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Abstract
This paper is devoted to studying the mapping properties for the spherical maximal operator
SG defined on finite connected graphsG. Some operator norms of SG on the �p(G), �p,∞(G)

and the spaces of bounded p-variation functions defined on G are investigated. Particularly,
as some special examples of finite connected graphs, the complete graph Kn and star graph
Sn are discussed.

Keywords Finite connected graph · Spherical maximal function · Bounded variation ·
Operator norm
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1 Introduction

Let G = (VG , EG) be an undirected combinatorial graph with the set of vertices VG and the
set of edges EG . We say that two vertices x, y ∈ VG are neighbors if they are connected by
an edge in EG , which is denoted by x ∼ y. If x ∼ y, then y ∼ x and we set x ∼ y = y ∼ x .
We denote by NG(v) the set of neighbors of v for any v ∈ VG . The graph G is called finite
if |VG | < ∞. The graph is called connected if for any distinct x, y ∈ VG , there is a finite
sequence of vertices {xi }ki=0, k ∈ N, such that x = x0 ∼ x1 ∼ · · · ∼ xk = y.

In what follows, we always assume that the graph G = (VG , EG) is a finite connected
graph with n (n ≥ 2) vertices. Let dG be the metric induced by the edges in EG . That is,
given u, v ∈ VG , the distance dG(u, v) is the number of edges in a shortest path connecting
u and v. Let BG(v, r) be the ball centered at v, with radius r on the graph, i.e.

BG(v, r) = {u ∈ VG : dG(u, v) ≤ r}.
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For example, BG(v, r) = {v} if 0 ≤ r < 1 and BG(v, r) = {v} ∪ NG(v) if 1 ≤ r < 2. Let
|BG(v, r)| be the cardinality of BG(v, r). For a function f : VG → R, the Hardy–Littlewood
maximal operator on G is given by

MG f (v) = sup
r≥0

1

|BG(v, r)|
∑

w∈BG (v,r)

| f (w)|. (1.1)

Since G has n (n ≥ 2) vertices, the maximal operator MG can be redefined by

MG f (v) = max
k=0,...,n−1

1

|BG(v, k)|
∑

w∈BG (v,k)

| f (w)|.

Over the last several years the Hardy–Littlewood maximal operators on graphs has
been studied by many authors (see [2,6,24,26,27]). This operator defined in (1.1) was first
introduced and studied by Korányi and Picardello [24] who used the maximal operator to
investigate the boundary behaviour of eigenfunctions of the Laplace operator on trees. Later
on, Cowling et al. [6] further studied the Hardy–Littlewoood maximal operators on homoge-
neous trees. Some weighted norm inequalities for the Hardy–Littlewoood maximal operators
on infinite graphs were established by Badr and Martell [2]. Recently, Soria and Tradacete
[26] studied the �p-norm for the Hardy–Littlewood maximal operators on finite connected
graphs.

Definition 1.1 (�p(G) spaces) Let G = (VG , EG) be a graph with the set of vertices VG and
the set of edges EG . For 0 < p ≤ ∞, let L p(G) be the set of all functions f : VG → R

satisfying ‖ f ‖�p(G) < ∞, where ‖ f ‖�p(G) = (
∑

v∈VG | f (v)|p)1/p for all 0 < p < ∞ and
‖ f ‖�∞(G) = supv∈VG | f (v)|.
Soria and Tradacete [26] studied the �p-norm of MG :

‖MG‖p := sup
‖ f ‖�p (G) 
=0

‖MG f ‖�p(G)

‖ f ‖�p(G)

, for 0 < p ≤ ∞.

We now introduce partial results of [26] as follows:

Theorem A [26] Let G = (VG , EG) be a graph with n vertices and 0 < p < 1. Let Kn be
the complete graph with n vertices, i.e. |NKn (v)| = n − 1 for any v ∈ VKn and let Sn be the
star graph of n vertices, i.e. there exists an unique v ∈ VSn such that |NSn (v)| = n − 1 and
|NSn (w)| = 1 for every w ∈ VSn\{v}. Then,

(
1 + n − 1

n p

)1/p

≤ ‖MG‖p ≤
(
1 + n − 1

2p

)1/p

.

Moreover,

(i) If 0 < p ≤ 1, then ‖MG‖p = (1 + n−1
n p )1/p if and only if G = Kn.

(ii) If 0 < p ≤ 1, then ‖MG‖p = (1 + n−1
2p )1/p if and only if G is isomorphic to Sn.

(iii) If 1 < p < ∞, then
(
1 + n − 1

n p

)1/p

≤ ‖MKn‖p ≤
(
1 + n − 1

n

)/p

.

(iv) If 1 < p < ∞, then
(
1 + n − 1

2p

)1/p

≤ ‖MSn‖p ≤
(
n + 5

2

)1/p

.
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Very recently, González-Riquelme andMadrid [7] obtained the best constants for ‖MKn‖2
and ‖MSn‖2. In [26], Soria and Tradacete [26] also investigated the weak-type �p,∞-norm
of MG :

‖MG‖�p,∞(G) := sup
‖ f ‖�p (G) 
=0

‖MG f ‖�p,∞(G)

‖ f ‖�p(G)

, for 0 < p < ∞,

where

‖ f ‖�p,∞(G) := sup
t>0

t |{ j ∈ VG : | f ( j)| > t}|1/p.

It is clear that ‖ f ‖�p,∞(G) ≤ ‖ f ‖�p(G).
Soria and Tradacete [26] proved the following result.

Theorem B [26] Let 0 < p < ∞, then

‖MKn‖p,∞ =
{
n1/p−1, if 0 < p ≤ 1;
1, if p ≥ 1.

Moreover,

max

{
n1/p

2
, 1

}
≤ ‖MSn‖p,∞ ≤ n1/p.

In particular, for every connected graph G with n vertices,

2n1/p ≥ ‖MG‖p,∞ ≥
{
n1/p−1, if 0 < p ≤ 1;
1, if p ≥ 1.

It is well known that the spherical maximal function

S f (x) = sup
t>0

∣∣∣∣
∫

Sn−1
f (x − tθ)dσ(θ)

∣∣∣∣

has played a key role in harmonic analysis and partial differential equations. This introduction
wasmotivated by some special spherical averages, which are some solutions of certain partial
differential equations, such as wave equation, Darboux’s equation and so on. We can consult
[3,20–22] for their history, background and applications. Stein [21] first established the L p

bounds for S with n
n−1 < p ≤ ∞ when n ≥ 3. Other proofs for the case n ≥ 3 can be

found in [5,20]. It is more remarkable that the more difficult case n = 2 was first settled by
Bourgain in [3]. Alternative proofs for the case n = 2 were given by Mockenhaupt, Seeger
and Sogge [19] as well as Schlag [25]. Other interesting works can be consulted [11,18] for
the discrete spherical maximal functions as well as [8,10,14] for the Sobolev regularity of
the spherical maximal functions.

The main objective of this paper is the spherical maximal function on finite graphs. Let
us introduce one definition.

Definition 1.2 (Spherical maximal operator on graphs) Let G = (VG , EG) be a graph with
n vertices. For v ∈ VG and r ≥ 0, let SG(v, r) denote the sphere of center v and radius r on
the graph G, i.e.

SG(v, r) = {u ∈ VG : dG(v, u) = r}.
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Specially, SG(v, 1) = NG(v) for all v ∈ VG . The Spherical maximal operator SG is given
by

SG f (v) = sup
r≥0

1

|SG(v, r)|
∑

u∈SG (v,r)

| f (u)|.

Since G has n (n ≥ 2) vertices, the Spherical maximal operator SG can be rewritten by

SG f (v) = max
r=0,1,...,n−1

1

|SG(v, r)|
∑

u∈SG (v,r)

| f (u)|.

Clearly, | f (v)| ≤ SG f (v) ≤ ‖ f ‖∞ for all v ∈ VG . It follows that

1 ≤ ‖SG‖p ≤ n1/p, 0 < p ≤ ∞. (1.2)

It was pointed out in [27] that

MG f (x) ≤ SG f (x), x ∈ VG .

Based on (1.2) and the facts concerning the best constants of ‖MG‖p and ‖MG‖p,∞, it is
interesting and natural to study the best constants of ‖SG‖p and ‖SG‖p,∞, which is one of
main motivations in this work.

On the other hand, the regularity theory of maximal operators has been the subject of
many recent research papers in harmonic analysis. The first work related to this topic was
due to Kinnunen [12] in 1997 when he established the boundedness for the centered Hardy–
Littlewood maximal operator M on the first order Sobolev spaces W 1,p(Rn) with 1 <

p ≤ ∞. Since then, Kinnunen’s result was extended to various versions (see [4,13,14]).
Since Kinnunen’s result does not include the case p = 1, the W 1,1-regularity for M is a
certainly more delicate issue. A complete solution was obtained only in dimension n = 1
(see [1,15,23]) and partial progress on the general dimension n ≥ 2 was given by Hajłasz
and Malý [9] and Luiro [17]. In particular, Aldaz and Pérez Lázaro [1] proved that if f
is of bounded variation on R, the uncentered Hardy–Littlewood maximal function M̃ f is
absolutely continuous and

Var
(M̃ f

) ≤ Var( f ),

where Var( f ) denotes the total variation of f on R.
Very recently, in order to generalize the endpoint regularity of maximal operators in [1]

to the graph setting, Liu and Xue [16] introduced the following BVp spaces on graphs.

Definition 1.3 (BVp(G) spaces) Let G = (VG , EG) and 0 < p ≤ ∞. We define the spaces
of bounded p-variation functions on graph G by

BVp(G) := { f : VG → R; ‖ f ‖BVp(G) := Var p( f ) < ∞},
where Var p( f ) represents the p-variation of f defined by

Var p( f ) =
⎛

⎝
∑

u∼v∈EG

| f (u) − f (v)|p
⎞

⎠
1/p

, for 0 < p < ∞

and

Var∞( f ) = sup
u∼v∈EG

| f (u) − f (v)|.

When p = 1, we denote BVp(G) = BV(G) and Var p( f ) = Var( f ).
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One can easily check that

Varq( f ) ≤ Var p( f ) ≤
(
n(n − 1)

2

)1/p−1/q

Varq( f ), for 0 < p ≤ q ≤ ∞.

and

Var p( f ) ≤ Cp,n‖ f ‖�p(G), 0 < p ≤ ∞.

However, there does not exist a constant Cp,n > 0 such that

‖ f ‖�p(G) ≤ Cp,nVar p( f ),

for all 0 < p ≤ ∞ and any functions f ∈ BVp(G). We also note that

�p(G) = BVp(G), 0 < p ≤ ∞, (1.3)

where G is a finite graph.
Liu and Xue [16] investigated the boundedness for MG on BVp(G) and the BVp-norm

of MG

‖MG‖BVp := sup
f :V→R

Var p( f )
=0

Var p(MG f )

Var p( f )
.

To be more precise, Liu and Xue [16] proved the following result.

Theorem C [16] Let G be a simple, finite and connected graph with n ≥ 2 vertices. Then

(i) If n = 2 and 0 < p ≤ ∞, then ‖MG‖BVp = 1/2;
(ii) If n = 3 and 0 < p ≤ 1, then ‖MG‖BVp = 2/3;
(iii) If n ≥ 3, then 1 − 1/n ≤ ‖MKn‖BVp < 1.
(iv) If n ≥ 3, then 1 − 1/n ≤ ‖MSn‖BVp < 1;
(v) MG is bounded from BVp(G) to BVp(G) for all 0 < p ≤ ∞. Specially, for any

f ∈ BVp(G), it holds that

Var p(MG f ) ≤
(n
2

)1/p
(n − 1)max{1,1/p}Var p( f ).

Gonzalez-RiquelmeandMadrid [7] improvedpartial results inTheoremC.Moreprecisely,
they established the following

Theorem D [7] Let n ≥ 3 and 0 < p ≤ ∞.

(i) Then ‖MKn‖BVp = 1 − 1/n if one of the following conditions holds:

(a) p ≥ 1;
(b) 0 < p < 1 and n = 4;
(c) n ≥ 3 and ln 4

ln 6 ≤ p < 1.

(ii) If1 < p ≤ ∞, then‖MSn‖BVp = (1+2p/(p−1))(p−1)/p

3 .Moreover, the equality‖MSn‖BVp =
1 − 1/n holds if one of the following conditions holds:

(a’) p = 1;
(b’) 0 < p < 1 and n = 4;
(c’) 1/2 ≤ p ≤ 1 and n ≥ 5.

123



186 Page 6 of 21 X. Zhang, F. Liu

In light of (1.2) and (1.3), the boundedness of SG on BVp(G) is trivial. However, it is
interesting and natural to investigate ‖SG‖BVp , which is another motivation of this work.

This paper will be organized as follows. In Sect. 2 we shall present certain �p-norm
estimates for the spherical maximal function as well as two restricted type estimates. Section
3 is devoted to establishing the optimal constants for ‖SKn‖p,∞ and ‖SSn‖p,∞. Finally, the
BVp-norm of SG is discussed in Sect. 4.

2 Estimates for ‖SG‖p and two restricted type estimates

This section is devoted to studying the �p-norm of the spherical maximal operator. We start
with the following observation.

Theorem 2.1 Let G = (VG , EG) be graph with n (n ≥ 2) vertices and 0 < p < ∞. Then

(i) 1 ≤ ‖SG‖p ≤ n1/p;
(ii) If n = 2 and G is connected, then

‖SG‖p = 21/p.

Proof The claim (i) follows from (1.2).We now prove part (ii). Let n = 2 andG = (VG , EG)

with VG = {1, 2} and EG = {1 ∼ 2}. Given a function f : VG → R, it holds that
SG f (1) = SG f (2) = max{| f (1)|, | f (2)|}. Then we have

‖SG f ‖p
�p(G)

‖ f ‖p
�p(G)

= 2(max{| f (1)|, | f (2)|})p
| f (1)|p + | f (2)|p .

Without loss of generality we may assume that | f (1)| ≥ | f (2)| and β = | f (2)|
| f (1)| . It is clear

that β ∈ [0, 1] and

‖SG‖p = sup
β∈[0,1]

(
2

1 + β p

)1/p

= 21/p.

This completes the proof. ��
Remark 2.1 Let G = (VG , EG) be a connected graph with set of vertices VG = {u, v} and
0 < p ≤ ∞. Then ‖SG f ‖�p(G) = 21/p‖ f ‖�p(G) if and only if f (u) f (v) = 0.

In order to establish next results, let us introduce an useful lemma.

Lemma 2.2 [26] Let G = (VG , EG) be graph with n (n ≥ 2) vertices, and T : �p(G) →
�p(G) be a sublinear operator, with 0 < p ≤ 1. Then

‖T ‖p = max
k∈VG

‖T δk‖�p(G).

We are going to present the estimates for ‖SKn‖p .

Theorem 2.3 Let n ≥ 3.

(i) If 0 < p ≤ 1, then

‖SKn‖p = (1 + (n − 1)1−p)1/p.

(ii) If 1 < p < ∞, then

(1 + (n − 1)1−p)1/p ≤ ‖SKn‖p < 21/p.
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Proof Without loss of generality we may assume that Kn = (VKn , EKn ), where VKn =
{1, . . . , n}. Given k ∈ VKn . One can easily check that SKn (δk)(k) = 1 and SKn (δk)(i) = 1

n−1
for all i ∈ VKn\{k}. Then we have

‖SKn δk‖�p(Kn) = (1 + (n − 1)1−p)1/p.

By Lemma 2.2, one has

‖SKn‖p = (1 + (n − 1)1−p)1/p, for 0 < p ≤ 1.

This proves part (i).
Now we prove part (ii). Note that ‖δ1‖�p(Kn) = 1. Then we have

‖SKn‖p ≥ ‖SKn δ1‖�p(Kn)

‖δ1‖�p(Kn)

= (1 + (n − 1)1−p)1/p, for 0 < p < ∞.

Next we shall prove

‖SKn‖p < 21/p, for 1 < p < ∞. (2.1)

To prove (2.1), it suffices to show that

‖SKn f ‖�p(Kn) < 21/p, for 1 < p < ∞. (2.2)

for all nonnegative functions f : VKn → R with ‖ f ‖�p(Kn) = 1.
Given a function f = ∑n

i=1 aiδi with ai ≥ 0 (i = 1, . . . , n) and
∑n

i=1 a
p
i = 1. We write

SKn ( f )(i) = max

⎧
⎨

⎩ai ,
1

n − 1

⎛

⎝
n∑

j=1

a j − ai

⎞

⎠

⎫
⎬

⎭ , i = 1, . . . , n.

Since p > 1, by Jensen’s inequality

‖SKn f ‖p
�p(Kn)

=
n∑

i=1

⎛

⎝max

⎧
⎨

⎩ai ,
1

n − 1

⎛

⎝
n∑

j=1

a j − ai

⎞

⎠

⎫
⎬

⎭

⎞

⎠
p

≤
n∑

i=1

max

{
a p
i ,

1

n − 1
(1 − a p

i )

}
.

(2.3)

We set

N1 :=
{
i : i ∈ {1, . . . , n}, a p

i ≤ 1

n

}
,

N2 :=
{
i : i ∈ {1, . . . , n}, a p

i >
1

n

}
.

Then we have
n∑

i=1

max

{
a p
i ,

1

n − 1
(1 − a p

i )

}
=

∑

i∈N1

1

n − 1
(1 − a p

i ) +
∑

i∈N2

a p
i

= |N1|
n − 1

+ 1 −
(

1

n − 1
+ 1

) ∑

i∈N1

a p
i =: g(N1)

Notice that 1 ≤ |N1| ≤ n. One can get g(N1) ≤ 2. Moreover, g(N1) = 2 if there exists
an unique j0 ∈ {1, . . . , n} such that a j0 = 1 and a j = 0 for all j ∈ {1, . . . , n}\{ j0}.
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Actually, if there exists an unique j0 ∈ {1, . . . , n} such that a j0 = 1 and a j = 0 for all
j ∈ {1, . . . , n}\{ j0}, we can get ‖SKn f ‖�p(Kn) = (1+ (n − 1)1−p)1/p < 21/p when p > 1.
These together with (2.3) yields (2.2). ��

The following result focuses the estimates for ‖SSn‖p .

Theorem 2.4 Let n ≥ 3 and 0 < p < ∞. Then

(i) ‖SSn‖p = n1/p;
(ii) Let Sn = (VSn , ESn ) with VSn = {1, . . . , n} and ESn = {1 ∼ 2, . . . , 1 ∼ n}, then

‖SSn f ‖�p(Sn)

‖ f ‖�p(Sn)
= n1/p

if and only if f = ±αδ1 for all α ∈ R\{0}.
Proof Wemay assumewithout loss of generality that Sn = (VSn , ESn )with VSn = {1, . . . , n}
and ESn = {1 ∼ 2, . . . , 1 ∼ n}. Clearly, SSn δ1(i) = 1 for all i ∈ VSn . Hence,
‖SSn δ1‖�p(Sn) = n1/p . Then we have

‖SSn‖p ≥ n1/p, for 0 < p < ∞.

This together with part (i) of Theorem 2.1 implies

‖SSn‖p = n1/p, for 0 < p < ∞.

This proves part (i) of Theorem 2.4.
We now prove part (ii). It suffices to show that if there exists a nonnegative function f

such that ‖ f ‖�p(Sn) = 1 and ‖SSn f ‖�p(Sn) = n1/p , then f = δ1. Let f = ∑n
i=1 aiδi with

ai ≥ 0 (i = 1, 2, . . . , n) and
∑n

i=1 a
p
i = 1. Then we have

SSn f (i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max

⎧
⎨

⎩a1,
1

n − 1

n∑

j=2

a j

⎫
⎬

⎭ , i = 1;

max

⎧
⎨

⎩a1, ai ,
1

n − 2

⎛

⎝
n∑

j=2

a j − ai

⎞

⎠

⎫
⎬

⎭ , i = 2, . . . , n.

Observe that SSn f (i) ≤ 1 for all i = 1, . . . , n. By our assumption ‖SSn f ‖�p(Sn) = n1/p , we
have SSn f (i) = 1 for all i = 1, . . . , n. Since

SSn f (1) = max

⎧
⎨

⎩a1,
1

n − 1

n∑

j=2

a j

⎫
⎬

⎭ = 1,

it follows that a1 = 1 or 1
n−1

∑n
j=2 a j = 1. If a1 = 1, then ai = 0 for all i = 2, . . . , n, there

is nothing to do. If 1
n−1

∑n
j=2 a j = 1, then ai = 1 for all i = 2, . . . , n, there is impossible

since
∑n

i=1 a
p
i = 1. This completes the proof. ��

Remark 2.2 The �p-norm of SG relies on strictly the structure of the graph G when 0 < p <

∞. Even for the connected graph G with three vertices, we can’t obtain an uniform estimate
for ‖SG‖p with 0 < p < ∞. For example, if G is a connected graph with three vertices,
then G = K3 or G = S3, it follows from Theorem 2.3 that ‖SK3‖p = (1 + 21−p)1/p for
0 < p ≤ 1 and (1+ 21−p)1/p ≤ ‖SK3‖p < 21/p for 1 < p < ∞. However, ‖SS3‖p = 31/p

for all 0 < p < ∞.
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Next we shall consider the following restricted type estimate:

‖SG‖p,rest = max
A⊂VG

‖SG(χA)‖�p(G)

‖χA‖�p(G)

.

It is clear that

‖SG‖p,rest ≤ ‖SG‖p. (2.4)

Motivated by the idea in the proof of Theorem 2.5 in [26], we can get the following result.

Theorem 2.5 Let n ≥ 2 and 1 < p < ∞.

(i) If n ≤ p′, then

‖SKn‖p,rest = (1 + (n − 1)1−p)1/p.

(ii) If n ≤ p, then

‖SKn‖p,rest = (1 + (n − 1)−1)1/p.

(iii) If n > max{p, p′}, p = p1/p2 ∈ Q and p1 divides n. Then

‖SKn‖p,rest =
(
1 + n p(p − 1)p−1

(n − 1)p pp

)1/p

.

(iv) Let [x] be the integer part of x. If n > max{p, p′} and p is not a rational number or
p = p1/p2 ∈ Q and p1 is not divide n. Then

‖SKn‖p,rest =
(
1 + 1

(n − 1)p
max{(n − [n]p)([n]p)p−1, (n − 1 − [n]p)([n]p + 1)p−1}

)1/p

,

where [n]p = [n/p′].
(v) If n > max{p, p′}, then

max{(1 + (n − 1)−1)1/p, (1 + (n − 1)1−p)1/p} ≤ ‖SKn‖p,rest < 21/p.

Proof Given a set A ⊂ VKn with |A| = k ≤ n. one has that SKn (χA)( j) = 1 if j ∈ A and
SKn (χA)( j) = k

n−1 if j /∈ A. It follows that

‖SKn (χA)‖�p(Kn) =
⎛

⎝
n∑

j=1

SKn (χA)( j)p

⎞

⎠
1/p

=
(
k + (n − k)k p

(n − 1)p

)1/p

.

Notice that ‖χA‖�p(Kn) = k1/p . Therefore,

‖SKn‖p,rest =
(
1 + 1

(n − 1)p
max

1≤k≤n−1
(n − k)k p−1

)1/p

. (2.5)

Let ϕ(x) = (n − x)x p−1 for x ∈ (0,∞). Observing that ϕ is increasing on (0, n/p′) and is
decreasing on (n/p′,∞). We discuss the following cases:

(i) If n ≤ p′, then the function ϕ is decreasing on [1, n − 1]. We have ϕ(x) ≤ ϕ(1) for all
x ∈ [1, n − 1]. Hence, we get

‖SKn‖p,rest = (1 + (n − 1)1−p)1/p.
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186 Page 10 of 21 X. Zhang, F. Liu

(ii) If n ≤ p, then n/p′ ≥ n − 1 and ϕ is increasing on [1, n − 1]. Thus, ϕ(x) ≤ ϕ(n − 1)
for all x ∈ [1, n − 1]. It holds that

‖SKn‖p,rest = (1 + (n − 1)−1)1/p.

(iii) If n > max{p, p′}, p = p1/p2 ∈ Q and p1 divides n. In this case we have n/p′ is an
integer and n/p′ ∈ [1, n − 1]. Thus we have ϕ(x) ≤ ϕ(n/p′) for all x ∈ [1, n − 1].
Hence,

‖SKn‖p,rest =
(
1 + n p(p − 1)p−1

(n − 1)p pp

)1/p

.

(iv) If n > max{p, p′} and p is not of the previous form. In this case we have n/p′ ∈
[1, n − 1], but it is not an integer. Then

‖SKn‖p
p,rest = 1 + 1

(n − 1)p
max{(n − [n]p)([n]p)p−1, (n − 1 − [n]p)([n]p + 1)p−1}.

The conclusion of part (v) follows easily from (2.4), (2.5) and part (ii) of Theorem 2.3.

��
We end this section by presenting the estimate for ‖SSn‖p,rest.

Theorem 2.6 Let n ≥ 2 and 0 < p < ∞. Then we have

‖SSn‖p,rest = n1/p.

Proof Wemay assumewithout loss of generality that Sn = (VSn , ESn )with VSn = {1, . . . , n}
and ESn = {1 ∼ 2, . . . , 1 ∼ n}. Let A = {1}. Then we have SSn (χA)(1) = 1 for all i ∈ V .

Hence,
‖SSn (χA)‖�p (Sn )

‖χA‖�p (Sn )
= n1/p and ‖SSn‖p,rest ≥ n1/p . This together with (2.4) and part (i)

of Theorem 2.4 yields ‖SSn‖p,rest = n1/p . ��
Remark 2.3 Let n ≥ 2 and Sn = (VSn , ESn ), where VSn = {1, . . . , n} and ESn = {1 ∼
2, . . . , 1 ∼ n} and A ⊂ VSn . It should be pointed out that

‖SSn (χA)‖�p (Sn )

‖χA‖�p (Sn )
= 2 + 1

n−1 if and

only if A = {1}.

3 Estimates for ‖SG‖p,∞
This section is devote to investigating the term ‖SG‖p,∞. Let us begin with the following
result.

Theorem 3.1 Let G = (VG , EG) be graph with n (n ≥ 2) vertices and 0 < p < ∞. Then

(i) n−1/p ≤ ‖SG‖p,∞ ≤ n1/p.
(ii) If n = 2 and G is connected, then ‖SG‖p,∞ = 1.

Proof Given a function f : V → R with ‖ f ‖p = 1, by the fact that | f (v)| ≤ SG f (v) for
all v ∈ V , we have

‖SG‖p,∞ ≥ sup
t>0

t |{ j ∈ V : | f ( j)| > t}|1/p.
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Let α = max
i∈V | f (v)|. Then α ≥ n−1/p because of ‖ f ‖�p(G) = 1. Noting that |{ j ∈ V :

| f ( j)| > t}| ≥ 1 when t ∈ (0, α). Then we have

sup
t>0

t |{ j ∈ V : | f ( j)| > t}|1/p ≥ α ≥ n−1/p.

It follows that

‖SG‖p,∞ ≥ n−1/p.

On the other hand, by part (i) of Theorem 2.1 and the fact that ‖SG‖p,∞ ≤ ‖SG‖p , it holds
that ‖SG‖p,∞ ≤ n1/p . This proves part (i) of Theorem 3.1.

We now prove (ii). Let VG = {1, 2} and EG = {1 ∼ 2}. Given a function f : VG → R

with | f (1)|p + | f (2)|p = 1, it holds that SG f (1) = SG f (2) = max{| f (1)|, | f (2)|}. We
consider the following cases:

1. If | f (1)| = | f (2)|. One can easily check that | f (1)| = | f (2)| = 2−1/p and‖SG f ‖p,∞ =
2−1/p21/p = 1.

2. If | f (1)| 
= | f (2)|. Without loss of generality we may assume that | f (1)| > | f (2)|.
Then we have

‖SG f ‖p
�p,∞(G) = max{2| f (2)|p, | f (1)|p} = max{2(1 − | f (1)|p), | f (1)|p} = 1.

Hence, we have

‖SG‖p,∞ = 1.

This proves part (ii) of Theorem 3.1

��
Remark 3.1 Let G = (VG , EG) be a connected graph with two vertices. Then we have that
‖SG f ‖�p,∞(G) = ‖ f ‖p for any arbitrary functions f : VG → R.

Now we present some optimal constants for ‖SKn‖p,∞.

Theorem 3.2 If 0 < p < ∞, then

‖SKn‖p,∞ =
{

n1/p
n−1 , if 0 < p < ln n

ln(n−1) ;
1, if ln n

ln(n−1) ≤ p < ∞.

Proof Let Kn = (VKn , EKn ), where VKn = {1, . . . , n}. Given k ∈ VKn . One can easily check
that SKn δ1(1) = 1 and SKn δ1(i) = 1

n−1 for i = 2, . . . , n. It follows that

{ j ∈ V : SKn δ1( j) > t} =
⎧
⎨

⎩

{1, . . . , n}, if t ∈ (0, 1
n−1 );

{1}, if t ∈ [ 1
n−1 , 1);∅, if t ∈ [1,∞).

Thus we have

‖SKn δ1‖�p,∞(Kn) = sup
t>0

|{ j ∈ V : SKn δ1( j) > t}|1/p = max

{
n1/p

n − 1
, 1

}
.

It follows that

‖SKn‖p,∞ ≥
{

n1/p
n−1 , if 0 < p < ln n

ln(n−1) ;
1, if p ≥ ln n

ln(n−1) .
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We now prove

‖SKn‖p,∞ ≤
{

n1/p
n−1 , if 0 < p < ln n

ln(n−1) ;
1, if p ≥ ln n

ln(n−1)

Given a function f : VKn → R with f ≥ 0 and ‖ f ‖�p(Kn) = 1. Then we have

SKn f (i) = max

{
f (i),

1

n − 1
(‖ f ‖�1(Kn)

− f (i))

}
, i = 1, . . . , n.

Without loss of generality we may assume that

0 ≤ f (1) ≤ f (2) ≤ f (3) ≤ · · · ≤ f (n − 1) ≤ f (n).

We consider the following cases:

1. f (1) > 0. Then { j ∈ VKn : SKn f ( j) > t} = V when t ∈ (0, f (1)). If f (1) < f (2).
Then { j ∈ VKn : SKn f ( j) > t} = {2, . . . , n} when t ∈ [ f (1), f (2)). If f (1) = f (2) <

f (3), then { j ∈ VKn : SKn f ( j) > t} = {3, . . . , n} when t ∈ [ f (1), f (3)). Reasoning
as above, we have that if there exists j0 ∈ {1, . . . , n − 1} such that f ( j0) < f ( j0 + 1),
then we have { j ∈ VKn : SKn f ( j) > t} = { j0 + 1, . . . , n} when t ∈ [ f ( j0), f ( j0 + 1)).
If there exists j0 ∈ {1, . . . , n − 1} and m ≥ 1 such that f ( j0) = f ( j0 + 1) = · · · =
f ( j0+m−1) < f ( j0+m), then { j ∈ VKn : SKn f ( j) > t} = { j0+m, j0+m+1, . . . , n}
when t ∈ [ f ( j0), f ( j0 + m)). Thus we have

‖SKn f ‖�p,∞(G) = sup
t>0

|{ j ∈ V : SKn f ( j) > t}|1/p = max
1≤i≤n−1

f (i)(n + 1 − i)1/p.

Fix i ∈ {1, . . . , n − 1}, one can easily check that

f (i)(n + 1 − i)1/p ≤
⎛

⎝
n∑

j=i

f (i)p

⎞

⎠
1/p

≤
⎛

⎝
n∑

j=i

f ( j)p

⎞

⎠
1/p

≤ 1.

2. There exists i0 ∈ {2, . . . , n} such that f (i0 − 1) = 0 and f (i0) > 0. This case can be
dealt by the similar arguments as in getting the case (1) essentially. We omit the details.

��
We end this section by presenting the estimate for ‖SSn‖p,∞.

Theorem 3.3 Let n ≥ 3. Then

‖SSn‖p,∞ = n1/p.

Proof Wemay assumewithout loss of generality that Sn = (VSn , ESn )with VSn = {1, . . . , n}
and ESn = {1 ∼ 2, . . . , 1 ∼ n}. Clearly, SSn δ1(i) = 1 for all i ∈ VSn . Then we have

{ j ∈ V : SSn δ1( j) > t} =
{
V , t ∈ (0, 1);
∅, t ∈ [1,∞)

It follows that

‖SKn δ1‖�p,∞(Sn) = sup
t>0

|{ j ∈ VSn : SSn δ1( j) > t}|1/p = n1/p.

Hence,

‖SSn‖p,∞ ≥ n1/p.
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On the other hand, invoking Theorem 2.4,

‖SSn‖p,∞ ≤ ‖SSn‖p ≤ n1/p.

This completes the proof of Theorem 3.3. ��

4 Estimates for ‖SG‖BVp

In this section we study the estimates for ‖SG‖BVp . At first, we present the following obser-
vation.

Theorem 4.1 Let n ≥ 2 and G be a connected graph with n vertices and 0 < p < ∞. Then

(i) If n = 2, then ‖SG‖BVp = 0.
(ii) If n ≥ 3, then

‖SG‖BVp ≤
(n
2

)1/p
(n − 1)max{1,1/p}.

Proof Let n = 2 and G = (VG , EG) with VG = {1, 2} and E = {1 ∼ 2}. Given a
function f : VG → R, we have that SG f (1) = SG f (2) = max{| f (1)|, | f (2)|}. Then
Var p(SG f ) = 0 and ‖SG‖BVp = 0. This proves part (i). By the arguments similar to those
used to derive Theorem 1.2 in [16], we can get the conclusion of part (ii). The details are
omitted. ��

The following result focuses on the estimate of ‖SKn‖BVp .

Theorem 4.2 Let n ≥ 2 and 0 < p ≤ ∞. Then

(i) If p ≥ 1, then

‖SKn‖BVp = n − 2

n − 1
.

(ii) If n = 2 or n = 3, then

‖SKn‖BVp = n − 2

n − 1
.

(iii) If 0 < p < 1 and n ≥ 4, then

n − 2

n − 1
≤ ‖SKn‖BVp ≤ min

{
1,

(n − 2)1/p

n − 1

}
.

Proof Let Kn = (VKn , EKn ), where VKn = {1, . . . , n}. Given k ∈ VKn . One can easily check
that SKn δ1(1) = 1 and SKn δ1(i) = 1

n−1 for all i ∈ VKn\{1}. Then we have

‖SKn‖BVp ≥ Var p(SKn δ1)

Var p(δ1)
=

(
(n − 1)

(
1 − 1

n−1

)p)1/p

(n − 1)1/p
= n − 2

n − 1
. (4.1)

Given a function f : VKn → R, we have

SKn f (i) = max

⎧
⎨

⎩| f (i)|, 1

n − 1

⎛

⎝
n∑

j=1

| f ( j)| − | f (i)|
⎞

⎠

⎫
⎬

⎭ , i = 1, . . . , n.
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Without loss of generality we may assume that f is non-negative. Let

m =
∑n

i=1 f (i)

n
.

We also assume that

f (1) ≤ · · · ≤ f (r − 1) < m ≤ f (r) ≤ · · · ≤ f (n).

For i = 1, . . . , n, we set

mi =

n∑
l=1

f (l) − f (i)

n − 1
.

Observe that

mi > f (i), ∀i < r and mi ≤ f (i), ∀i ≥ r . (4.2)

It follows that

SKn f (i) = mi , ∀i < r and SKn f (i) = f (i), ∀i ≥ r .

Therefore,

(Var p(SKn f ))
p =

∑

1≤i< j≤n

|SKn f (i) − SKn f ( j)|p

=
∑

1≤i< j<r

(mi − m j )
p +

∑

r≤i< j≤n

( f ( j) − f (i))p

+
∑

1≤i<r≤ j≤n

( f ( j) − mi )
p. (4.3)

We first prove part (i). The proof is motivated by the idea in [7]. By (4.2) and (4.3), we
have

(Var p(SKn f ))
p ≤

∑

1≤i< j<r

(mi − f ( j))p +
∑

r≤i< j≤n

( f ( j) − mi )
p

+
∑

1≤i<r≤ j≤n

( f ( j) − mi )
p

≤
∑

1≤i< j≤n

| f ( j) − mi |p. (4.4)

Fix 1 ≤ i < j ≤ n. By Hölder’s inequality, one has

| f ( j) − mi | ≤ 1

n − 1

∑

1≤l≤m
l 
=i, j

| f (l) − f ( j)| ≤ (n − 2)1−1/p

n − 1

⎛

⎜⎜⎝
∑

1≤l≤m
l 
=i, j

| f (l) − f ( j)|p
⎞

⎟⎟⎠

1/p

,
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since p ≥ 1. This together with (4.4) leads to

(Var p(SKn f ))
p ≤ (n − 2)p−1

(n − 1)p
∑

1≤i< j≤n

∑

1≤l≤m
l 
=i, j

| f (l) − f ( j)|p

≤ (n − 2)p−1

(n − 1)p
∑

1≤i< j≤n

(n − 2)| f (i) − f ( j)|p

≤
(
n − 2

n − 1

)p

(Var p( f ))
p,

which combining with (4.1) implies the desired conclusion of part (i).
Next we shall prove part (ii).When n = 2, the conclusion follows from part (i) of Theorem

4.1. When n = 3, let K3 = (VK3 , EK3), where VK3 = {1, 2, 3}. Given f = ∑3
i=1 aiδi with|a1 − a2|p + |a1 − a3|p + |a2 − a3|p > 0, we want to show that

Var p(SK3 f ) ≤ 1

2
Var p( f ). (4.5)

Without loss of generality we may assume that all ai ≥ 0. It is clear that

SK3( f )(i) = max

⎧
⎨

⎩ai ,
1

2

⎛

⎝
3∑

j=1

a j − ai

⎞

⎠

⎫
⎬

⎭ , i = 1, 2, 3.

We only prove (4.5) for the case a1 ≥ a2 ≥ a3 and a1 > a3, since other cases are analogous.
If a2 < 1

2 (a1 + a3). In this case we have SK3 f (1) = a1, SK3 f (2) = 1
2 (a1 + a3) and

SK3 f (3) = 1
2 (a1 + a2). Then we have

(Var p(SK3 f ))
p =

(
1

2
(a1 − a3)

)p

+
(
1

2
(a2 − a3)

)p

+
(
1

2
(a1 − a2)

)p

= 1

2p
(Var p( f ))

p.

If a2 ≥ 1
2 (a1 + a3). For convenience, we set

α := a1 − a2, β := a2 − a3.

Then we have β ≥ α and β > 0. In this case we have SK3 f (1) = a1, SK3 f (2) = a2 and
SK3 f (3) = 1

2 (a1 + a2). We write

(Var p(SK3 f ))
p

(Var p( f ))p
= (a1 − a2)p + 1

2p (a1 − a2)p + 1
2p (a1 − a2)p

(a1 − a2)p + (a2 − a3)p + (a1 − a3)p

= (1 + 21−p)α p

α p + β p + (α + β)p
= (1 + 21−p)

( α
β
)p

1 + ( α
β
)p + (1 + α

β
)p

.

Note that α
β

∈ [0, 1]. Let ϕ(x) = x p

1+x p+(1+x)p , x ∈ [0, 1]. It is clear that ϕ′(x) ≥ 0. Then

ϕ(x) ≤ ϕ(1) = 1
2+2p . Hence,

(Var p(SK3 f ))
p

(Var p( f ))p
≤ 1

2p
.
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It remains to prove part (iii). We get from (4.2) and (4.3) that

(Var p(SKn f ))
p ≤

∑

1≤i< j<r

(
f ( j) − f (i)

n − 1

)p

+
∑

r≤i< j≤n

( f ( j) − f (i))p

+
∑

1≤i<r≤ j≤n

( f ( j) − f (i))p

≤
∑

1≤i< j≤n

| f (i) − f ( j)|p = (Var p( f ))
p,

which leads to

Var p(SKn f ) ≤ Var p( f ). (4.6)

On the other hand, by Jensen’s inequality, one has

| f ( j) − mi |p ≤ 1

(n − 1)n

⎛

⎜⎜⎝
∑

1≤l≤m
l 
=i, j

| f (l) − f ( j)|

⎞

⎟⎟⎠

p

≤ 1

(n − 1)p
∑

1≤l≤m
l 
=i, j

| f (l) − f ( j)|p,

since 0 < p < 1. This together with (4.4) implies that

(Var p(SKn f ))
p ≤ 1

(n − 1)p
∑

1≤i< j≤n

∑

1≤l≤m
l 
=i, j

| f (l) − f ( j)|p

≤ 1

(n − 1)p
∑

1≤i< j≤n

(n − 2)| f (i) − f ( j)|p

≤ n − 2

(n − 1)p
(Var p( f ))

p.

This gives that

Var p(SKn f ) ≤ (n − 2)1/p

n − 1
Var p( f ). (4.7)

Inequality (4.7) together with (4.1) and (4.6) implies the desired conclusion of part (iii). This
finishes the proof of Theorem 4.2. ��

Before presenting the corresponding result for SSn , let us introduce the following lemma.

Lemma 4.3 [16] Let l ≥ 2 and {ai }li=1, {bi }li=1 be two finite sequences of nonnegative real
numbers. For 2 ≤ k ≤ l, we define

Mk = max{ai ; i = 1, 2, . . . , k} and Nk = max{bi ; i = 1, 2, . . . , k}.
Then, for any 2 ≤ k ≤ l, we have

|Mk − Nk | ≤
k∑

i=1

|ai − bi |.

The estimates for ‖SSn‖BVp can be formulated as follows.

Theorem 4.4 Let n ≥ 3 and 1 < p < ∞. Then
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(i) If 0 < p ≤ 1, then

n − 2

n − 1
(1 + (n − 2)1−2p)1/p ≤ ‖SSn‖BVp ≤

(
1 + 2(n − 2)1−p

(n − 1)p

)1/p

.

Clearly, when p = 1, then

‖SSn‖BVp = 1.

(ii) If 1 < p < ∞, then

n − 2

n − 1
(1 + (n − 2)1−2p)1/p ≤ ‖SSn‖BVp ≤ n + 1

(n − 1)1/p
.

(iii) If p = ∞, then

n − 2

n − 1
≤ ‖SSn‖BVp ≤ n + 1

n − 1
.

Particularly, when n = 3, then

‖SSn‖BV∞ = 1.

(iv) If 0 < p ≤ 1 and n = 3, then

‖SS3‖BVp = 21/p−1.

Proof We may assume without loss of generality that Sn = (VSn , ESn ), where VSn =
{1, . . . , n} and ESn = {1 ∼ 2, . . . , 1 ∼ n}. It is clear that SSn δ2(1) = 1

n−1 , SSn δ2(2) = 1

and SSn δ2(i) = 1
n−2 for i ∈ VSn\{1, 2}. Then we have

Var p(SSn δ2) =
((

1 − 1

n − 1

)p

+ (n − 2)

(
1

n − 2
− 1

n − 1

)p)1/p

= n − 2

n − 1
(1 + (n − 2)1−2p)1/p.

Hence,

‖SSn‖BVp ≥ n − 2

n − 1
(1 + (n − 2)1−2p)1/p.

On the other hand, fix a function f : VSn → R. We write

SSn f (i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max

⎧
⎨

⎩| f (1)|, 1

n − 1

n∑

j=2

| f ( j)|
⎫
⎬

⎭ , i = 1;

max

⎧
⎨

⎩| f (i)|, | f (1)|, 1

n − 2

⎛

⎝
n∑

j=2

| f ( j)| − | f (i)|
⎞

⎠

⎫
⎬

⎭ , i = 2, . . . , n.

Invoking Lemma 4.3,

|SSn f (i) − SSn f (1)| ≤ || f (i)| − | f (1)|| +
∣∣∣∣∣∣

1

n − 2

⎛

⎝
n∑

j=2

| f ( j)| − | f (i)|
⎞

⎠ − 1

n − 1

n∑

j=2

| f ( j)|
∣∣∣∣∣∣

≤ | f (i) − f (1)| + 1

(n − 2)(n − 1)

n∑

j=2

| f ( j) − f (i)|. (4.8)
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for any i ∈ {2, . . . , n}.
When p ∈ (0, 1], we get from (4.8) that

|SSn f (i) − SSn f (1)|p ≤ | f (i) − f (1)|p +
(

1

(n − 2)(n − 1)

)p n∑

j=2

| f ( j) − f (i)|p

for all i ∈ {2, . . . , n}. Then we have

(Var p(SSn f ))
p ≤

n∑

i=2

| f (i) − f (1)|p +
(

1

(n − 2)(n − 1)

)p n∑

i=2

n∑

j=2

| f ( j) − f (i)|p

≤ Var p( f )
p + 1

((n − 2)(n − 1))p

n∑

i=2

n∑

j=2
j 
=i

(| f ( j) − f (1)|p + | f (i) − f (1)|p)

≤ Var p( f )
p + 2(n − 2)

((n − 2)(n − 1))p
Var p( f )

p

=
(
1 + 2(n − 2)1−p

(n − 1)p

)
Var p( f )

p.

It follows that

‖SSn‖BVp ≤
(
1 + 2(n − 2)1−p

(n − 1)p

)1/p

.

When 1 < p < ∞, we get from (4.8) that

Var p(SSn f ) =
(

n∑

i=2

|SSn f (i) − SSn f (1)|p
)1/p

≤
n∑

i=2

| f (i) − f (1)| + 1

(n − 2)(n − 1)

n∑

i=2

n∑

j=2

| f ( j) − f (i)|

≤
(
1 + 2

n − 1

) n∑

i=2

| f (i) − f (1)|

≤
(
1 + 2

n − 1

)
(n − 1)1−1/pVar p( f ).

It follows that

‖SSn‖BVp ≤ n + 1

(n − 1)1/p
.

This proves parts (i) and (ii) of Theorem 4.4.
When p = ∞. It is clear that Var p(SSn δ2) = n−2

n−1 and Var p(δ2) = 1. Then we have

‖SSn‖BV∞ ≥ n − 2

n − 1
.
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On the other hand, from (4.8) we see that for each i ∈ {2, . . . , n},

|SSn f (i) − SSn f (1)| ≤ | f (i) − f (1)| + 1

(n − 2)(n − 1)

n∑

j=2

| f ( j) − f (i)|

≤ Var∞( f ) + 1

(n − 2)(n − 1)

n∑

j=2
j 
=i

(| f ( j) − f (1)| + | f (i) − f (1)|)

≤ n + 1

n − 1
Var∞( f ).

This gives

‖SSn‖BV∞ ≤ n + 1

n − 1
.

Now we consider the case n = 3. Let S3 = (VS3 , ES3) with VS3 = {1, 2, 3} and ES3 =
{1 ∼ 2, 2 ∼ 3}. Let g : VS3 → R satisfy |g(1)| > |g(2)| > |g(3)| and |g(2)| = 1

2 (|g(1)| +
|g(3)|). Then we have SS3g(1) = SS3g(3) = |g(1)| and SS3g(2) = |g(2)|. It follows that

‖SS3‖BV∞ ≥ Var∞(SS3 f )
Var∞( f )

= |g(1)| − |g(2)|
|g(1)| − |g(2)| = 1.

On the other hand, we get from part (i) that ‖SS3‖BVp ≥ 21/p−1 for any p ∈ (0, 1]. Hence,
to get the desired conclusions of parts (iii) and (iv), it suffices to show that

Var p(SS3 f ) ≤ 21/p−1Var p( f ), if 0 < p ≤ 1 (4.9)

and

Var∞(SS3 f ) ≤ Var∞( f ). (4.10)

for all functions f : VS3 → R with Var p( f ) > 0.
Fix f = ∑3

i=1 aiδi with ai ≥ 0. It is clear that

SS3 f (1) = SS3 f (3) = max{a1, a2, a3}, SS3 f (2) = max

{
a2,

1

2
(a1 + a3)

}
.

For convenience, we set

α := |a1 − a2|, β := |a2 − a3|.
1. (a1 ≥ a2 ≥ a3 and a1 > a3). If a2 ≥ 1

2 (a1 + a3). Then we have a2 − a3 ≥ a1 − a2.
Then SS3 f (1) = SS3 f (3) = a1 and SS3 f (2) = a2. In this case we get

(Var p(SS3 f ))
p

(Var p( f ))p
= 2(a1 − a2)p

(a1 − a2)p + (a2 − a3)p
≤ 1

for p ∈ (0, 1]. Moreover,

Var∞(SS3 f )
Var∞( f )

= a1 − a2
a2 − a3

≤ 1.

If a2 < 1
2 (a1 + a3). Then SS3 f (1) = SS3 f (3) = a1 and SS3 f (2) = 1

2 (a1 + a3).
Therefore,

(Var p(SS3 f ))
p

(Var p( f ))p
= 2( 12 (a1 − a3))p

(a1 − a2)p + (a2 − a3)p
= 21−p (a1 − a3)p

(a1 − a2)p + (a2 − a3)p
≤ 21−p,
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for p ∈ (0, 1]. Moreover,

Var∞(SS3 f )
Var∞( f )

=
1
2 (a1 − a3)

a1 − a2
< 1.

This proves (4.9) and (4.10) in this case.
2. (a1 ≥ a3 ≥ a2 and a1 > a2). Then SS3 f (1) = SS3 f (3) = a1, SS3 f (2) = 1

2 (a1 + a3)
and

(Var p(SS3 f ))
p

(Var p( f ))p
= 2( 12 (a1 − a3))p

(a1 − a2)p + (a2 − a3)p
= 21−p (a1 − a3)p

(a1 − a2)p + (a2 − a3)p
< 21−p,

for p ∈ (0, 1]. Moreover,

Var∞(SS3 f )
Var∞( f )

=
1
2 (a1 − a3)

a1 − a2
<

1

2
.

This proves (4.9) and (4.10) in this case.
3. (a2 ≥ a1 ≥ a3 and a2 > a3). Then we have SS3 f (1) = SS3 f (2) = SS3 f (3) = a2. In

this case we have Var p(SS3 f ) = 0 and Var∞(SS3 f ) = 0. This proves (4.9) and (4.10)
in this case.

4. (a2 ≥ a3 ≥ a1 and a2 > a1). The case is similar to the case (3).
5. (a3 ≥ a2 ≥ a1 and a3 > a1). The case is similar to the case (1).
6. (a3 ≥ a1 ≥ a2 and a3 > a2). The case is similar to the case (2).

This completes the proof of Theorem 4.4. ��
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