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Abstract
We study variants of s-numbers in the context of multilinear operators. The notion of an s(k)-
scale of k-linear operators is defined. In particular, we shall deal with multilinear variants of
the s(k)-scales of the approximation, Gelfand, Hilbert, Kolmogorov and Weyl numbers. We
investigate whether the fundamental properties of important s-numbers of linear operators
are inherited to the multilinear case. We prove relationships among some s(k)-numbers of
k-linear operators with their corresponding classical Pietsch’s s-numbers of a generalized
Banach dual operator, from the Banach dual of the range space to the space of k-linear forms,
on the product of the domain spaces of a given k-linear operator.
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1 Introduction

A natural question that appears in Functional Analysis and theory of operators is whether
there are variants of some classical properties of linear operators in the setting of multilinear
operators. We note that in many cases dealing with multilinear, instead of linear mappings,
has proved to be a subtle subject and require different methods, and the proofs are more
complicated. Moreover, many linear results are no longer true in the setting of multilinear
operators. For instance, the linear Marcinkiewicz multiplier theorem, whose natural bilinear
version fails, as shown by Grafakos and Kalton in [6]. Furthermore, in some questions,
completely new definitions and new techniques need to be developed.

An axiomatic approach to s-numbers and Banach operator ideals of linear operators was
developed by Pietsch [17]. There are many of these s-numbers sequences. The approximation
numbers are the largest (under coordinate-wise ordering as sequences) s-numbers on Banach
spaces. These numbers have proved to give a very useful information about the degree of
compactness of operators acting between Banach spaces. The Gelfand and Kolmogorov
numbers play an important role in the study of the local theory of Banach spaces. Pietsch
[17, p. 220] shows that an operator T acting between Banach spaces is compact if and only
if sn(T ) → 0 as n → ∞ for (sn) either the sequence of Gelfand numbers or the sequence
of Kolmogorov numbers. The Weyl numbers, defined by Pietsch, are truly important in the
study of Riesz operators in Banach spaces. We refer to [4,7,8,10,21,23] for an in-depth study
of s-numbers and their applications.

We point out that multilinear operators appear naturally in harmonic analysis and func-
tional analysis, including the theory of ideals of operators in Banach spaces. In recent times
singular multilinear operators have been intensively studied, including the famous bilinear
Hilbert transform (see [6,9]).

In 1983 Pietsch [20] proposed and sketched a theory of ideals and s-numbers of multilinear
functionals. In his work, he wrote "Therefore this paper should be mainly considered as
a research program for the future". Pietsch’s motivation was the extension of the theory of
s-numbers and operator ideals to the nonlinear case. Pietsch’s paper is the origin of studies
of several authors on some classes of ideals of multilinear operators. We refer to the study of
such ideals to [2,11,12] and also to the survey paper [16] and references therein.

While the properties of s-numbers of linear operators are well-known, Pietsch’s research
problem on a theory of s-numbers of multilinear operators had not been studied extensively.
This is the main motivation to continue the study of variants of s-numbers in the context
of multilinear operators initiated in the paper [5] and continued in [1] in the setting of
polynomials acting between Banach spaces.

We introduce a notion of an s(k)-scale of k-linear operators. Exploring ideas of Pietsch
developed in the linear setting we investigate whether the fundamental properties of important
s-numbers ideals of linear operators are inherited to the multilinear case. It should be noted
that whereas the work is based on some ideas from the theory of s-numbers ideals of bounded
linear operators, some proofs may be extended from the linear case to multilinear operators,
and others require some new ideas and methods. The difficulty comes from the fact that, even
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in the bilinear case, the range or the kernel of a multilinear operator is not necessarily a linear
subspace. In particular, as a consequence, the well-known relations between the dimensions
of the kernel and the range in the linear case are not true in general, in the multilinear case.

The organization of the paper is as follows: in Sect. 2, we introduce a modified variant of
the notion of s-numbers in the setting of k-linear operators. This notion is more general that
the one given in [5]. We also introduce the notion of symmetric, injective, surjective s(k)-
scale, and also the mixed multiplicative property. In Sect. 3, we consider the s(k)-scales of
approximation numbers and as application, we study the approximation numbers of bilinear
diagonal operators. In other sections, we study in detail multilinear variants of important
classical Pietsch’s s-numbers which are shown in the of Contents of the paper.

2 s-Numbers of multilinear operators

We shall use the notation and terminology commonly used in Banach space theory. If X is
a Banach space we denote by X∗ its dual Banach space, and by UX ,

◦
UX , SX the closed, the

open unit ball and the unit sphere of X , respectively. As usual, JX : X → �∞(UX∗) denotes
the metric injection defined by JX (x) := (x∗(x))x∗∈UX∗ with values in the space �∞(UX∗)
of bounded sequences. The canonical embedding of X to the bidual X∗∗ of X is denoted by
κX . K denotes the field of all scalars (complex or real) and N the set of all positive integers
and for each n ∈ N, [n] := {1, . . . , n}. For 1 ≤ p ≤ ∞ and a nonempty set �, we let �p(�)

be the space of all p-summable sequences (xγ )γ∈� . If � = [n] (resp., � = N) we use the
standard notion �np (resp., �p) instead of �p([n]) (resp., �p(N)). The standard unit vector basis
in c0 is denoted by (ei ). If no confusion arises we also use (ei )ni=1 to denote the unit basis
vectors in R

n . The product X1 × · · · × Xk of Banach spaces is equipped with the standard
norm ‖(x j )‖ := max1≤ j≤k ‖x j‖X j , for all (x j ) ∈ X1 × · · · × Xk . The Banach space of all
continuous k-linear mappings T from X1 × · · · × Xk to a Banach space Y is endowed with
the norm

‖T ‖ := sup
{‖T (x1, . . . , xk)‖Y ; (x1, . . . , xk) ∈ UX1 × · · · ×UXk

}
,

and it is denoted by L(X1, . . . , Xk; Y ). As usual, in the case k = 1, the space of all bounded
linear operators from X1 toY is denoted byL(X1; Y ). If k ≥ 2 andY = K, then we shorten by
L(X1, . . . , Xk), which is the space of all k-linear forms. If in addition X1 = · · · = Xk = X
(resp., Y = K), we write L(k X; Y ) (resp., L(k X)).

From now on we assume that all spaces which will appear are Banach spaces. Let k ≥ 2
be an integer and let T ∈ L(X1, . . . , Xk; Y ). For each i ∈ [k], 1 < i ≤ k, and every
xi := (x1, . . . , xi−1, xi+1, . . . , xk) ∈ ∏k

j=1, j 
=i X j , the associated operator Txi ∈ L(Xi ; Y )

is defined by

Txi x := T (x1, . . . , xi−1, x, xi+1, . . . , xk), x ∈ Xi

with an obvious modification for i = 1 and i = k.
For every k-linear operator T ∈ L(X1, . . . , Xk; Y ), its rank is given by

rank T := dim ([T (X1 × · · · × Xk)]),
where [A] denotes the linear subspace generated by a nonempty subset A ⊂ Y .

Throughout the paper, for each n ∈ N, In : �n2 → �n2 denotes the identity map. For each
k, n ∈ N we let ⊗k In to denote the k-linear operator, from

∏k
i=1 �n2 to �2([n]k), defined for
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all x1 = (x1( j))nj=1, . . . , xk = (xk( j))nj=1 ∈ �n2 by

⊗k In(x1, . . . , xk) := x1 ⊗ · · · ⊗ xk,

where x1 ⊗ · · · ⊗ xk := ((x1 ⊗ · · · ⊗ xk)( j)) j∈[n]k and

(x1 ⊗ · · · ⊗ xk)( j) := x1( j1) · · · xk( jk), j = ( j1, . . . , jk) ∈ [n]k .
Now, we are ready to introduce a modified variant of the notion of s-numbers in the setting

of k-linear operators, which appeared in [5].
A rule s(k) = (s(k)

n ) : L(X1, . . . , Xk; Y ) → [0,∞)N, assigning to every operator T ∈
L(X1, . . . , Xk; Y ) a non-negative scalar sequence (s(k)

n (T )), is said to be an s(k)-scale if the
following conditions are satisfied:
(S1) Monotonicity: For every T ∈ L(X1, . . . , Xk; Y ),

‖T ‖ = s(k)
1 (T ) ≥ s(k)

2 (T ) ≥ · · · ≥ 0.

(S2) Additivity: For every S, T ∈ L(X1, . . . , Xk; Y ),

s(k)
m+n−1(S + T ) ≤ s(k)

m (S) + s(k)
n (T ).

(S3) Ideal-property: For every T ∈ L(X1, . . . , Xk; Y ), S ∈ L(Y ; Z), R1 ∈ L(W1; X1),

. . . , Rk ∈ L(Wk; Xk),

s(k)
n (S ◦ T ◦ (R1, . . . , Rk)) ≤ ‖S‖ s(k)

n (T ) ‖R1‖ · · · ‖Rk‖.
(S4) Rank-property: For every T ∈ L(X1, . . . , Xk; Y ) with rank(T ) < n, s(k)

n (T ) = 0.
(S5) Norming property: For each n ∈ N one has s(k)

n (⊗k In) = 1.

We note that in the setting of linear operators the property (S5) is equivalent to the original
property defined by Pietsch [19],

sn(In) = 1, n ∈ N,

where In : �n2 → �n2 denotes the identity map.

Following the classical case in the linear setting, we call s(k)
n (T ) the n-th s(k)-number of

the k-linear operator T . To show the domain X1 × · · · × Xk and the range space Y , we write
s(k)
n (T : X1 × · · · × Xk → Y ).

We will use an obvious estimate, which follows from condition (S2):

|s(k)
n (S) − s(k)

n (T )| ≤ ‖S − T ‖, S, T ∈ L(X1, . . . , Xk; Y ).

Given an s(k)-scale (s(k)
n ), we also introduce the following definitions:

(J1) (s(k)
n ) is called injective if, given any metric injection J ∈ L(Y ; Z), that is, ‖J y‖ = ‖y‖

for all y ∈ Y , s(k)
n (T ) = s(k)

n (JT ) for all T ∈ L(X1, . . . , Xk; Y ) and all Banach spaces
X1, . . . , Xk .

(J2) (s(k)
n ) is called injective in the strict sense if s(k)

n (T ) = s(k)
n (JY T ) for all T ∈

L(X1, . . . , Xk; Y ).
(S) (s(k)

n ) is called surjective if, given any metric surjections Q j ∈ L(Y j ; X j ), (i.e.,

Q j (
◦
UYj ) = ◦

UX j for each j ∈ [k]), s(k)
n (T ) = s(k)

n (T (Q1, . . . , Qk)) for all T ∈
L(X1, . . . , Xk; Y ) and any Banach space Y .

Now we are ready to give the following definition:
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(M) If (sn) is an s-scale and (s(k)
n ) is an s(k)-scale, then the pair ((sn), (s

(k)
n )) has the mixed

multiplicative property, if for any T ∈ L(X1, . . . , Xk; Y ) and S ∈ L(Y ; Z),

s(k)
m+n−1(ST ) ≤ sm(S) s(k)

n (T ), m, n ∈ N.

A sequence (s(k)) of s(k)-scales is said to be multiplicative if, for each k ∈ N the pair
((s(1)

n ), (s(k)
n )) has the mixed multiplicative property.

Given T ∈ L(X1, . . . , Xk; Y ), we define the generalized adjoint (adjoint for short) oper-
ator T× : Y ∗ → L(X1, . . . , Xk) by

(T×y∗)x := y∗(T x), y∗ ∈ Y ∗, x ∈ X1 × · · · × Xk .

This operator was introduced in [24], where a variant of Schauder Theorem is proved, which
states that T is compact if and only if T× is compact.

Note that, for any T ∈ L(X1, . . . , Xk; Y ) and S ∈ L(Y ; Z), we have

(ST )× = T×S∗,

where S∗ is the classical linear adjoint of S.
In what follows for a k-tuple (X1, . . . , Xk) of Banach spaces, we define a k-linear mapping

κ̂X1×···×Xk : X1 × · · · × Xk → L(X1, . . . , Xk)
∗ given by

κ̂X1×···×Xk x(S) := Sx, x ∈ X1 × · · · × Xk, S ∈ L(X1, . . . , Xk).

Following Pietsch [19], we recall that in the setting of linear operators an
s-scale (sn) is said to be symmetric (resp., fully symmetric) if, for every operator S,
(sn(S)) ≥ (sn(S∗)) (resp., (sn(S)) = (sn(S∗))).

Let (sn) be an s-scale and (s(k)
n ) be an s(k)-scale. The following notion is motivated by

the above definition of Pietsch.

(S6) A pair (s, s(k)) is said to be symmetric (resp., fully symmetric) if, for every operator
T ∈ L(X1, . . . , Xk; Y ) and each n ∈ N,

sn(T
×) ≤ s(k)

n (T ) (resp., sn(T
×) = s(k)

n (T )).

If (s(k))∞k=1 is a sequence of s(k)-scales then, it is said to be symmetric (resp., fully symmetric)
if for each k ∈ N the pair (s(1), s(k)) is symmetric (resp., fully symmetric).

Proposition 2.1 Suppose that an s-scale and s(k)-scale form a symmetric pair (s, s(k)). Then,
for any k-linear operator with s(k)

n (T ) = 0, we have rank (T ) < n.

Proof By our hypothesis sn(T×) ≤ s(k)
n (T ) and so sn(T×) = 0. Since T× is a linear operator,

it follows that rank (T×) < n. Applying [5, Lemma 3.1], we conclude that rank(T×) =
rank(T ) and the result follows. 
�

Since the adjoint operator T× of a k-linear operator reflects some properties of T , as
quoted before, and it is a linear operator, if (sn) is an s-scale defined for linear operators,
then following [17], we define for every T ∈ L(X1, . . . , Xk; Y ) the numbers

s(×k)
n (T ) := sn(T

×), n ∈ N.

In what follows s(×k) := (s(×k)
n ) is said to be an adjoint of s-scale, whenever the conditions

(S1), (S2), (S4) and (S5) are satisfied, and in addition
(S3′) s(×k)

n (ST ) ≤ ‖S‖s(×k)
n (T ).
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3 Approximation numbers

The n-th approximation number of a k-linear operator T ∈ L(X1, . . . , Xk; Y ) is defined by

a(k)
n (T ) := inf{‖T − A‖; A ∈ L(X1, . . . , Xk; Y ), rank(A) < n}.

In the study of these numbers and others s(k)-scales, we will use without any references an
obvious fact that, for an arbitrary operator S : X → Y between Banach spaces such that
rank (S) < dim (X), there exists x ∈ SX with Sx = 0.

We prove that (a(k)
n ) forms an s(k)-scale which is called the a(k)-scale of approximation

numbers. To show this, we prove a preliminary result which we will also need later.

Proposition 3.1 Let T ∈ L(X1, . . . , Xk; Y ) with rank (T ) ≥ n. Suppose that ‖T ‖ = 1 and
there exists xi ∈ ∏k

j=1, j 
=i UX j such that the associate operator Txi ∈ L(Xi ; Y ) is a metric

injection. Then akn(T ) = 1.

Proof Clearly, a(k)
n (T ) ≤ ‖T ‖ = 1. We claim that a(k)

n (T ) = 1. Suppose, on the contrary
that

a(k)
n (T ) < 1.

Then, there exists a k-linear operator A : X1 × · · · × Xk → Y with rank (A) < n such that
‖T − A‖ < 1. In particular, we have

sup
x∈UXi

‖Txi x − Axi x‖Y < 1.

Since Axi : Xi → Y is a bounded operator with

rank (Axi ) ≤ rank (A) < n,

we can find x ∈ SXi such that Axi x = 0. Combining with the hypothesis that Txi : Xi → Y
is a metric injection yields

1 > ‖Txi x − Axi x‖Y = ‖Txi x‖Y = ‖x‖Xi = 1.

This is a contradiction which proves the claim. 
�
As an application we obtain the following corollary.

Corollary 3.2 For each k, n ∈ N and every 1 ≤ p ≤ ∞, one has

a(k)
n (⊗k In : �np × · · · × �np → �p([n]k)) = 1 .

Proof For each k ∈ N and for all (x1, . . . , xk) ∈ �np × · · · × �np one has

‖ ⊗k In(x1, . . . , xk)‖�p([n]k ) = ‖x1‖�np
· · · ‖xk‖�np

.

This implies that, if we let ei := (e1, . . . , e1) ∈ ∏k
j=1, j 
=i U�np

, then the associate operator

(⊗k In)ei : �np → �p([n]k)
is a metric injection. Since rank (⊗k In) ≥ n, the required statement follows by Proposition
3.1. 
�

In consequence we get the following statement. We omit the simple proof.
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Lemma 3.3 For each k, the sequence (a(k)
n ) of approximation numbers is a fully symmetric

s(k)-scale.

We have an elementary multilinear variant of a very useful multiplicativity property of an
arbitrary s-number sequence called mixing multiplicativity due to Carl [3], which states: If
(s(k)

n ) is an arbitrary s(k)-scale, then for every T ∈ L(X1, . . . , Xk; Y ) and S ∈ L(Y ; Z), we
have

s(k)
m+n−1(ST ) ≤ am(S) s(k)

n (T ), m, n ∈ N,

that is, the pair ((an), (s
(k)
n )) has the mixed multiplicative property.

We note the following straightforward statement, which is a multilinear variant of a well
known Pietsch’s result in the linear setting.

Lemma 3.4 For each k ∈ N, the sequence (a(k)
n )∞n=1 is the largest sequence of s(k)-scales

and satisfy, for all T ∈ L(X1, . . . , Xk; Y ) and S ∈ L(Y ; Z), the multiplicativity property:

a(k)
m+n−1(ST ) ≤ am(S) a(k)

n (T ), m, n ∈ N.

We need to calculate the n-th approximation numbers of special k-linear operators on the
product of finite dimensional �np-spaces with 1 ≤ p < ∞. Let n, r ∈ N with r ≤ nk and

let σk : [n]k → [nk] be a bijection, then I (r)
σk : ∏k

i=1 �np → �rp denotes the k-linear mapping
defined by the formula:

I (r)
σk

(x1, . . . , xk) := (z1, . . . , zr ), xν = (xν(1), . . . , xν(n)) ∈ �np, ν ∈ [k],
where for each j ∈ [r ] we let z j := x1(i1) · · · xk(ik) for the unique (i1, . . . , ik) ∈ [n]k such
that σk(i1, . . . , ik) = j . Note that if k = 1 and σ1 : [n] → [n] is given by σ1( j) := j for
each j ∈ [n], then I (n)

σ1 : �np → �np is the identity map In on �np .

We claim that ‖I (r)
σk ‖ ≤ 1. Clearly, the case k = 1 is trivial, so let k ≥ 2. A standard

calculation shows that, for r = nk , one has

‖I (nk )
σk

(x1, . . . , xk)‖p

�n
k
p

=
nk∑

j=1

|z j |p =
∑

(i1,...,ik )∈[n]k
|x1(i1)|p · · · |xk(ik)|p

= ‖x1‖p
�np

· · · ‖xk‖p
�np

,

so ‖I (nk )
σk ‖ = 1. If r < nk , then for all x1, . . . , xk ∈ �np , we have

‖I (r)
σk

(x1, . . . , xk)‖�rp
≤ ‖I (nk )

σk
(x1, . . . , xk)‖�n

k
p

= ‖x1‖�np
· · · ‖xk‖�np

and hence ‖I (r)
σk ‖ ≤ ‖I (nk )

σk ‖ = 1.
Since we are interested in the multilinear case, in what follows for each positive integer

k ≥ 2 we will consider the standard bijection σk : [n]k → [nk] given by the formula:

σk(i1, . . . , ik) = nk−1(i1 − 1) + nk−2(i2 − 1) + · · · + n(ik−1 − 1) + ik,

for each (i1, . . . , ik) ∈ [n]k .
We will need the following lemma.
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Lemma 3.5 Let k, n, r ∈ N with k ≥ 2, n ≤ r ≤ nk and let σk : [n]k → [nk] be the standard
bijection. Then, for every 1 ≤ p < ∞ one has

a(k)
n

(
I (r)
σk

: �np × · · · × �np → �rp
) = 1.

Proof Fix k ≥ 2. We claim that, for each y ∈ �np one has

‖I (r)
σk

(e1, . . . , e1, y)‖�rp
= ‖y‖�np

.

Indeed, we have that

I (r)
σk

(u1, . . . , uk−1, y) := (z1, . . . , zr ),

where u j = e1 = (x1( j), . . . , xn( j)) = (1, 0, . . . , 0) ∈ �np for j ∈ [k−1], y = (y1, . . . , yn)
and for each ν ∈ [r ] with ν = σk(i1, . . . , ik), zν := x1(i1) . . . xk(ik). From definition of σk ,
it follows that σk(1, . . . , 1, ik) = ik .

Since n ≤ r ≤ nk , the first n elements of (z1, . . . , zr ) are y1, . . . , yn . Indeed, by the
formula for the standard bijection σk it follows by 1 = σk(1, 1, . . . , 1) that z1 = 1 · 1 ·
1 · · · 1 · y1 = y1. We conclude in a similar fashion that by n = σk(1, 1, . . . , n), zn =
1 · 1 · 1 · · · 1 · yn = yn . For all other z j in (z1, . . . , zr ) with n < j ≤ r , it follows by
z j := x1(i1) . . . xk(ik) that at least one factor in the product is zero. Hence

I (r)
σk

(u1, . . . , uk−1, y) = (y1, . . . , yn, 0, . . . , 0)

and this proves the claim. Thus, the statement follows by Proposition 3.1. 
�
We calculate now the r -th approximation number of the bilinear diagonal operators on

the products of �p-spaces. Let r ∈ N be fixed and let n ∈ N be the least number such
that r ≤ n2. Given the standard bijection σ2 : [n] × [n] → [n2], let σ̃2 : N × N −→ N

be a bijection which is an extension of σ2 such that σ̃2|[n]×[n] = σ2. We point out that the
extension σ̃2 can be obtained using an inductive procedure, considering an arbitrary fixed
bijection β : N×N → N. In what follows, we will use the bijection σ̃2 without any references.

Given a bounded sequence λ := (λk)
∞
k=1, for each k ∈ N, we find a unique (ik, jk) ∈ N×N

such that k = σ̃2(ik, jk).
As usual we let ω(N) to denote the space of all sequences modeled on N. In what follows

for a fixed bijection σ̃2 defined above, we define a mapping

ω(N) × ω(N) � ((xi ), (y j )) �→ ((x ∗̃y)k)∞k=1 ∈ ω(N),

where, for each k ∈ N, (x ∗̃y)k := xik y jk with σ̃2(ik, jk) = k. Given 1 ≤ p < ∞ and
a bounded sequence λ = (λk)

∞
k=1, we define a mapping Dλ : �p × �p → �p by

Dλ(x, y) := (λk(x ∗̃y)k)∞k=1, x, y ∈ �p.

Let n ∈ N. Similarly as above, for each positive integer r ≤ n2, we define a bilinear
operator D(r)

λ : �np × �np → �rp by

D(r)
λ (x, y) := (λk(x ∗̃y)k)rk=1, x = (xi ), y = (y j ) ∈ �np,

where, for each k ∈ [r ] we let (x ∗̃y)k := xik y jk with σ̃2(ik, jk) = k.
Given α := (α1, . . . , αr ) ∈ R

r , with α j > 0 for each j ∈ [r ], we also define a linear

operator R(r)
α : �rp → �rp by

R(r)
α (x1, . . . , xr ) := (α−1

1 x1, . . . , α
−1
r xr ), (x1, . . . , xr ) ∈ K

r .
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Observe that for every x, y ∈ �np , one has

R(r)
α D(r)

α (x, y) = I (r)
σ2

(x, y).

In what follows, we will use the following standard finite dimensional operators Jn : �np → �p
and Qn : �p → �np defined for each n ∈ N by

Jnξ :=
n∑

j=1

ξ j e j , ξ = (ξ j ) ∈ �np,

Qnx := (x1, . . . , xn), x = (x j ) ∈ �p.

Theorem 3.6 Let λ := (λ j ) be a sequence such that λ1 ≥ λ2 ≥ · · · > 0, and let r , n ∈ N

with 1 ≤ r ≤ n2. Then, for the bilinear operator Dλ : �p × �p → �p with 1 ≤ p ≤ ∞ one
has

λr = a(2)
r (Dλ).

Proof The case r = 1 is obvious. Thus, we may assume that 1 < r ≤ n2. We claim that
λr ≤ a(2)

r (Dλ). Since (Qr Dλ(Jn, Jn)) = D(r)
λ , Lemma 3.5 yields

1 = a(2)
r (I (r)

σ2
) = a(2)

r (R(r)
λ ◦ D(r)

λ ) ≤ ‖R(r)
λ ‖ a(2)

r (D(r)
λ )

≤ λ−1
r a(2)

r (D(r)
λ ) = λ−1

r a(2)
r (Qr Dλ(Jn, Jn))

≤ λ−1
r ‖Qr‖ a(2)

r (Dλ) ‖Jn‖ ‖Jn‖ ≤ λ−1
r a(2)

r (Dλ),

which implies the required inequality.
We now show that a(2)

r (Dλ) ≤ λr . Let us consider the composition

Jr−1D
(r−1)
λ (Qn, Qn) : �p × �p

(Qn , Qn)−−−−−→ �np × �np
D(r−1)

λ−→ �r−1
p

Jr−1−→ �p.

Then, for all x, y ∈ �p one has

‖Dλ(x, y) − Jr−1D
(r−1)
λ (Qn, Qn)(x, y))‖p

p

=
∥∥∥

∞∑

k=1

λk(x ∗̃y)k ek −
r−1∑

k=1

λk(x ∗̃y)k ek
∥∥∥
p

p

=
∞∑

k=r

|λk(x ∗̃y)k |p ≤ λ
p
r

∞∑

k=1

|(x ∗̃y)k |p ≤ λ
p
r ‖x‖p

p ‖y‖p
p.

This implies that ‖Dλ − Jr−1D
(r−1)
λ (Qn, Qn)‖ ≤ λr . Since

rank (Jr−1D
(r−1)
λ (Qn, Qn)) = rank (D(r−1)

λ (Qn, Qn))

and [(D(r−1)
λ (Qn, Qn))(�

p × �p)] ⊂ �r−1
p ,

rank (Jr−1D
(r−1)
λ (Qn, Qn)) < r .

In consequence a(2)
r (Dλ) ≤ λr and so this completes the proof. 
�
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4 Gelfand numbers

Given an operator T ∈ L(X1, . . . , Xk; Y ), following [5], the n-th Gelfand number (c(k)
n (T ))

of T ∈ L(X1, . . . , Xk; Y ) is given by

c(k)
n (T ) := a(k)

n (JY T ).

Recall that JY : Y → �∞(UY ∗) is the metric injection given by JY y := (y∗(y))y∗∈UY∗ for
all y ∈ Y .

Lemma 4.1 The sequence (c(k)
n ) of Gelfand numbers is an s(k)-scale.

Proof Properties (S1) and (S2) follow from the definition. For (S3), since ‖JY ‖ = 1, it
follows by (S3) of a(k)

n . The property (S4) also follows from (S4) of a(k)
n . We prove the

norming property (S5). Clearly, for each n ∈ N, we have ‖ ⊗k In‖ = 1, which implies
c(k)
n (⊗k In) ≤ 1. We need to show that c(k)

n (⊗k In) = 1.
Given ε > 0, we can find A ∈ L(�n2, . . . , �n2; �∞(U�2([n]k )∗), with rank(A) < n, such

that,

‖J�2([n]k ) ◦ (⊗k In) − A‖ < a(k)
n (J�2([n]k ) ◦ (⊗k In)) + ε.

We define B : �n2 → �∞(U�2([n]k )∗) by By := A(e1, . . . , e1, y) for all y ∈ �n2. Since

rank (B) ≤ rank (A) < n,

there exists ξ ∈ S�n2
, such that, Bξ = 0. Thus, letting � := U�2([n]k )∗ , we get

ε + a(k)
n (J�2([n]k ) ◦ (⊗k In)) > ‖J�2([n]k ) ◦ (⊗k In − A)‖

≥ ‖J�2([n]k ) ◦ (⊗k In − A)(e1, . . . , e1, ξ)‖�∞(�)

= ‖J�2([n]k ) ◦ (⊗k In)(e1, . . . , e1, ξ) − Bξ‖�∞(�)

= ‖J�2([n]k ) ◦ (⊗k In)(e1, . . . , e1, ξ)‖�∞(�)

= ‖ ⊗k In(e1, . . . , e1, ξ)‖�2([n]k ) = ‖ξ‖�n2
= 1.

Since ε > 0 is arbitrary, c(k)(⊗k In) = a(k)
n (J�n2 ◦ (⊗k In)) ≥ 1. This completes the proof. 
�

Proposition 4.2 Let T ∈ L(X1, . . . , Xk; Y ) such that rank (T ) ≥ n, and suppose that T× is
a metric injection. Then, we have c(k)

n (T ) = 1.

Proof We first observe that, for every T ∈ L(X1, . . . , Xk; Y ),

(JY T )× = T× J ∗
Y : �∞(UY ∗)∗

J∗
Y−→ Y ∗ T×−→ L(X1, . . . , Xk).

Suppose T ∈ L(X1, . . . , Xk; Y ) satisfies the hypotheses. Then, one has

c(k)
n (T ) = inf{‖JY T − A‖; rank (A) < n}

= inf{‖(JY T )× − A×‖; rank (A) < n},
where the infimum is taken over all A ∈ L(X1, . . . , Xk; �∞(UY ∗)). Since rank (A×) =
rank (A) < n, we conclude that

an((JY T )×) ≤ c(k)
n (T ).
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Clearly, J ∗
Y : �∞(UY ∗)∗ → Y ∗ is a metric surjection since JY : Y → �∞(UY ∗) is a metric

injection. As (JY T )× = T× J ∗
Y , it follows that (JY T )× is a metric injection. Now, observe

that rank ((JY T )×) = rank (JY T ) = rank (T ) ≥ n. Combining with Proposition 3.1, we get

1 = an((JY T )×) ≤ c(k)
n (T ).

Since c(k)
n (T ) ≤ ‖T ‖ = 1, the statement follows. 
�

Lemma 4.3 For every T ∈ L(X1, . . . , Xk; Y ) one has

cn(T
×) ≤ a(k)

n (T ), n ∈ N.

Proof We observe that for any operator A ∈ L(X1, . . . , Xk; Y ), we have JZ A× : Y ∗ →
�∞(UZ∗) with rank (JZ A×) = rank (A×), where Z := L(X1, . . . , Xk). This implies that,
for every T ∈ L(X1, . . . , Xk; Y ), we get

cn(T
×) = an(JZ T

×) = inf{‖JZ T× − L‖; L : Y ∗ → �∞(UZ∗), rank (L) < n}
≤ inf{‖JZ T× − JZ A

×‖; A ∈ L(X1, . . . , Xk; Y ), rank (A) < n}
≤ inf{‖T× − A×‖; A ∈ L(X1, . . . , Xk; Y ), rank (A) < n}
= inf{‖T − A‖; A ∈ L(X1, . . . , Xk; Y ), rank (A) < n} = a(k)

n (T )

as required. 
�
Similarly as in the linear setting (see [21, Proposition 11.5.3]) one can show that the

following statement is true for multilinear operators: if a Banach space F has the metric
extension property, then for any T ∈ L(X1, . . . , Xk; F) we have

c(k)
n (T ) = a(k)

n (T ), n ∈ N.

As an application, we have the following multilinear variant of Pietsch’s result [19, The-
orem 11.5.5], that the Gelfand numbers (cn) forms the largest injective s-scale in the setting
of linear operators.

Proposition 4.4 (c(k)
n ) is the largest injective s(k)-scale.

Proof Let T ∈ L(X1, . . . , Xk; Y ) and J ∈ L(Y ; Z) be an injection. Since �∞(UY ∗) satisfies
the metric extension property, there is a linear operator L : Z → �∞(UY ∗), with ‖L‖ =
‖JY ‖ = 1 such that JY = L J . Then using the fact mentioned above yields

c(k)
n (T ) = a(k)

n (JY T ) = a(k)
n (L JT ) = c(k)

n (L JT )

≤ ‖L‖ c(k)
n (JT ) ≤ c(k)

n (JT ).

Since c(k)
n (JT ) ≤ c(k)

n (T ), (c(k)
n ) is an injective s(k)-scale.

Next, we observe that the above gives that, if (s(k)
n ) is an arbitrary injective s(k)-scale, then

for any T ∈ L(X1, . . . , Xk; Y ),

s(k)
n (T ) = s(k)(JY T ) ≤ a(k)

n (JY T ) = c(k)
n (T ), n ∈ N

and the result follows. 
�
As an application we obtain the following corollary.

Corollary 4.5 For an arbitrary injective s(k)-scale, the pair ((cn), (s
(k)
n )) has the mixed mul-

tiplicative property.
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Proof As we have noticed, the pair ((an), (s
(k)
n )) has the mixed multiplicative property for

an arbitrary s(k)-scale. This fact combined with Proposition 4.4 yields that if (s(k)
n ) is an

injective s(k)-scale, then for any T ∈ L(X1, . . . , Xk; Y ) and S ∈ L(Y ; Z), we have

s(k)
m+n−1(ST ) = s(k)

m+n−1(JZ ST ) ≤ am(JZ S) s(k)
n (T ) = cm(S) s(k)

n (T ).


�

5 Kolmogorov numbers

Let N be a closed subspace of a Banach spaceY , then QY
N (QN for short) denotes the canonical

quotient map from Y onto Y/N . The n-th Kolmogorov number of T ∈ L(X1, . . . , Xk; Y ) is
defined by

d(k)
n (T ) = inf

{‖QNT ‖; N ⊂ Y , dim(N ) < n
}
.

We shall use the following formula (see [5, Theorem 4.1]):

d(k)
n (T ) = a(k)

n (T (Q1, . . . , Qk)), (∗)

where Q j denotes the canonical metric surjection from �1(UX j ) onto X j , j ∈ [k].

Lemma 5.1 Let T ∈ L(X1, . . . , Xk; Y ) be a k-linear operator. Then, d(k)
n (T ) = 0 if and

only if rank (T ) < n.

Proof Clearly, rank(T ) < n implies that, for N := [T (X1 ×· · ·×Xk)], we have dim(N ) < n
and whence ‖QNT ‖ = 0. In consequence d(k)

n (T ) = 0.
Now assume that d(k)

n (T ) = 0. We apply the above formula (∗) to get

a(k)
n (T (Q1, . . . , Qk)) = 0,

where Q j : �1(UX j ) → X j are canonical metric surjections, j ∈ [k]. By Theorem 3.3 and
Proposition 2.1, we have rank(T (Q1, . . . , Qk)) < n. Combining,

dim [T (X1 × · · · × Xk)] = dim [T (Q1(�1(UX1)) × · · · × Qk(�1(UXk )))]
= dim [T (Q1, . . . , Qk)(�1(UX1) × · · · × �1(UXk ))]
= rank (T (Q1, . . . , Qk)) < n,

yields rank(T ) < n, and this completes the proof. 
�
Lemma 5.2 Let H be a Hilbert space and T ∈ L(X1, . . . , Xk; H) be a k-linear operator.
Then, for each n ∈ N, we have

a(k)
n (T ) ≤ inf{‖T − PT ‖; P : H → H , rank(P) < n} ≤ d(k)

n (T ),

where the infimum is taken over all orthogonal projections in H.

Proof By the above formula (∗), it follows that for a given ε > 0, there exists A ∈
L(�1(UX1), . . . , �1(UXk ); H), such that rank(A) < n and

‖T (Q1, . . . , Qk) − A‖ ≤ (1 + ε) d(k)
n (T ).
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Define V := [A(�1(UX1) × · · · × �1(UXk ))] ⊂ H and let P be the orthogonal projection
onto V . Then, we have rank(P) < n and

‖T − PT ‖ = ‖(I − P)T (Q1, . . . , Qk)‖ = ‖(I − P)(T (Q1, . . . , Qk) − A)‖
≤ ‖T (Q1, . . . , Qk) − A‖.

This implies that

a(k)
n (T ) ≤ ‖T − PT ‖ ≤ ‖T (Q1, . . . , Qk) − A‖ ≤ (1 + ε)d(k)

n (T ).

Since ε > 0 is arbitrary the proof is completed. 
�

Proposition 5.3 For each k, the sequence (d(k)
n ) of the Kolmogorov numbers forms an s(k)-

scale.

Proof Again, for simplicity of presentation we only consider the case k = 2. The properties
(S1) − (S2) are obvious. Let T ∈ L(X1, X2; Y ), S ∈ L(Y ; Z) and R1 ∈ L(W1; X1),
R2 ∈ L(W2; X2). Then, for any subspace N ⊂ Y with dim(N ) < n one has

‖QZ
S(N )ST (R1, R2)‖ ≤ ‖S‖ ‖QY

NT ‖ ‖R1‖ ‖R2‖.
Since dim(S(N )) ≤ dim(N ) < n and subspace N is arbitrary, this yields

d(2)
n (ST (R1, R2)) ≤ ‖S‖ d(2)

n (T ) ‖R1‖ ‖R2‖,
so the property (S3) is satisfied. The property (S4) follows from Lemma 5.1.

To finish we observe that from Lemma 5.2, we have

a(2)
n (⊗2 In) ≤ d(2)

n (⊗2 In) ≤ ‖ ⊗2 In‖ = 1, n ∈ N.

and so, we conclude by Corollary 3.2 that

d(2)
n (⊗2 In) = 1, n ∈ N.

Thus the property (S5) is also satisfied and this completes the proof. 
�

Since (a(k)
n ) is the largest s(k)-scale, we obtain from Lemma 5.2 and Proposition 5.3

a multilinear variant of the linear result by Pietsch (see [19, Proposition 11.6.2]).

Corollary 5.4 Let H be a Hilbert space and T ∈ L(X1, . . . , Xk; H) be a k-linear operator.
Then, for each n ∈ N, we have

a(k)
n (T ) = d(k)

n (T ) = inf{‖T − PT ‖; P : H → H , rank(P) < n},
where the infimum is taken over all orthogonal projections in H.

We conclude this section with a corollary which follows from the formula (∗).

Corollary 5.5 (d(k)
n ) is the largest surjective s(k)-scale.
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6 Symmetrized approximation numbers

Symmetrized approximation numbers (tn) were introduced by Pietsch in [19, Proposition
11.7.9]. For any operator T ∈ L(X; Y ), these are defined by

(tn(T )) := (an(JY T QX )),

where QX denotes the canonical metric surjection from �1(UX ) onto X .
Note that (tn) are the largest injective and surjective s-numbers with the property

tn(T
∗) = tn(T ).

It is worth noting that we have here a refined version of Schauder’s theorem (see [3, p. 84]),
which states that an operator T between arbitrary Banach spaces X and Y is compact if
and only if limn→∞ tn(T ) = 0. Then, by the above formula, it follows that the degree
of compactness of T and T ∗ are the same when they are measured by the symmetrized
approximation numbers tn .

Following the linear case, we introduce a variant of symmetrized approximation numbers
in the multilinear setting. For each k ∈ N, we define a rule (t (k)) : Lk → [0,∞)N assigning
to every k-linear operator T : X1 × · · · × Xk → Y a non-negative scalar sequence (t (k)n (T ))

given by

t (k)n (T ) := a(k)
n (JY T (QX1 , . . . , QXk )), n ∈ N.

Clearly, this definition is equivalent to

t (k)n (T ) = d(k)
n (JY T ),

as well as to

t (k)n (T ) = c(k)
n (T (QX1 , . . . , QXk )).

Our aim is to prove the following main result of this section.

Theorem 6.1 For each k ∈ N, and any operator T ∈ L(X1, . . . , Xk; Y ), one has

tn(T
×) = t (k)n (T ), n ∈ N.

To prove Theorem 6.1 we need two preliminary results. Before we state these results, we
define a special operator between spaces of k-linear forms. Given a positive integer k ≥ 2
and operators A1 ∈ L(Y1; X1), . . . , Ak ∈ L(Yk; Xk), we define the mapping �A1,...,Ak from
L(X1, . . . , Xk) to L(Y1, . . . , Yk) by

�A1,...,Ak S(y1, . . . , yk) := S(A1y1, . . . , Ak yk),

for all S ∈ L(X1, . . . , Xk) and (y1, . . . , yk) ∈ Y1 × · · · × Yk .
Under the above notation, we have the following lemma.

Lemma 6.2 We have that �A1,...,Ak : L(X1, . . . , Xk) → L(Y1, . . . , Yk) is a bounded linear
operator, and for any operator T ∈ L(X1, . . . , Xk; Y ), it holds

(T (A1, . . . , Ak))
× = �A1,...,Ak ◦ T×.
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Proof The first statement is obvious. For any T ∈ L(X1, . . . , Xk; Y ),

(T (A1, . . . , Ak))
× : Y ∗ → L(Y1, . . . , Yk)

is a bounded operator. Thus, for all y∗ ∈ Y ∗ and all (y1, . . . , yk) ∈ Y1 × · · · × Yk ,

(T (A1, . . . , Ak))
×y∗(y1, . . . , yk) = y∗ ◦ T (A1y1, . . . , Ak yk)

= T×y∗(A1y1, . . . , Ak yk)

= �A1,...,Ak (T
×y∗)(y1, . . . , yk),

and so the required formula follows. 
�
To state the next result, recall that given Banach spaces X1, . . . , Xk , we let κ̂X1×···×Xk

to denote the k-linear operator from X1 × · · · × Xk to L(X1, . . . , Xk)
∗ given, for all

(x1, . . . , xk) ∈ X1 × · · · × Xk , by

〈S, κ̂X1×···×Xk (x1, . . . , xk)〉 := S(x1, . . . , xk), S ∈ L(X1, . . . , Xk).

The following factorization result is a preliminary to Theorem 6.1, but is of interest in itself.

Proposition 6.3 For any Banach spaces X1, . . . , Xk, let X := X1 × · · · × Xk and, for
each j ∈ [k], let QX j : �1(UX j ) → X j be the canonical surjection. Then, the operator
� := �QX1 ,...,QXk

admits the following factorization with E := L(X1, . . . , Xk):

� : E JE−→ �∞(UE∗)
P−→ �∞(UX )

R−→ L(�1(UX1), . . . , �1(UXk )),

where the norms of operators P and R are less than or equal 1.

Proof We first observe that for any S ∈ L(X1, . . . , Xk) and (λx j ) ∈ �1(UX j ), j ∈ [k], we
have

�S((λx1), . . . , (λxk )) = S(QX1(λx1), . . . , QXk (λxk )) (∗)

=
∑

x1∈UX1

· · ·
∑

xk∈UXk

λx1 · · · λxk S(x1, . . . , xk).

We define on �∞(UL(X1,...,Xk )
∗) a mapping P by

P f := f |̂κX (UX ), f ∈ �∞(UL(X1,...,Xk )
∗).

Clearly, P : �∞(UL(X1,...,Xk )
∗) → �∞(UX ) is a bounded operator with ‖P‖ ≤ 1.

We also define an operator R : �∞(UX1×···×Xk ) → L(�1(UX1), . . . , �1(UXk )) with norm
‖R‖ ≤ 1 given by

Rξ((λx1), . . . , (λxk )) :=
∑

x1∈UX1

· · ·
∑

xk∈UXk

ξ(x1,...,xk ) λx1 · · · λxk ,

for all ξ ∈ �∞(UX1×···×Xk ) and ((λx1), . . . , (λxk )) ∈ �1(UX1) × · · · × �1(UXk ).
Finally, we see that, for all S ∈ L(X1, . . . , Xk) and all x ∈ UX , we have

P JL(X1,...,Xk )(S) = P
(
(〈S, ϕ〉)ϕ∈L(X1,...,Xk )

∗
) = (〈S, κ̂X x〉)x∈UX = (Sx)x∈UX .

Combining formulas (∗) and R yields the required factorization

�QX1 ,...,QXk
= RP JL(X1,...,Xk ),

and this completes the proof. 
�
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Now, we are ready to prove the main result of this section.

Proof of Theorem 6.1 We first recall that if Y is a Banach space and JY : Y → �∞(UY ∗) is
the canonical injection, then for the dual operator J ∗

Y : �∞(UY ∗)∗ → Y ∗, we have

QY ∗ = J ∗
Y κ̂�1(UY∗ ).

Given T ∈ L(X1, . . . , Xk; Y ), we have T× : Y ∗ → L(X1, . . . , Xk). Combining with the
above formula and [5, Theorem 5.1] yield

tn(T
×) = cn(T

×QY ∗) = cn(T
× J ∗

Y κ̂�1(UY∗ )) ≤ cn(T
× J ∗

Y )

= cn((JY T )×) ≤ d(k)
n (JY T ) = t (k)n (T ).

To finish, we apply Proposition 6.3 and [5, Theorem 5.1] to get (by ‖P‖, ‖R‖ ≤ 1)

t (k)n (T ) = c(k)
n (T (QX1 , . . . , QXk )) = dn((T (QX1 , . . . , QXk ))

×)

= dn
(
�QX1 ,...,QXk

T×) = dn(RP JL(X1,...,Xk )T
×)

≤ dn(JL(X1,...,Xk )T
×) = tn(T

×),

and this completes the proof. 
�
The following theorem is a consequence of Borsuk antipodal theorem (see, e.g., [22,

Theorem 1.4]).

Theorem 6.4 Let Y and Z be closed subspaces of a Banach space X, where Z is finite
dimensional, and dim Y > dim Z. Then, there exists y ∈ Y such that ‖y‖Y = 1 = dist(y, Z).

As an application of Theorem 6.4 we get the following result.

Proposition 6.5 Let T ∈ L(X1, . . . , Xk; Y ) be a surjective operator with rank(T )

≥ n. If T× : Y ∗ → L(X1, . . . , Xk) is a metric injection, then t
(k)
n (T ) = 1.

Proof For simplicity of notation, we let F := L(X1, . . . , Xk). By Proposition 6.1, we have

t (k)n (T ) = tn(T
×) = dn(JFT

×).

Clearly, dn(JFT×) ≤ 1. We claim that dn(JFT×) = 1. To prove this, we apply Proposition
2.2.2 from [4], which says that the nth Kolgomorov number dn(S) of an operator S ∈ L(E; F)

can be expressed as

dn(S) = inf
{
ε > 0; S(UE ) ⊂ Nε + εUF , where Nε ⊂ F with dim Nε < n

}
.

Suppose dn(JFT×) < 1. Then, by the above formula, we can find γ ∈ (0, 1) and a sub-
space Nγ ⊂ �∞(UF∗) with dim Nγ < n, such that

JFT
×(UY ∗) ⊂ Nγ + γ U�∞(UF∗ ).

Since rank (T ) ≥ n and T× is a metric injection, rank (JFT×(Y ∗)) ≥ n. Combining with
Theorem 6.4, we deduce that for ε = γ −1 − 1, there exists y∗ ∈ Y ∗ such that

‖y∗‖Y ∗ = 1 = ‖JFT×(y∗)‖�∞(UF∗ )

and, for all v ∈ Nγ , we have

‖JFT×(y∗) − v‖�∞(UF∗ ) > 1/(1 + ε) = γ.

This a contradiction with the above inclusion. 
�
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We conclude this section with a remark that it is an immediate consequence of the proper-
ties of approximation numbers a(k)

n that the sequence of symmetrized approximation numbers
(t (k)n ) satisfy the corresponding properties (S1), (S2), (S3) and (S4).

7 Hilbert numbers

The n-th Hilbert number of a k-linear operator T ∈ L(X1, . . . , Xk; Y ) is defined by

h(k)
n (T ) := sup{a(k)

n (BT (A1, . . . , Ak))},
where the supremum is taken over all linear operators B ∈ UL(Y ;�2) and A1 ∈
UL(�2;X1), . . . , Ak ∈ UL(�2;Xk ).

We have the following theorem.

Theorem 7.1 Let T ∈ L(X1, . . . , Xk; Y ) be a k-linear operator. Then, h(k)
n (T ) = 0 implies

rank (T ) < n.

Proof Fix n ∈ N and assume h(k)
n (T ) = 0. Then, for all operators B ∈ L(Y ; �2) and

Ai ∈ L(�2; Xi ) with i ∈ [k] one has

a(k)
n (BT (A1, . . . , Ak)) = 0.

Since (a(k)
n )∞n=1 is a fully symmetric s(k)-scale, it follows from Proposition 2.1 that for all

operators A1, . . . , Ak and B as above,

rank (BT (A1, . . . , Ak)) < n.

We claim that rank (T ) < n. Suppose this is false. Then, there are (x j
1 , . . . , x j

k ) ∈ X1 ×· · ·×
Xk , j ∈ [n], such that (y j ) := (T (x j

1 , . . . , x j
k ))nj=1 forms a basis in [T (X1 ×· · ·× Xk)]. Let

(y∗
j ) be a set of biorthogonal functionals to the basis (y j ), that is,

y∗
i (y j ) = δi j , i, j ∈ [n].

For each i ∈ [k], we define the operator Ai ∈ L(�2; Xi ) by

Aiξ =
n∑

j=1

ξ j x
j
i , ξ = (ξ j ) ∈ �2.

We also define B ∈ L(Y ; �2) by

By =
n∑

i=1

y∗
i (y)ei , y ∈ Y .

Then, for each j ∈ [n], we have

BT (A1, . . . , Ak)(e j , . . . , e j ) = B(T (A1e j , . . . , Ake j )

= B(T (x j
1 , . . . , x j

k )) = By j = e j .

Hence, rank (BT (A1, . . . , Ak)) ≥ n, and so we arrive a contradiction which completes the
proof. 
�

It turns out that the Hilbert numbers for k-linear operators are s(k)-numbers in the sense
given in Sect. 2.
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Theorem 7.2 For each k ∈ N, the sequence (h(k)
n ) of Hilbert numbers is an s(k)-scale.

Proof Let T ∈ L(X1, . . . , Xk; Y ). We claim that the property (S1) holds. Clearly, (h(k)
n (T ))

is a non-increasing sequence. We show that h(k)
1 (T ) = ‖T ‖.

Let (x1, . . . , xk) ∈ UX1 × · · · ×UXk . By the Hahn–Banach theorem, we can find a norm
one functional y∗ ∈ Y ∗ such that

〈T (x1, . . . , xk), y
∗〉 = ‖T (x1, . . . , xk)‖Y .

We consider the operators B ∈ UL(Y ;�2) and A1 ∈ UL(�2;X1), . . . , Ak ∈ UL(�2;Xk ), given,
for all y ∈ Y and for all (ξ j ) ∈ �2, by

By := 〈y, y∗〉e1, Ai (ξ j ) := ξi xi , i ∈ [k].
Since BT (A1, . . . , Ak)(e1, . . . , ek) = ‖T (x1, . . . , xk)‖Y e1, we get

‖T (x1, . . . , xk))‖Y = ‖BT (A1, . . . , Ak)(e1, . . . , ek))‖�2 ≤ ‖BT (A1, . . . , Ak)‖Y
= a(k)

1 (BT (A1, . . . , Ak) ≤ h(k)
1 (T ).

This proves that ‖T ‖ ≤ h(k)
1 (T ). Since the opposite inequality is obvious, the claim is proved.

Using properties of (a(k)
n ), we deduce that the properties (S2) and (S3) hold. To prove

(S4), we observe that rank (T ) < n implies that, for all B ∈ UL(Y ;�2) and A1 ∈
UL(�2;X1), . . . , Ak ∈ UL(�2;Xk ), we have rank (BT (A1, . . . , Ak)) < n. We have seen that

(a(k)
n ) is an s(k)-scale for each k. Hence, a(k)

n (T (A1, . . . , Ak)) = 0 and so h(k)
n (T ) = 0 as

required.
To finish we need to prove the property (S5). Fix n ∈ N and define operators A1 = · · · =

Ak := Pn ∈ UL(�2;�n2) and B ∈ UL(�2([n]k );�2) by

Pn(ξi ) :=(ξ1, . . . , ξn), (ξi ) ∈ �2,

B(x j ) :=
nk∑

i=1

zi ei , (x j ) ∈ �2([n]k),

where, for each i ∈ [nk] with i = σk( j) for the unique j := ( j1, . . . , jk) ∈ [n]k , we take
zi := x j . Now observe that, for r := nk , we have

B ◦ (⊗k In)(A1, . . . , Ak) = Jr ◦ I (r)
σk

,

where Jr : �r2 → �2 is a metric injection given by

Jr ξ :=
r∑

i=1

ξi ei , ξ = (ξ1, . . . , ξr ) ∈ �r2.

Since rank (Jr ◦ I (r)
σk ) ≥ n and for all x ∈ �n2,

‖Jr ◦ I (r)
σk

(e1, . . . , e1, x)‖�2 = ‖I (r)
σk

(e1, . . . , e1, x)‖�n2
= ‖x‖�r2

,

it follows from Proposition 3.1 that a(k)
n (Jr ◦ I (r)

σk ) = 1. In consequence, for r = nk we
conclude that,

1 = a(k)
n (Jr ◦ I (r)

σk
) = a(k)

n (B ◦ (⊗k In(A1, . . . , Ak)))

≤ h(k)
n (⊗k In) ≤ ‖ ⊗k In‖ = 1.

This completes the proof. 
�
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8 Weyl and Chang numbers

An important role is played in the theory of eigenvalues of operators in Banach spaces by the
famous Weyl numbers defined by Pietsch [18]. We introduce the Weyl numbers in the setting
of multilinear operators. The n-th Weyl number of a k-linear operator T : X1 ×· · ·× Xk → Y
is defined by

x (k)
n (T ) = sup{ a(k)

n (T (R1, . . . , Rk)) ; R j ∈ UL(�2;X j ), j ∈ [k]}.
We have the following observation.

Proposition 8.1 For each k ∈ N, the sequence (x (k)
n ) of Weyl numbers is an s(k)-scale.

Proof Since (a(k)
n ) is an s(k)-scale, the properties (S1)–(S3) easily follows. If T ∈

L(X1, . . . , Xk; Y ) is such that rank (T ) < n, then rank (T (A1, . . . , Ak)) < n and
a(k)
n (T (A1, . . . , Ak)) = 0, for all A j ∈ UL(�2;X j ), j ∈ [k]. Consequently x (k)

n (T ) = 0.
This shows that the property (S4) is satisfied.

Clearly, for each n ∈ N , we have h(k)
n (T ) ≤ x (k)

n (T ). Since (h(k)
n ) is an s(k)-scale,

x (k)
n (⊗k In) = 1, n ∈ N,

and so the property (S5) is also satisfied. 
�
Following the proof of Theorem 7.1, we get the following.

Theorem 8.2 Let T ∈ L(X1, . . . , Xk; Y ) be a k-linear operator. Then, x (k)
n (T ) = 0 implies

rank (T ) < n.

The n-th Chang number of an operator T ∈ L(X1, . . . , Xk; Y ) is given by

y(k)
n (T ) := sup

{
a(k)
n (ST ) ; S ∈ UL(Y ;�2)

}
.

Proposition 8.3 For each k ∈ N, the sequence (y(k)
n ) of Chang numbers is an s(k)-scale,

which has the property: y(k)
n (T ) = 0 implies rank (T ) < n.

Proof The properties (S1)–(S3) are easily verified. To show the property (S4), we fix T ∈
L(X1, . . . , Xk; Y ) with rank (T ) < n. Then, rank(ST ) < n for all S ∈ UL(Y ;�2). Thus

a(k)
n (ST ) = 0 for all S ∈ UL(Y ;�2) yields yn(T ) = 0.

To finish observe that, for every T ∈ L(X1, . . . , Xk; Y ) one has

h(k)
n (T ) ≤ y(k)

n (T ), n ∈ N.

This clearly combined with the fact that (h(k)
n ) is a s(k)-scale implies that the property (S5)

is satisfied for (y(k)
n ). 
�

It is well known that Hilbert numbers fail to be multiplicative (see [17, Remark 2.9.19]).
This is a consequence of [17, Proposition 2.9.19], which states that

hn(I : �1 → �1) � n−1/2, n ∈ N.

However, the following inequality is true (see [17, Lemma 2.6.6]) for any operators T ∈
L(X; Y ) and S ∈ L(Y ; Z)

hm+n−1(ST ) ≤ ym(S)hn(T ), m, n ∈ N.

We have a multilinear variant of this inequality. The proof is similar to the linear case, but
we include a proof for the sake of completeness.
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Lemma 8.4 For each k ∈ N the pair ((yn), (h
(k)
n )) satisfies property (M), that is, for every

T ∈ L(X1, . . . , Xk; Y ) and S ∈ L(Y ; Z), we have

h(k)
m+n−1(ST ) ≤ ym(S) h(k)

n (T ), m, n ∈ N.

Proof Fix positive integers k ≥ 2, m and n. Let A j ∈ L(�2; X j ), j ∈ [k] and Q ∈ L(Z; �2)

with norm less or equal 1. Given ε > 0, let B ∈ L(Y ; �2) be such that rank (B) < m and

‖QS − B‖ ≤ (1 + ε) am(QS).

Now, let A ∈ L(k�2; �2) with rank (A) < n be such that

‖(QS − B)T (A1, . . . , Ak) − A‖ ≤ (1 + ε)a(k)
n ((QS − B)T (A1, . . . , Ak)).

Clearly, rank (BT (A1, . . . , Ak) + A) ≤ rank (B) + rank (A) < m + n − 1. Thus letting
R := (QS − B)/‖QS − B‖ ∈ UL(Y ;�2), we obtain

a(k)
m+n−1(QST (A1, . . . , Ak)) ≤ ‖QST (A1, . . . , Ak) − (BT (A1, . . . , Ak) + A)‖
= ‖(QS − B)T (A1, . . . , Ak) − A‖ ≤ (1 + ε) a(k)

n ((QS − B)T (A1, . . . , Ak))

≤ (1 + ε) ‖QS − B‖ a(k)
n (RT (A1, . . . , Ak)) ≤ (1 + ε) ‖QS − B‖ h(k)

n (T )

≤ (1 + ε)2 am(QS)h(k)
n (T ).

Since ε > 0, Q and A1, . . . , Ak are arbitrary, the desired estimate follows. 
�
For next theorem we need the following known result.

Lemma 8.5 If an operator T ∈ L(Y ∗; X∗), then T = S∗ for some S ∈ L(X; Y ) whenever
T is weak∗-weakly continuous. In particular the statement is true if Y is a reflexive space.

Theorem 8.6 If T ∈ L(X1, . . . , Xk; Y ), then for each n ∈ N we have

(i) xn(T×) ≤ y(k)
n (T ) ;

(ii) y(k)
n (T ) ≤ xn(T×).

Proof (i). We have that T× : Y ∗ → L(X1, . . . , Xk). Let V : �2 → Y ∗ with ‖V ‖ ≤ 1. By
Lemma 8.5, there is R : Y → �2 such that R∗ = V . Thus, by [5, Proposition 3.2], we obtain

an(T
×V ) = an(T

×R∗) = an((RT )×) ≤ a(k)
n (RT )

≤ sup{a(k)
n (ST ); ‖S : Y → �2‖ ≤ 1} = y(k)

n (T ).

(ii). Let S : Y → �2 with ‖S‖ ≤ 1. Since �2 is reflexive, it follows from [5, Proposition
3. 3] that

a(k)
n (ST ) = an((ST )×) = an(T

×S∗).

Since S is arbitrary, y(k)
n (T ) ≤ xn(T×) as required. 
�

9 Bernstein numbers

In the theory of Banach operator ideals a closed ideal of super strictly singular (or finitely
strictly singular) operator is an interesting class of operators, which contains compact oper-
ators and is contained in the class of strictly singular operators. Recall that an operator is
strictly singular if its restriction to any infinite-dimensional subspace is not an isomorphism.
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Super strictly operators were introduced implicitly by Mityagin and Pełczyński in [15],
and explicitly by Milman in [13,14]. Recall that an operator T ∈ L(X; Y ) is said to be super
strictly singular, if there does not exist a number γ > 0 and a sequence (En) of subspaces,
with dim (En) = n, such that

‖T x‖Y ≥ γ ‖x‖X , x ∈ ∪n En .

Thus, T is super strictly singular if and only if theBernstein numbers bn(T ) → 0, as n → ∞,
where

bn(T ) := sup inf
x∈SEn

‖T x‖Y ,

where the supremum is taken over all n-dimensional subspaces of X .
We define a variant of Bernstein’s numbers for bilinear operators. We start with some

notations from the theory of linear operators. We recall that if T : E → F is an operator
between Banach spaces, then the injection modulus of T is given by

j1(T ) := inf{‖T x‖F ; ‖x‖E = 1}.
An operator T is called an injection if j(T ) > 0. Clearly, an injection can be characterized
as a one-to-one operator from E into F with closed range.

Recall that the surjection modulus of T is given by

q1(T ) := sup{τ > 0; τ BF ⊂ T (BE )}.
An operator T is called a surjection if q1(T ) > 0, which is equivalent to T (E) = F .

The above modules are important characteristics in the theory of linear operators, and
they are used in the study of isomorphic embeddings, quotients of Banach spaces and, in
particular, in the study of isomorphic classification of Banach spaces by the fact that both
j1(T ) > 0 and q1(T ) > 0 if and only if T is an isomorphism.

In what follows, if X is a non-trivial Banach space, then we let Fin(X) to denote the set
of all non-trivial finite-dimensional subspaces of X . If E ∈ Fin(X) with dim (E) = n, then
we write E ∈ Finn(X).

Let T ∈ L(X1, . . . , Xk; Y ). Following the linear case, for every closed subspaces N1 ⊂
X1, . . . , Nk ⊂ Xk , we let

j N1×···×Nk
k (T ) := inf

{‖T (x1, . . . , xk)‖Y ; (x1, . . . , xk) ∈ SN1 × · · · × SNk

}
.

We call j X1×···×Xk
k (T ) the modulus of injection of T and denote it by jk(T ).

In a similar fashion, we define the surjection modulus of T by

qk(T ) := sup{τ ≥ 0; T (BX1 × · · · × BXk ) ⊃ τ BY }
(we put qk(O) := 0, where O is the null operator). T is said to be a surjection if qk(T ) > 0,
that is, T maps X1 × · · · × Xk onto Y . If ‖T ‖ = qk(T ) = 1, then T is said to be a metric
surjection. This means that T maps UX1 × · · · ×UXk onto UY .

In what follows we restrict our discussion to the bilinear operators. At first we note that
the modules satisfy the following properties:

Lemma 9.1 The following statements are true:

(ii) If S, T ∈ L(X , Y ; Z), then j2(S+T ) ≤ j2(S)+ j2(T ) and q2(S+T ) ≤ q2(S)+‖T ‖.
(ii) If T ∈ L(X , Y ; Z) and S ∈ L(Z;W ), then j2(ST ) ≤ ‖S‖ j2(T ) and q2(ST ) ≤

q1(S)‖T ‖.Moreover if T is surjective, then j2(ST ) ≤ j1(S)‖T ‖, while if S is surjective,
then q2(ST ) ≤ ‖S‖q2(T ).
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(iii) If T ∈ L(X , Y ; Z), R1 ∈ L(X0; X) and R2 ∈ L(Y0; Y ), then j2(T (R1, R2)) ≤
‖T ‖ j1(R1) j1(R2). Moreover, if R1 and R2 are surjective, then j2(T (R1, R2)) ≤
j2(T )‖R1‖ ‖R2‖.

These properties can be verified easily following the definitions.
Suppose that X , Y and Z are Banach spaces with dim(X) ≥ N and dim(Y ) ≥ N . Then,

for each n ∈ [N ], the n-th Bernstein number of every bilinear operator T : X × Y → Z is
given by

b(2)
n (T ) := sup

{
j M×N
2 (T ); M × N ∈ Finn(X) × Finn(Y )

}
.

Thus, if both X and Y are infinite-dimensional Banach spaces, then (b(2)
n (T )) is well defined

for each n ∈ N.

Proposition 9.2 The sequence (b(2)
n ) of Bernstein’s numbers satisfies the following prop-

erties: (S1), (S2′) and (S3), where for (S2′) we mean b(2)
n (S + T ) ≤ b(2)

n (S) + ‖T ‖ for
all S, T ∈ L(X , Y ; Z). In addition, for all T ∈ L(X , Y ; Z) with rank (T ) < n one has
b(2)
n (T ) = 0.

Proof Let T ∈ L(X , Y ; Z). Clearly, the sequence (b(2)
n (T )) is non-increasing with b(2)

n (T ) ≤
‖T ‖ for each n ∈ N. We claim that b(2)

1 (T ) = ‖T ‖. In fact, for each n ∈ N, we can
find (xn, yn) ∈ X × Y such that ‖xn‖X = ‖yn‖Y = 1 and ‖T (xn, yn)‖Z → ‖T ‖ as
n → ∞. For each n ∈ N, let Vn = {αxn; α ∈ K} and Wn = {β yn; β ∈ K}. Clearly,
dim (Vn) = dim (Wn) = 1 and so

b(2)
1 (T ) ≥ j Vn×Wn

2 (T ) = ‖T (xn, yn)‖Z ,

and this proves the claim. Since for every M × N ∈ Fin(X) × Fin(Y ),

j M×N
2 (S + T ) ≤ j M×N

2 (S) + ‖T ‖,
then the property (S2’) follows.

In what follows, for simplicity, we write JM×N instead of the inclusion J X×Y
M×N whenever the

spaces X and Y are clear. To prove the property (S3), we take any operators R1 ∈ L(X0; X),
R2 ∈ L(Y0; Y ), S ∈ L(Z;W ) and fix 0 < ε < b(2)

n (ST (R1, R2)). Then, there is a subspace
M0 × N0 ∈ Finn(X0) × Finn(Y0), for which

b(2)
n (ST (R1, R2)) − ε ≤ j2

(
ST (R1, R2)JM0×N0

)
.

Let A1 := R1|M0 and A2 := R2|N0 , and let M := R1(M0) and N := R2(N0). Then

ST (R1, R2)JM0×N0 = STJM×N (A1, A2),

and ‖A1‖ ≤ ‖R1‖, ‖A2‖ ≤ ‖R2‖. By Lemma 9.1 (iii), it follows that

0 < b(2)
n (ST (R1, R2)) − ε ≤ j2(STJM×N (A1, A2))

≤ ‖STJM×N‖ j1(A1) j1(A2),

which implies that j1(A1) > 0 and j1(A2) > 0. In consequence A1 and A2 are injective
operators, and so dim (M) ≥ dim (M0) and dim (N ) ≥ dim (N0). Thus, dim(M × N ) ≥ n.
Since A1 and A2 are surjective, Lemma 9.1 (ii) and (iii), gives

b(2)
n (ST (R1, R2)) − ε ≤ j2

(
STJM×N (A1, A2)

)

≤ ‖S‖ j2
(
T JM×N

)‖A1‖ ‖A2‖
≤ ‖S‖b(2)

n (T )‖R1‖ ‖R2‖.
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which completes the proof that the property (S3) holds.
To show the last property, fix T ∈ L(X , Y ; Z) with rank (T ) < n. Let M×N ∈ Finn(X)×

Finn(Y ). Then, rank (TJM×N ) ≤ rank (T ) < n.
Now observe that, for a given v ∈ N\{0}, there exists u ∈ M\{0} such that T (u, v) = 0.

Otherwise, we would have rank T ≥ rank Tv ≥ n, where the mapping Tv : M → Z is defined
by Tv(x) = T (x, v) for all x ∈ M . But this is a contradiction. In consequence, we conclude
that

j2(TJM×N ) = inf{‖T (x, y)‖; ‖x‖M = 1 ‖y‖N = 1} = 0.

Since M and N are arbitrary, the required statement follows. 
�
Acknowledgements We thank the referee for helpful comments that led to improvements in the presentation
of the paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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