 0956
BH, s 0.823 0.611 0.878  0.848
BHy 10 0.771 0.542 0956  0.767
HE,o» 0923 0.928 0420 0.927
HE,o5 0940 0.868 0542 0.991
HE, 0.928 0.799 0.647 0992
HE, 0.893 0.719 0752 0.949
HE, 5 0.822 0.609 0873 0.846
HEy 10 0.761 0.536 0935 0758
Wy 02 0.790 0.914 0224 0.688
W05 0.905 0.922 0382 0.909
W1 0.935 0.864 0528 0.991
W 0.917 0.772 0.677 0983
W5 0.842 0.638 0842 0877
W10 0.774 0.550 0924 0.776
HM), 0324 0.448 0.049 0271
M) 0560 0.621 0.174 0643
am" 0.691 0.642 0361 0865
HM") 0.715 0.557 0.612 0855
oM 0.591 0.373 0.895 0582
HM"), 0.452 0.254 0951 0382
HM?), 0633 0.579 0320 0818
HMP) s 0673 0.533 0.520  0.828
HM) 0.656 0.468 0683 0742
HM?) 0.603 0.391 0825 0616
HM®) 0.504 0.295 0931 0451
HM) 0.430 0.238 0942 0355
)
M), 0.734 0.832 0.183 0754
M7 0.787 0.827 0253 0865
M 0.822 0.814 0324 0929
M) 0.850 0.794 0407 0.969
M) 0.873 0.764 0.523 0985
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Table3 continued Weibull — Gamma — LFR — EMNW@)
M7 0.881 0.742 0.601 0.979
M), 0533 0.712 0.080 0443
MDD 0.645 0.788 0.130 0610
M 0.729 0.825 0.191 0.750
M5 0.803 0.838 0.275 0.873
MR 0.867 0.820 0413 0971
M7 0.889 0.789 0.520 0992
L, 0.738 0.798 0.259 0.821
L 0.799 0.815 0.323 0.902
L 0.844 0.815 0394 0957
LD 0.875 0.800 0479 0988
L 0.892 0.766 0.588 0990
Ly 0.891 0.740 0652 0976

References

1. Alizadeh Noughabi, H., Arghami, N.R.: Testing exponentiality based on characterizations of the expo-
nential distribution. J. Stat. Comput. Simul. 81(11), 1641-1651 (2011)
2. Allison, J., Santana, L.: On a data-dependent choice of the tuning parameter appearing in certain goodness-
of-fit tests. J. Stat. Comput. Simul. 85(16), 3276-3288 (2015)
3. Allison, J., Santana, L., Smit, N., Visagie, I.: An ‘apples to apples’ comparison of various tests for
exponentiality. Comput. Stat. 32(4), 1241-1283 (2017)
4. Arnold, B.C., Villasenor, J.A.: Exponential characterizations motivated by the structure of order statistics
in samples of size two. Stat. Prob. Lett. 83(2), 596-601 (2013)
5. Bahadur, R.R.: On the asymptotic efficiency of tests and estimates. Sankhya Indian J. Stat. 22(3/4),
229-252 (1960)
6. Bahadur, R.R.: Rates of convergence of estimates and test statistics. Ann. Math. Stat. 38(2), 303-324
(1967)
7. Baringhaus, L., Henze, N.: A class of consistent tests for exponentiality based on the empirical Laplace
transform. Ann. Inst. Stat. Math. 43(3), 551-564 (1991)
8. Billingsley, P.: Convergence of Probability Measures. Wiley (1968)
9. Bozin, V., Milosevi¢, B., Nikitin, Ya.. Yu.., Obradovi¢, M.: New characterization based symmetry tests.
Bull. Malays. Math. Sci. Soc. 43(1), 297-320 (2020)
10. Cox, D., Oakes, D.: Analysis of Survival Data. Chapman and Hall, New York (1984)
11. Cuparié, M., MiloSevi¢, B., Obradovi¢, M.: New Lz—type exponentiality tests. SORT-Stat. Oper. Res.
Trans. 43(1), 25-50 (2019)
12. Desu, M.M.: A characterization of the exponential distribution by order statistics. Ann. Math. Stat. 42(2),
837-838 (1971)
13. Epps, T., Pulley, L.: A test of exponentiality vs. monotone-hazard alternatives derived from the empirical
characteristic function. J. R. Stat. Soc. Ser. B (Methodol.) 48(2), 206-213 (1986)
14. Gail, M., Gastwirth, J.: A scale-free goodness-of-fit test for the exponential distribution based on the Gini
statistic. J. R. Stat. Soc. Ser. B (Methodol.) 40(3), 350-357 (1978)
15. Grané, A., Fortiana, J.: A location-and scale-free goodness-of-fit statistic for the exponential distribution
based on maximum correlations. Statistics 43(1), 1-12 (2009)
16. Grané, A., Fortiana, J.: A directional test of exponentiality based on maximum correlations. Metrika
73(2), 255-274 (2011)

@ Springer



New consistent exponentiality tests... Page 250f26 42

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Henze, N.: A new flexible class of omnibus tests for exponentiality. Commun. Stat. Theory Methods
22(1), 115-133 (1992)

Henze, N., Meintanis, S.: Tests of fit for exponentiality based on the empirical Laplace transform. Stat. J.
Theor. Appl. Stat. 36(2), 147-161 (2002)

Henze, N., Meintanis, S.G.: Goodness-of-fit tests based on a new characterization of the exponential
distribution. Commun. Stat. Theory Methods 31(9), 1479-1497 (2002)

Henze, N., Meintanis, S.G.: Recent and classical tests for exponentiality: a partial review with compar-
isons. Metrika 61(1), 29-45 (2005)

. Huang, J.S.: On a theorem of Ahsanullah and Rahman. J. Appl. Probab. 11(1), 216-218 (1974)

Iverson, H., Randles, R.: The effects on convergence of substituting parameter estimates into U-statistics
and other families of statistics. Probab. Theory Relat. Fields 81(3), 453—471 (1989)

Jovanovi¢, M., Milosevié, B., Nikitin, Ya.. Yu.., Obradovi¢, M., Volkova, KYu.: Tests of exponentiality
based on Arnold—Villasenor characterization and their efficiencies. Comput. Stat. Data Anal. 90, 100-113
(2015)

Klar, B.: On a test for exponentiality against Laplace order dominance. Statistics 37(6), 505-515 (2003)
Klar, B.: Tests for exponentiality against the M and LM-Classes of life distributions. TEST 14(2), 543-565
(2005)

Korolyuk, V.S., Borovskikh, Y.V.: Theory of U-statistics. Kluwer, Dordrecht (1994)

Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Springer Science
and Business Media (2013)

Marcus, M.B., Shepp, L.: Sample behavior of Gaussian processes. In: Proc. of the Sixth Berkeley Sym-
posium on Math. Statist. and Prob, vol. 2, pp. 423—421 (1972)

Meintanis, S.G.: Tests for generalized exponential laws based on the empirical Mellin transform. J. Stat.
Comput. Simul. 78(11), 1077-1085 (2008)

Meintanis, S.G., Nikitin, Ya.. Yu.., Tchirina, A.: Testing exponentiality against a class of alternatives
which includes the RNBUE distributions based on the empirical Laplace transform. J. Math. Sci. 145(2),
48714879 (2007)

Milosevié, B.: Asymptotic efficiency of new exponentiality tests based on a characterization. Metrika
79(2), 221-236 (2016)

Milosevié, B., Obradovi¢, M.: New class of exponentiality tests based on U-empirical Laplace transform.
Stat. Pap. 57(4), 977-990 (2016)

Milosevié, B., Obradovi¢, M.: Some characterization based exponentiality tests and their Bahadur effi-
ciencies. Publications de L’Institut Mathematique 100(114), 107-117 (2016)

Milosevi¢, B., Obradovi¢, M.: Some characterizations of the exponential distribution based on order
statistics. Appl. Anal. Discrete Math. 10(2), 394—407 (2016)

Moran, P.: The random division of an interval—Part II. J. R. Stat. Soc. Ser. B (Methodol.) 13(1), 147-150
(1951)

Nikitin, Y.Y.: Asymptotic Efficiency of Nonparametric Tests. Cambridge University Press, New York
(1995)

Nikitin, Y.Y.: Large deviations of U-empirical Kolmogorov—Smirnov tests and their efficiency. J. Non-
parametr. Stat. 22(5), 649-668 (2010)

Nikitin, Y.Y.: Tests based on characterizations, and their efficiencies: a survey. Acta et Commentationes
Universitatis Tartuensis de Mathematica 21(1), 4-24 (2017)

Nikitin, Y.Y., Peaucelle, I.: Efficiency and local optimality of nonparametric tests based on U- and V-
statistics. Metron 62(2), 185-200 (2004)

Nikitin, Y.Y., Tchirina, A.V.: Bahadur efficiency and local optimality of a test for the exponential distri-
bution based on the Gini statistic. J. Ital. Stat. Soc. 5(1), 163-175 (1996)

Nikitin, Y.Y., Tchirina, A.V.: Lilliefors test for exponentiality: large deviations, asymptotic efficiency, and
conditions of local optimality. Math. Methods Stat. 16(1), 16-24 (2007)

Nikitin, Y.Y., Volkova, K.Y.: Asymptotic efficiency of exponentiality tests based on order statistics char-
acterization. Georgian Math. J. 17(4), 749-763 (2010)

Nikitin, YY. and K. Y. Volkova,: Efficiency of exponentiality tests based on a special property of expo-
nential distribution. Math. Methods Stat. 25(1), 54-66 (2016)

Novoa-Muifioz, F., Jiménez-Gamero, M.D.: Testing for the bivariate Poisson distribution. Metrika 77(6),
771-793 (2014)

Obradovi¢, M.: Three characterizations of exponential distribution involving median of sample of size
three. J. Stat. Theory Appl. 14(3), 257-264 (2015)

Puri, P.S., Rubin, H.: A characterization based on the absolute difference of two iid random variables.
Ann. Math. Stat. 41(6), 2113-2122 (1970)

Serfling, R.: Approximation Theorems of Mathematical Statistics, vol. 162. Wiley, New York (2009)

@ Springer



42

Page 26 of 26 M. Cupari¢ et al.

48.

49.

50.

51

52.

53.

54.

55.

Strzalkowska-Kominiak, E., Grané, A.: Goodness-of-fit test for randomly censored data based on maxi-
mum correlation. SORT Stat. Oper. Res. Trans. 41(1), 119-138 (2017)

Tchirina, A.: Bahadur efficiency and local optimality of a test for exponentiality based on the Moran
statistics. J. Math. Sci. 127(1), 1812-1819 (2005)

Tenreiro, C.: On the automatic selection of the tuning parameter appearing in certain families of goodness-
of-fit tests. J. Stat. Comput. Simul. 89(10), 1780-1797 (2019)

Torabi, H., Montazeri, N.H., Grané, A.: A wide review on exponentiality tests and two competitive
proposals with application on reliability. J. Stat. Comput. Simul. 88(1), 108-139 (2018)

Volkova, K.Y.: Tests of the exponentiality based on properties of order statistics 1. In: 6th St. Petersburg
Workshop on Simulation, pp. 761-764 (2009)

Volkova, K.Y.: Goodness-of-fit tests for exponentiality based on Yanev—Chakraborty characterization and
their efficiencies. In: Proceedings of the 19th European Young Statisticians Meeting, Prague, pp. 156—159
(2015)

Yanev, G.P., Chakraborty, S.: Characterizations of exponential distribution based on sample of size three.
Pliska Studia Mathematica Bulgarica 22(1), 237p-244p (2013)

Zolotarev, V.M.: Concerning a certain probability problem. Theory Probab. Appl. 6(2), 201-204 (1961)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	New consistent exponentiality tests based on V-empirical Laplace transforms with comparison of efficiencies
	Abstract
	1 Introduction
	2 New test statistics
	2.1 Asymptotic properties under H0
	2.2  Approximate Bahadur slope 

	3 Other exponentiality tests—a partial review
	4 Comparison of efficiencies
	5 Powers of new tests
	6 Conclusion
	Acknowledgements
	Appendix A: Proofs of theorems
	Appendix B: Bahadur approximate slopes
	Appendix C: Tables of efficiencies
	References




