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Abstract
In this paper, we derive a precise description to the concept of dual K -Bessel sequences
of a given K -frame in quaternionic Hilbert spaces. After that, we introduce the notion of
canonical dual K -Bessel sequence. We study its existence and uniqueness and we investigate
some properties related to this concept.
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1 Introduction

The theory of frames is a useful tool to expand functions with respect to a system of functions
which is, in general, non-orthogonal and overcomplete. Frames were first introduced in 1952
byDuffin andSchaeffer [13] in connectionwith nonharmonic Fourier series.However, among
many others, the pioneering works of Daubechies et al. [11] in 1986 brought appropriate
attention to frames. The study of frames has exploded in recent years [4,5,8,10,17,19,22,25,
26], and it was shown that this concept is important in many applications in digital signal
processing and other areas of physical and engineering problems.
Frames serve as a replacement for orthonormal and Riesz bases in Hilbert spaces which
are extremely studied in literature [6–8,15,16,22], that guarantee canonical reconstruction of
every element of the Hilbert space by the reconstruction formula, however, giving up linear
independence of the elements of the generating frame sequence. This redundancy of frames
is the key to their success in applications since redundancy gives greater design flexibility
which allows frames to be constructed to fit a particular problem in a manner not possible by
a set of linearly independent vectors.
However, there exist some problems arising in sampling theory that can not be solved by
using frames. They need some systems of functions generating proper subspaces even though
they do not belong to them. These families, called local atoms, are introduced by Feichtinger
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andWerther in [18] and are extended by Găvruţa [19] in 2012 who used the notion of atomic
system which not only generalizes those of frames and of atomic systems for a subspace but
also turns out to be equivalent to that of K -frames.
It is interesting to note that K -frames are more general than ordinary frames in the sense
that the lower frame bound only holds for the elements in the range of K , where K is a
bounded linear operator in a separable Hilbert space. This generalization of frames allows to
reconstruct elements from the range of a linear and bounded operator in a Hilbert space. In
general, range is not a closed subspace.
In the literature there are many further studies or variations of [19] as [9,14,21,23,25]. Mainly
in [9], Charfi and Ellouz extends the results developed in [19] to quaternionic Hilbert spaces.
They allow us to write every element from the range of a linear and bounded operator in a
quaternionic Hilbert space as a superposition of elements which do not necessarily belong
to its range.
It should be noted here that quaternionic Hilbert spaces are generalizations of Hilbert spaces
by allowing the inner product to take values in the field of quaternions rather than in the field
of complex or real numbers. Unlike the fieldsR orCwhich are associative and commutative,
the quaternions form non-commutative associative algebra and this feature highly restricted
mathematicians to work out a well-formed theory of functional analysis on quaternionic
Hilbert spaces. Further, due to the non commutativity there are two different types of Hilbert
spaces on quaternions, the left quaternionic Hilbert space and the right quaternionic Hilbert
space depending on positions of quaternions.
In the present paper, we are mainly concerned with the dual and canonical dual K -Bessel
sequences of a K -frame in right quaternionic Hilbert spaces. More precisely, we describe
first the notion of dual K -Bessel sequences and we develop some characterizations relative to
this concept. Next, we investigate an explicit dual K -Bessel sequence the so-called canonical
dual K -Bessel sequence of a K -frame as a generalization of the classical dual of a frame in
quaternionic Hilbert spaces. Indeed, the frame operator for a K -frame may not be invertible
and consequently there is no classical canonical dual for a K -frame. So, we study not only
the existence and uniqueness of the canonical dual K -Bessel sequence but also we develop
some properties. Further, we provide a sufficient condition for a Bessel sequence to recover
an element from N (K )⊥ by vectors from the range of K , where the kernel and the range of
K are denoted by N (K ) and R(K ), respectively. The motivation of this result is given by
some specific applications in encoding and decoding problems.

2 Mathematical preliminaries

In order to make the paper self-contained, we recall some facts about quaternions which may
not be well known. For more details, we refer the reader to [1,20].

2.1 Quaternions

Let Q denotes the skew field of quaternions. A general quaternion can be written as

q = q0 + q1i + q2 j + q3k, q0, q1, q2, q3 ∈ R,

where i, j, k are the three quaternionic imaginary units, satisfying

i2 = j2 = k2 = −1, i j = − j i = k, jk = −k j = i, and ki = −ik = j .
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The quaternionic conjugate of q is

q = q0 − iq1 − jq2 − kq3,

while |q| = (qq)
1
2 denotes the usual norm of the quaternion q . If q is the non-zero element,

it has inverse q−1 = q

|q|2 .

2.2 Right quaternionic Hilbert spaces

In this subsection, we discuss right quaternionic Hilbert spaces. For more information, we
refer the reader to [1,20].
Let VR(Q) be a vector space under right multiplication by quaternions. For u, v, w ∈ VR(Q)

and p, q ∈ Q, the inner product

〈 , 〉 : VR(Q) × VR(Q) → Q

satisfies the following properties:

(i) 〈u, v〉 = 〈v, u〉,
(ii) ‖u‖2 = 〈u, u〉 > 0 unless u = 0,
(iii) 〈u, vp + wq〉 = 〈u, v〉p + 〈u, w〉q ,
(iv) 〈uq, v〉 = q〈u, v〉,
where q stands for the quaternionic conjugate. It is always assumed that the space VR(Q) is
complete under the norm given above and separable. Then, together with 〈., .〉, this defines
a right quaternionic Hilbert space. Quaternionic Hilbert spaces share many of the standard
properties of complex Hilbert spaces such as Hilbert basis. Let us recall the following results:

Proposition 2.1 [20] Let VR(Q) be a right quaternionic Hilbert space and N be a subset of
VR(Q) such that, for z, z′ ∈ N, 〈z, z′〉 = 0 if z 	= z′ and 〈z, z′〉 = 1. Then, the following
assertions are equivalent:

(i) For every u, v ∈ VR(Q), the series
∑

z∈N 〈u, z〉〈z, v〉 converges absolutely and it
holds:

〈u, v〉 =
∑

z∈N
〈u, z〉〈z, v〉.

(ii) ‖u‖2 = ∑
z∈N |〈z, u〉|2 for every u ∈ VR(Q).

(iii) N⊥ := {v ∈ VR(Q) : 〈v, z〉 = 0, ∀z ∈ N } = {0}.
(iv) Span(N ) is dense in VR(Q). ♦
Remark 2.2 The subset N in Proposition 2.1 is called a Hilbert basis. ♦
Proposition 2.3 [20] Every right quaternionic Hilbert space admits a Hilbert basis, and two
Hilbert bases have the same cardinality. Furthermore, if N is a Hilbert basis of VR(Q), then
every u ∈ VR(Q) can be uniquely decomposed as follows

u =
∑

z∈N
z〈z, u〉,

where the series
∑

z∈N z〈z, u〉 converges absolutely in VR(Q). ♦
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Remark 2.4 It is worth mentioning that the absolute convergence of the series given in
Proposition 2.1 relies on the fact that absolute convergence is equivalent to unconditional
convergence. For more details, see [20,24]. ♦

2.3 Right quaternionic linear operators

Now, we shall define right Q-linear operators and recall some basic properties.

Definition 2.5 [20] Let VR(Q) and UR(Q) be two quaternionic Hilbert spaces. A mapping
T : D(T ) ⊆ VR(Q) −→ UR(Q), where D(T ) stands for the domain of T , is said to be a
right linear operator if

T (up + v) = (Tu)p + T v, if u, v ∈ D(T ) and p ∈ Q.

♦
Wehave the following elementary result that permits the introduction of the notion of bounded
operator.

Theorem 2.6 [20] Let VR(Q) andUR(Q) be two quaternionic Hilbert spaces. A linear oper-
ator T is called bounded if there exists K ≥ 0 such that

‖Tu‖ ≤ K‖u‖, ∀u ∈ D(T ).

♦
As in the complex case, if T : D(T ) ⊆ VR(Q) −→ UR(Q) is any right linear operator, we
define ‖T ‖ by setting

‖T ‖ := sup
u∈D(T )\{0}

‖Tu‖
‖u‖ = inf{K > 0; ‖Tu‖ ≤ K‖u‖, ∀u ∈ D(T )}. (2.1)

The set of all bounded right linear operators from VR(Q) to UR(Q) is denoted by
L(VR(Q),UR(Q)), and if VR(Q) = UR(Q), then L(VR(Q),UR(Q)) is replaced by
L(VR(Q)).

It was shown in [20] that the set of all bounded right linear operators is a complete normed
space with the norm defined by (2.1).
We close this part with the following definition of the notion of adjoint operator which is
similar to that for complex Hilbert spaces.

Definition 2.7 [20] Let VR(Q) and UR(Q) be two right quaternionic Hilbert spaces and let
T : D(T ) ⊆ VR(Q) → UR(Q) be an operatorwith dense domain. The adjoint T ∗ : D(T ∗) ⊆
UR(Q) → VR(Q) of T is the unique operator with the following properties:

D(T ∗) := {u ∈ UR(Q) such that ∃wu ∈ VR(Q) with 〈wu, v〉 = 〈u, T v〉 ∀v ∈ D(T )}
and

〈T ∗u, v〉 = 〈u, T v〉, for all v ∈ D(T ), u ∈ D(T ∗). (2.2)

♦
It is worth noting that if T ∈ L(VR(Q),UR(Q)), then requirement (2.2) alone automatically
determines T ∗ as an element of L(UR(Q), VR(Q)).
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3 Main results

In this part, we introduce the concept of dual and canonical dual K -Bessel sequences for a
given K -frames in a separable right quaternionic Hilbert space VR(Q) and we derive some
characterizations relative to these notions, where K is a bounded linear operator on VR(Q).
Throughout this paper, I ⊆ N denotes a finite or countable index set.
Let’s begin with the definition of frame and Bessel sequence generalized by Sharma and
Goel in [24] to separable right quaternionic Hilbert spaces VR(Q).

Definition 3.1 [24] A family { fn}n∈I is said to be a frame for VR(Q), if there exist two
positive constants 0 < A ≤ B such that

A‖ f ‖2 ≤
∑

n∈I
|〈 fn, f 〉|2 ≤ B‖ f ‖2, for all x ∈ VR(Q). (3.1)

The constants A and B are called lower and upper frame bounds. If only the right inequality
of Eq. (3.1) holds, { fn}n∈I is called a Bessel sequence. ♦
For a Bessel sequence { fn}n∈I , we define its synthesis operator T : l2(Q) → VR(Q) by

Tq =
∑

n∈I
fnqn, q = {qn} ∈ l2(Q).

The adjoint operator of T , T ∗ : VR(Q) → l2(Q) defined by T ∗ f = {〈 fn, f 〉}n∈I for
f ∈ VR(Q), is called the analysis operator. By composing T with its adjoint T ∗ we obtain
the frame operator

S : VR(Q) → VR(Q), S f = T T ∗ f =
∑

n∈I
fn〈 fn, f 〉.

Now, we recall the concept of K -frames introduced in [9].

Definition 3.2 Suppose that K ∈ L(VR(Q)). A family { fn}n∈I of VR(Q) is said to be a
K -frame for VR(Q), if there exist A, B > 0 such that

A‖K ∗ f ‖2 ≤
∑

n∈I
|〈 fn, f 〉|2 ≤ B‖ f ‖2, ∀ f ∈ VR(Q). (3.2)

The constants A and B are called lower and upper K-frame bounds. ♦
Proposition 3.3 [9] Let { fn}n∈I ⊂ VR(Q). Then, the following statements are equivalent:

(i) { fn}n∈I is a K -frame for VR(Q).
(ii) { fn}n∈I is a Bessel sequence and there exists a Bessel sequence {gn}n∈I such that

K f =
∑

n∈I
fn〈gn, f 〉, f ∈ VR(Q). (3.3)

(iii) { fn}n∈I is a Bessel sequence and R(K ) ⊂ R(T ), where T is the synthesis operator of
{ fn}n∈I . ♦

The following result is a generalization of [3, Lemma 2.2] to right quaternionic Hilbert
spaces. It shows that, under a sufficient condition, a Bessel sequence can be a K -frame.

Lemma 3.4 Let { fn}n∈I and {gn}n∈I be two Bessel sequences satisfying Eq. (3.3). Then,
{ fn}n∈I and {gn}n∈I are a K -frame and a K ∗-frame, respectively. ♦
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Proof Let f ∈ VR(Q). It follows from Eq. (3.3) that

‖K f ‖4 = |〈K f , K f 〉|2

=
∣
∣
∣
∣
∣

〈
∑

n∈I
fn〈gn, f 〉, K f

〉∣
∣
∣
∣
∣

2

≤
∑

n∈I
|〈gn, f 〉|2

∑

n∈I
|〈 fn, K f 〉|2

≤ B‖K f ‖2
∑

n∈I
|〈gn, f 〉|2,

where B is the upper bound of { fn}n∈I . This implies that {gn}n∈I is a K ∗-frame for VR(Q).
To prove that { fn}n∈I is a K -frame for VR(Q), it suffices to see that

K ∗ f =
∑

n∈I
gn〈 fn, f 〉

and repeat the above argument for K ∗ instead of K . ��
Now, we introduce a formal definition of the dual K -Bessel sequence of a K -frame.

Definition 3.5 Assume that { fn}n∈I is a K -frame for VR(Q). A Bessel sequence {gn}n∈I for
VR(Q) is called a dual K -Bessel sequence of { fn}n∈I if

K f =
∑

n∈I
fn〈gn, f 〉, f ∈ VR(Q).

♦
Using the operator decompositions, we characterize K -frame in the next result. Further, we
present a sufficient condition for a sequence to be a dual K -Bessel sequence of a K -frame.

Theorem 3.6 Suppose that { fn}n∈I is a Bessel sequence for VR(Q). Then { fn}n∈I is a K -
frame for VR(Q) if and only if there exists a bounded operator M ∈ L(VR(Q), l2(Q)) such
that K = T M, where T denotes the synthesis operator of { fn}n∈I . Further, if gn = M∗en
then {gn}n∈I is a K -dual Bessel sequence of { fn}n∈I , where {en}n∈I denotes the standard
Hilbert basis of l2(Q). ♦
To prove our result, we need the following lemma which is a slight modification of [12,
Theorem 1]. The proof of this Lemma is similar to the one in complex case.

Lemma 3.7 Let L1 ∈ L(V1,R(Q), VR(Q)), L2 ∈ L(V2,R(Q), VR(Q)) be two bounded oper-
ators, where VR(Q), V1,R(Q) and V2,R(Q) stand for right quaternionic Hilbert spaces. The
following statements are equivalent:

(1) R(L1) ⊂ R(L2);
(2) L1L∗

1 ≤ λ2L2L∗
2 for some λ ≥ 0;

(3) there exists a bounded linear operator M ∈ L(V1,R(Q), V2,R(Q)) so that L1 = L2M.

Moreover, if (1), (2) and (3) are satisfied, then there exists a unique operator M such that

(i) ‖M‖2 = inf{μ : L1L∗
1 ≤ μL2L∗

2};
(ii) N (L1) = N (M); and
(iii) R(M) ⊂ R(L∗

2). ♦
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Proof of Theorem 3.6. �⇒. Suppose that { fn}n∈I is a K -frame for VR(Q). Then, Proposition
3.3 entails that R(K ) ⊂ R(T ). As T : l2(Q) → VR(Q) and K : VR(Q) → VR(Q),
Lemma 3.7 asserts the existence of a bounded linear operator M : VR(Q) → l2(Q) such
that K = T M .
⇐�. Assume that there exists a bounded linear operator M ∈ L(VR(Q), l2(Q)) such that
K = T M . Then, it follows from Lemma 3.7 that R(K ) ⊂ R(T ). So, { fn}n∈I is a K -frame
by Proposition 3.3.
Further, if K = T M and gn = M∗en then for g ∈ VR(Q) we have

∑

n∈I
|〈gn, g〉|2 =

∑

n∈I
|〈M∗en, g〉|2

=
∑

n∈I
|〈en, Mg〉|2

= ‖Mg‖2
≤ ‖M‖2‖g‖2.

Hence, {gn}n∈I is a Bessel sequence for VR(Q). Now, it remains to show that {gn}n∈I is a
K -dual of { fn}n∈I . To this interest, let g ∈ VR(Q). Thus, we have

K f = T Mg

= T

(
∑

n∈I
en〈en, Mg〉

)

=
∑

n∈I
T en〈M∗en, g〉. (3.4)

Since T is the synthesis operator of { fn}n∈I , we obtain

T ({qn}) =
∑

n∈I
fnqn, {qn}n∈I ∈ l2(Q).

Therefore, we get

T (en) = fn, ∀n ∈ I . (3.5)

Combining Eqs. (3.4) and (3.5), we obtain

K f =
∑

n∈I
fn〈gn, g〉.

Consequently, we claim that {gn}n∈I is a K -dual Bessel sequence of { fn}n∈I . ��
In Theorem 3.6, we present the sufficient condition ensuring the construction of a dual K -
Bessel sequence from a K -frame. Now, we show its necessity.

Theorem 3.8 Suppose that { fn}n∈I is a K -frame and {gn}n∈I ⊂ VR(Q). Then {gn}n∈I is a
K -dual Bessel sequence of { fn}n∈I if and only if there exists M ∈ L(VR(Q), l2(Q)) such
that K = T M and gn = M∗en for any n ∈ I , where T is the synthesis operator of { fn}n∈I
and {en}n∈I is the standard Hilbert basis of l2(Q). ♦
Proof The sufficient condition has been proved in Theorem 3.6. Now, we show that the
necessary condition holds. Suppose that {gn}n∈I is a K -dual Bessel sequence of { fn}n∈I .
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Then, Proposition 3.3 implies that

Kg =
∑

n∈I
fn〈gn, g〉, ∀g ∈ VR(Q).

Let M be the analysis operator of {gn}n∈I , hence

Mg =
∑

n∈I
en〈gn, g〉, ∀g ∈ VR(Q)

and M ∈ L(VR(Q), l2(Q)). Further, since M∗g = ∑
n∈I gn〈en, g〉, we have M∗en = gn for

any n ∈ I . On the other hand, as T is the synthesis operator of { fn}n∈I , we get T en = fn
for all n ∈ I . So

Kg =
∑

n∈I
fn〈gn, g〉

=
∑

n∈I
T en〈M∗en, g〉

= T

(
∑

n∈I
en〈en, Mg〉

)

= T Mg, g ∈ VR(Q).

Hence, K = T M . ��
In the next theorem, we prove that for any K -frame, there is a unique dual K -Bessel sequence
whose analysis operator has the minimal norm of the set of the norms of analysis operators
of all dual K -Bessel sequences of the K -frame.

Theorem 3.9 Suppose that F = { fn}n∈I is a K -frame with A as its optimal lower K -frame
bound. If G = {gn}n∈I is a K -dual Bessel sequence of { fn}n∈I , then ‖T ∗

G‖2 ≥ A, where
TG denotes the synthesis operator of G. Moreover, there exists a unique K -Bessel sequence
H = {hn}n∈I of { fn}n∈I such that ‖T ∗

H‖2 = A, where TH denotes the synthesis operator of
H. ♦
Remark 3.10 (i) It should be mention here that the canonical K -dual Bessel sequence is the

K -dual Bessel sequence whose analysis operator has minimal operator norm in all the
K -dual Bessel sequences. More precisely, the norm of its analysis operator is equal to
the optimal lower K -frame bound.

(ii) Any K -frame can admits an infinite numbers of dual K -Bessel sequences. However, it
has only a unique canonical K -dual Bessel sequence. ♦

Proof of Theorem 3.9. Let C > 0 be the lower K -frame bound of F = { fn}n∈I . Then, for
f ∈ VR(Q) we have

‖T ∗
F f ‖2 =

∑

n∈I
|〈 fn, f 〉|2 ≥ C‖K ∗ f ‖2

and so

‖K ∗ f ‖2 ≤ C−1‖T ∗
F f ‖2.

As A is the optimal lower K -frame bound of F , i.e.,

A = max {λ > 0 : λ‖K ∗ f ‖2 ≤ ‖T ∗
F f ‖2,∀ f ∈ VR(Q)},
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we get

A = inf {μ > 0 : ‖K ∗ f ‖2 ≤ μ‖T ∗
F f ‖2,∀ f ∈ VR(Q)}.

Since {gn}n∈I is a K -dual Bessel sequence of { fn}n∈I , we obtain

K f =
∑

n∈I
fn〈gn, f 〉 = TFT

∗
G f , ∀ f ∈ VR(Q).

So, K = TFT ∗
G . Thus,

KK ∗ = TFT
∗
GTGT

∗
F ≤ ‖T ∗

G‖2TFT ∗
F .

Then, for f ∈ VR(Q) we get

‖K ∗ f ‖2 = 〈K ∗ f , K ∗ f 〉
= 〈KK ∗ f , f 〉
≤ ‖T ∗

G‖2〈TFT ∗
F f , f 〉

= ‖T ∗
G‖2‖T ∗

F‖2.
Hence, ‖T ∗

G‖2 ≥ A. As { fn}n∈I is a K -frame, then R(K ) ⊂ R(TF ). By Lemma 3.7, there
exists a unique operator M ∈ L(VR(Q), l2(Q)) such that K = TFM and

‖M‖2 = inf{μ : ‖K ∗ f ‖2 ≤ μ‖T ∗
F f ‖2,∀ f ∈ VR(Q)} = A.

Setting hn = M∗en . Clearly, H = {hn}n∈I is a Bessel sequence. Now, it remains to show
that H is a K -dual Bessel sequence of F . So, let f ∈ VR(Q). We have

K f = TFM f

= TF
∑

n∈I
en〈en, M f 〉

=
∑

n∈I
TFen〈en, M f 〉

=
∑

n∈I
fn〈hn, f 〉,

therefore H is a K -dual Bessel sequence of F . On the other hand, we have

T ∗
H f =

∑

n∈I
en〈hn, f 〉

=
∑

n∈I
en〈M∗en, f 〉

=
∑

n∈I
en〈en, M f 〉

= M f , f ∈ VR(Q).

Then, T ∗
H = M . Hence, ‖T ∗

H‖2 = ‖M‖2 = A. ��

We close this part with the following theorem which allows, under sufficient condition, to a
Bessel sequence to recover a vector in N (K )⊥ by elements from the range of K .
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Theorem 3.11 Suppose that K has closed range and { fn}n∈I is a Bessel sequence of VR(Q).
Then there exists a Bessel sequence {gn}n∈I for R(K ) such that

f =
∑

n∈I
fn〈gn, K f 〉, ∀ f ∈ N (K )⊥

if and only if { fn}n∈I is a K †-frame for R(K ), where K † denotes the pseudo-inverse of K .♦
The following Lemma is a key tool for the proof of our result. We omit its proof since it
follows the lines of the complex case given in [10, Lemma 2.5.1, Lemma 2.5.2].

Lemma 3.12 Let VR(Q) and V1,R(Q) be two quaternionic Hilbert spaces and suppose that
U : VR(Q) → V1,R(Q) is a bounded operator with closed range R(U ). Then, there exists a
bounded operator U † : V1,R(Q) → VR(Q) for which

N (U †) = R(U )⊥, R(U †) = N (U )⊥ and UU †x = x, ∀x ∈ R(U ).

Further, we have: (i) The orthogonal projection of V1,R(Q) onto R(U ) is given by UU †. (ii)
The orthogonal projection of VR(Q) onto R(U †) is given by U †U. ♦
Proof of Theorem 3.11. �⇒ . Suppose that there exists a Bessel sequence {gn}n∈I for R(K )

such that

f =
∑

n∈I
fn〈gn, K f 〉, ∀ f ∈ N (K )⊥.

Then, for f ∈ VR(Q) we have

P f =
∑

n∈I
fn〈gn, K P f 〉,

where P denotes the orthogonal projection from VR(Q) onto N (K )⊥. Consequently, we get

P f =
∑

n∈I
fn〈gn, K P f 〉 +

∑

n∈I
fn〈gn, K (I − P) f 〉

=
∑

n∈I
fn〈gn, K (P + (I − P)) f 〉

=
∑

n∈I
fn〈gn, K f 〉

= TFT
∗
GK f .

Hence, P = TFT ∗
GK . Therefore, Lemma 3.12 entails that TFT ∗

G = K †. Thus, for any
f ∈ R(K ) we have

K † f = TFT
∗
G f =

∑

n∈I
fn〈gn, f 〉.

Then, Proposition 3.3 implies that { fn}n∈I is a K †-frame for R(K ).
⇐� . Suppose that { fn}n∈I is a K †-frame for R(K ). Then, R(TF ) ⊃ R(K †) = N (K )⊥.
Hence, Lemma 3.7 yields the existence of a bounded linear operator M : R(K ) → l2(Q)

such that K † = TFM . So, P = K †K = TFMK . Thus, for f ∈ N (K )⊥ we have

f = P f

= TFMK f
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= TF

(
∑

n∈I
en〈en, MK f 〉

)

=
∑

n∈I
TFen〈M∗en, K f 〉

=
∑

n∈I
fn〈gn, K f 〉.

Since gn = M∗en for all n ∈ I and M is a bounded operator from R(K ) to l2(Q), hence
{gn}n∈I is a Bessel sequence for R(K ). ��
Remark 3.13 The outcomes developed in this note can be considered as a generalization of
the results given in [21] to right quaternionic Hilbert spaces VR(Q). ♦
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