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Abstract
We discuss two problems concerning the class Eberlein compacta, i.e., weakly compact
subspaces of Banach spaces. The first one deals with preservation of some classes of scattered
Eberlein compacta under continuous images. The second one concerns the known problem
of the existence of nonmetrizable compact spaces without nonmetrizable zero-dimensional
closed subspaces. We show that the existence of such Eberlein compacta is consistent with
ZFC. We also show that it is consistent with ZFC that each Eberlein compact space of weight
> ω1 contains a nonmetrizable closed zero-dimensional subspace.
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1 Introduction

This paper is concernedwith Eberlein compacta, i.e., compact spaceswhich can be embedded
into a Banach space equipped with the weak topology. This class of spaces has been inten-
sively studied for its interesting topological properties and various connections to functional
analysis; we refer the reader to a survey article by Negrepontis [14].

It is well known that this class of compacta and its several subclasses, like classes of
uniform Eberlein compacta, scattered Eberlein compacta, scattered Eberlein compacta of
height ≤ n (see Sect. 2 for definitions), are preserved by continuous images. We will discuss
the problem of preservation under continuous images for some classes of scattered Eberlein
compacta K closely related to the properties of the Banach space C(K ) of continuous real-
valued functions on K .

For a set X and n ∈ ω, by σn(X) we denote the subspace of the product 2X consisting
of all functions with supports of cardinality ≤ n. Given n ∈ ω, we will say that a compact
space K belongs to the class ECn if K can be embedded in the space σn(X) for some set
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X . The class ECn is a proper subclass of the class of scattered Eberlein compacta of height
n + 1. We will denote the union

⋃
n∈ω ECn by EC<ω.

In [12], it was proved that, for a compact space K , the Banach space C(K ) is isomorphic
to c0(�), for some set �, if and only if, the space K belongs to EC<ω, see Theorem 3.1. From
this characterization we derive that the class EC<ω is preserved by continuous images, see
Corollary 3.2. However, we show that this does not hold true for the classes ECn . We give
an example of a continuous image L of a space K ∈ EC2 such that L does not belong to
EC2 (Example 3.4). We also prove that each continuous image of a space from EC2 belongs
to EC3 (Theorem 3.5). In general case, we show that, for each n ∈ ω, there exists k(n) ∈ ω

such that any continuous image of a space K ∈ ECn belongs to ECk(n) (Theorem 3.3). These
results are can be found in Sect. 3.

The last section of the paper is devoted to the knownproblemof the existence of nonmetriz-
able compact spaces without nonmetrizable zero-dimensional closed subspaces. Several such
spaces were obtained using some additional set-theoretic assumptions. Recently, Koszmider
[9] constructed the first such example in ZFC. We investigate this problem for the class of
Eberlein compact spaces. We construct such Eberlein compacta, assuming the existence of
a Luzin set, see Corollary 4.8. We also show that it is consistent with ZFC that each Eberlein
compact space of weight ≥ ω2 contains a nonmetrizable closed zero-dimensional subspace
(Corollary 4.14).

2 Terminology and some auxiliary results

2.1 Notation

All topological spaces under consideration are assumed to be Tikhonov.
For a set X and n ∈ ω, we use the standard notation [X ]n = {A ⊆ X : |A| = n},

[X ]≤n = ⋃{[X ]k : k ≤ n} and [X ]<ω = ⋃{[X ]k : k < ω}.
We say that a family U of sets has order ≤ n if every subfamily V ⊂ U of cardinality

n + 2 has an empty intersection (in other terminology, the family U is point-(n + 1)). The
family U has finite order if it has order ≤ n for some n ∈ ω.

The family U of subsets of a space X is T0-separating if, for every pair of distinct points
x, y of X , there is U ∈ U containing exactly one of the points x, y.

For a locally compact space X , α(X) denotes the one point compactification of X . We
denote the point at infinity of this compactification by ∞X .

2.2 Function spaces

Given a compact space K , by C(K ) we denote the Banach space of continuous real-valued
functions on K , equipped with the standard supremum norm.

2.3 Scattered spaces

A space X is scattered if no nonempty subset A ⊆ X is dense-in-itself.
For a scattered space K , by Cantor–Bendixson height ht(X) of K we mean the minimal

ordinal α such that the Cantor–Bendixson derivative K (α) of the space K is empty. The
Cantor–Bendixson height of a compact scattered space is always a nonlimit ordinal.
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A surjective map f : X → Y between topological spaces is said to be irreducible if no
proper closed subset of X maps onto Y . If X is compact, by Kuratowski–Zorn Lemma, for
any surjective map f : X → Y , there is a closed subset C ⊆ X such that the restriction
f � C is irreducible.
The following facts concerning continuous maps of scattered compact spaces are well

known, cf. the proof of Proposition 8.5.3 and Exercise 8.5.10(C) in [16].

Proposition 2.1 Let K be a scattered compact space and let ϕ : K → L be a continuous
surjection. Then, for each ordinal α, we have L(α) ⊆ ϕ(K (α)). In particular, ht(L) ≤ ht(K ).

Proposition 2.2 Let K be a scattered compact space and let ϕ : K → L be a continuous
irreducible surjection. Then L ′ = ϕ(K ′) and ϕ � (K\K ′) is a bijection onto L\L ′.

2.4 Eberlein and Corson compact spaces

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset
of a Banach space. Equivalently, a compact space K is an Eberlein compactum if K can be
embedded in the following subspace of the product R� :

c0(�) = {x ∈ R
� : for every ε > 0 the set {γ : |x(γ )| > ε} is finite},

for some set �, see [14].
If K is homeomorphic to a weakly compact subset of a Hilbert space, then we say that K

is a uniform Eberlein compact space. All metrizable compacta are uniform Eberlein.
A compact space K is Corson compact if, for some set �, K is homeomorphic to a subset

of the 	-product of real lines

	(R�) = {x ∈ R
� : |{γ : x(γ ) 
= 0}| ≤ ω}.

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

2.5 Spaces�n(X)

Given a set � and n ∈ ω, by σn(�) we denote the subspace of the product 2� consisting of
all characteristic functions of sets of cardinality ≤ n. The space σn(�) is uniform Eberlein
and scattered of height n + 1.

For A ∈ [�]≤n , we denote the standard clopen neighborhood {χB ∈ σn(�) : A ⊂ B} of
χA in σn(�) by VA.

To simplify the notation we will say that a compact space K belongs to the class ECn if
K can be embedded in the space σn(�) for some set �. We will denote the union

⋃
n∈ω ECn

by EC<ω. Trivially, if a compact space K belongs to any of the above classes, then each
closed subset of K is also in the same class. One can also easily verify that the class EC<ω

is preserved under taking finite products, cf. [1, p. 148].

Proposition 2.3 For a compact space K and n ∈ ω, the following conditions are equivalent:

(i) K has a T0-separating point-n family of clopen subsets;
(ii) K belongs to the class ECn.
Proof ((i)⇒(ii)) LetA be a T0-separating point-n family of clopen subsets of K . For x ∈ K ,
let fx : A → 2 be a function defined by fx (A) = 1 if x ∈ A, 0 otherwise, for A ∈ A.
Clearly, the mapping x �→ fx is a required embedding.
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((ii)⇒(i)) Suppose that K is a subspace of the space σn(�) for some set �. For γ ∈ �,
let Uγ = {x ∈ K : x(γ ) = 1}. One can easily verify that the family {Uγ : γ ∈ �} is a
T0-separating point-n family of clopen subsets of K . 
�
Lemma 2.4 Let K be an infinite compact subset of σn(�) for some set � and n ∈ ω. Then K
can can be embedded into σn(κ), where κ is the weight w(K ) of K .

Proof Follows from the proof of Lemma 2.3 and the well known fact that, for an infinite
compact space the cardinality of the family of clopen subsets of K is bounded by w(K ). 
�
Lemma 2.5 Let � be an infinite set. Then for any n, k ∈ ω, k ≥ 1, the discrete union of k
copies of σn(�) embeds into σn+1(�).

Proof Let X = {x0, x1, . . . , xk−1} be a set disjoint with �. For f ∈ σn(�) and i < k let
fi : � ∪ X → 2 be defined by

fi (x) =

⎧
⎪⎨

⎪⎩

f (x) if x ∈ �

1 if x = xi
0 if x = x j , j < k, j 
= i

One can easily verify that, if we assign to a function f from i-th copy of σn(�), the
function fi , then we will obtain an embedding of the discrete union of k copies of σn(�) into
σn+1(� ∪ X), a copy of σn+1(�). 
�
Theorem 2.6 (Argyros and Godefroy) Every Eberlein compactum K of weight < ωω and
of finite height belongs to the class EC<ω.

Example 2.7 (Bell and Marciszewski [4]) There exists an Eberlein compactum K of weight
ωω and height 3 which does not belong to EC<ω.

2.6 Luzin sets and its variants

Usually, a subset L of real line R is called a Luzin set if X is uncountable and, for every
meager subset A ofR the intersection A∩ L is countable. Let κ ≤ λ be uncountable cardinal
numbers. We will say that a subset L of a Polish space X is a (λ, κ)-Luzin set if X has the
cardinality λ, and, for every meager subset A of X the intersection A ∩ L has the cardinality
less than κ . In this terminology, the existence of a Luzin set inR is equivalent to the existence
of a (ω1, ω1)-Luzin set.

Since, for every Polish space X without isolated points there is a Borel isomorphism
h : X → R such that A ⊆ X is meager if and only if, h(A) is meager in R, it follows that
the existence of a (λ, κ)-Luzin set in such X is equivalent to the existence of a (λ, κ)-Luzin
set in R.

It is known that, for each n ≥ 1 the existence of a (ωn, ω1)-Luzin set in R is consistent
with ZFC, cf. [2, Lemma 8.2.6].

2.7 Cardinal numbers b and non(M)

Recall that the preorder ≤∗ on ωω is defined by f ≤∗ g if f (n) ≤ g(n) for all but finitely
n ∈ ω. A subset A of ωω is called unbounded if it is unbounded with respect to this preorder.
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In Sect. 4, we will use two cardinal numbers related with the structure of the real line

b = min{|A| : A is an unbounded subset of ωω}
non(M) = min{|B| : B is a nonmeager subset of R} .

It is well known that b ≤ non(M) (cf. [2, Ch. 2]), and, for each natural number n ≥ 1, the
statement b = ωn is consistent with ZFC, (cf. [17, Theorem 5.1]).

2.8 Aleksandrov duplicate AD(K) of a compact space K

Recall the construction of the Aleksandrov duplicate AD(K ) of a compact space K .
AD(K ) = K×2, points (x, 1), for x ∈ K , are isolated in AD(K ) and basic neighborhoods

of a point (x, 0) have the form (U × 2)\{(x, 1)}, where U is an open neighborhood of x in
K .

The following fact is well known (cf. [10]).

Proposition 2.8 The Aleksandrov duplicate AD(K ) of an (uniform) Eberlein compact space
K is (uniform) Eberlein compact.

Proof Without loss of generality we can assume that K is a subspace of c0(�) (
2(�)),
equipped with the pointwise topology, for some set �. We will show that AD(K ) can be
embedded into the space c0(� ∪ K ) (
2(� ∪ K )). For x ∈ K and i = 0, 1 define a function
fx,i : � ∪ K → R as follows:

fx,i (t) =

⎧
⎪⎪⎨

⎪⎪⎩

x(t) if t ∈ �

0 if t ∈ K , t 
= x
1 if t = x, i = 1
0 if t = x, i = 0

One can easily verify that the mapping (x, i) �→ fx,i gives the desired embedding. 
�

3 On continuous images of compact subsets of spaces �n(0)

The class EC<ω of compact subsets K of spaces σn(�), n ∈ ω (cf. Sect. 2.5), turned out to
be the class of those compacta K , for which the Banach space C(K ) is isomorphic to the
Banach space c0(�) for some set �.

Theorem 3.1 [12, Theorem 1.1] For a compact space K the following conditions are equiv-
alent:

(i) K has a T0-separating family of clopen subsets and of finite order;
(ii) K belongs to the class EC<ω,
(iii) C(K ) is isomorphic to c0(�) for some set �;
(iv) C(K ) is isomorphic to a subspace of c0(�) for some set �.

Corollary 3.2 The class EC<ω is preserved under continuous images.

Proof Let K ∈ EC<ω and let ϕ : K → L be a continuous surjection. By Theorem 3.1,
the space C(K ) is isomorphic to c0(�) for some set �. The space C(L) is isometric to a
subspace { f ◦ϕ : f ∈ C(L)} of C(K ), hence it is isomorphic to a subspace of c0(�). Again,
by Theorem 3.1, the space L belongs to EC<ω.
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Theorem 3.3 For each n ∈ ω there exists k(n) ∈ ω such that any continuous image of a
space K ∈ ECn belongs to ECk(n).

Proof Fix n ∈ ω and assume towards a contradiction, that, for each i ∈ ω, there exist a
compact space Ki ∈ ECn and a continuous surjection ϕi : Ki → Li such that Li does not
belong to ECi . Without loss of generality we can assume that Ki ⊆ σn(�i ) for some set
�i , and the sets �i are pairwise disjoint and disjoint with ω. Consider � = ω ∪ ⋃

i∈ω �i .

Let X = ⊕
i∈ω Ki and Y = ⊕

i∈ω Li be discrete unions of spaces Ki and Li , respectively.
Clearly, the one point compactification α(X) can bemapped continuously onto α(Y ). Indeed,
it is enough to take the union of all maps ϕi , and assign∞Y to∞X . Letψ : α(X) → σn+1(�)

be defined by

ψ(x) =
{

χA∪{i} if x = χA ∈ Ki , i ∈ ω ,

χ∅ if x = ∞X ,

for x ∈ α(X). A routine verification shows that ψ is an embedding. On the other hand the
compactification α(Y ) does not belong to any class ECi , since these classes are hereditary
with respect to closed subspaces. This gives a contradiction with Corollary 3.2. 
�
Example 3.4 There exists a continuous image of the space σ2(ω1) which does not belong to
EC2.
Proof Obviously, it is enough to construct an appropriate continuous image of the space
σ2(ω1 × 2) instead of σ2(ω1).

Let∼ be the equivalence relation on σ2(ω1×2) given byχ{(α,0)} ∼ χ{(α,1)}, for all α ∈ ω1,
and let q : σ2(ω1 × 2) → σ2(ω1 × 2)/∼ be the corresponding quotient map. Denote the
quotient space σ2(ω1 × 2)/∼ by L . It is routine to verify that the space L is Hausdorff. We
will show that L /∈ EC2.

Suppose the contrary, then, by Lemma 2.4, we can assume that there exists an embedding
ϕ : L → σ2(ω1). Since L(2) = {q(χ∅)} and σ2(ω1)

(2) = {χ∅}, we have ϕ(q(χ∅)) = χ∅.
Therefore, the set L(1)\L(2) must be mapped by ϕ into σ2(ω1)

(1)\σ2(ω1)
(2). This means that

there is an injective map ψ : ω1 → ω1 such that

ϕ(q(χ{(α,i)})) = χ{ψ(α)} for all α ∈ ω1 and i = 0, 1. (3.1)

By the continuity of ϕ at the points q(χ{(α,i)}) it follows that, for each α ∈ ω1 there exits a
finite set F(α) ⊆ ω1 such that

(∀β ∈ (ω1\F(α))) (∀i, j ∈ 2) [ϕ(χ{(α,i),(β, j)}) ∈ V{ψ(α)}] (3.2)

(recall that V{ψ(α)} is the clopen neighborhood {χA ∈ σ2(ω1) : ψ(α) ∈ A} of χ{ψ(α)}). Take
any γ ∈ ω1\ω greater than sup

⋃
n∈ω F(n). Observe that, for all n ∈ ω, γ /∈ F(n). Pick any

k ∈ ω\F(γ ). By property (3.2) we have

(∀i, j ∈ 2) [ϕ(χ{(k,i),(γ, j)}) ∈ V{ψ(k)} ∩ V{ψ(γ )}] . (3.3)

Hence, the intersection V{ψ(k)} ∩ V{ψ(γ )} contains at least 4 points (note that k 
= γ ). On the
other hand, for all distinct α, β ∈ ω1, we have V{α} ∩ V{β} = {χ{α,β}}, a contradiction. 
�
Theorem 3.5 Each continuous image of a space K ∈ EC2 belongs to EC3.
Proof Let � be a set, K be a closed subset of σ2(�), and let ϕ : K → L be a continuous
surjection.Wewill show that L embeds into σ3(�). Without loss of generality we can assume
that the map ϕ is irreducible.
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We will consider three cases determined by the height ht(L) of L .
Case 1. ht(L) ≤ 1. This means that L is finite and this case is trivial.
Case 2. ht(L) = 2. In this case, for some k ∈ ω, the space L is homeomorphic to the discrete
union

⊕k
i=1 α(Xi ) of one point compactifications of infinite discrete spaces Xi , i = 1, . . . , k.

Since w(L) ≤ w(K ) ≤ |�|, we have |Xi | ≤ |�| for i = 1, . . . , k. Then L embeds in σ2(�)

by Lemma 2.5 and a simple observation that the space α(Xi ) is homeomorphic to σ1(Xi ).
Case 3. ht(L) = 3. Then also ht(K ) = 3 and K (2) = {χ∅} = σ0(�). By Proposition 2.1,
L(2) is the singleton {ϕ(χ∅)}. Since ϕ is irreducible, from Propositions 2.1 and 2.2 it follows
that

(a) ϕ � (K\K ′) is a bijection onto L\L ′;
(b) L ′\L(2) ⊆ ϕ(K ′\K (2)) ⊆ L ′.

For each y ∈ L ′\L(2), the fiber ϕ−1(y) is a closed in K subset of K ′\K (2), hence it is
finite. Since K ′ ⊆ σ1(�), we have ϕ−1(y) ⊆ σ1(�)\σ0(�).

Recall that, for γ ∈ �, V{γ } denotes the clopen neighborhood {χA ∈ σ2(�) : γ ∈ A} of
χ{γ }. We put U{γ } = V{γ } ∩ K . For y ∈ L ′\L(2) define

Wy =
⋃

{U{γ } : χ{γ } ∈ ϕ−1(y)} and Oy = ϕ
(
Wy

)
.

Using properties (a) and (b) of ϕ one can easily verify that

(c) Oy ∩ L ′ = {y};
(d) ϕ−1(Oy) = Wy .

Clearly the set Wy is clopen in K , since ϕ−1(y) is finite. Therefore, by (d), Oy is clopen in
L . Let

U = {Oy : y ∈ L ′\L(2)} ∪ {{z} : z ∈ L\L ′} .

The family U consists of clopen sets and by property (c) is T0-separating in L . Let us
check that this family is point-3. Since, for distinct z1, z2 ∈ L\L ′, the singletons {z1}, {z2}
are obviously disjoint, it is enough to verify that, for distinct y1, y2, y3 ∈ L ′\L(2), the
intersection

⋂3
i=1 Oyi is empty. This follows from property (d) and an observation that for

any χ{γi } ∈ ϕ−1(yi ), i = 1, 2, 3 we have
⋂3

i=1 V{γi } = ∅. Finally, our thesis follows from
Proposition 2.3. 
�

The following two easy observations demonstrate that the Example 3.4 is in some sense
the simplest possible.

Proposition 3.6 For any n ∈ ω, each continuous image of a metrizable space K ∈ ECn
belongs to ECn.
Proof By the classical characterization of countable compacta due to Mazurkiewicz and
Sierpiński [13], any countable metrizable space of height n + 1, n ∈ ω, is homeomorphic
to the discrete union of k copies of the ordinal space ωn + 1, for some positive integer k. By
Proposition 2.1, any continuous image of such space is homeomorphic to the discrete union
of k′ copies of ωn′ + 1, where either n′ < n or n′ = n and k′ ≤ k. Lemma 2.4 implies that
any metrizable space K ∈ ECn embeds into σn(ω). One can easily verify that, for any n ∈ ω,
the space σn(ω) is homeomorphic to the space ωn +1. The desired conclusion follows easily
either from standard properties of ordinal spaces or Lemma 2.5. 
�

The next proposition is trivial since the class EC1 consists of compact spaces with at most
one nonisolated point.
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Proposition 3.7 Each continuous image of a space K ∈ EC1 belongs to EC1.
Theorem 3.5 together with Example 3.4 can be stated shortly that 3 is the optimal value

of the integer k(n) from Theorem 3.3 for n = 2. We do not know how to generalize this for
n > 2.

Problem 3.8 Find the formula for best possible value of k(n) from Theorem 3.3.1

Remark 3.9 It is clear that the characterization of the class ECn from Proposition 2.3 can be
formulated in the following way:

A compact zero-dimensional space K belongs to ECn , if and only if, the algebraCO(K ) of
clopen subsets of K , has a set of generators G such that for any distinctU0,U1, . . . ,Un ∈ G,
the intersection

⋂n
i=o Ui is empty. To simplify the statements, say for a moment, that the

Boolean algebraA with such set of generators has the property DGn . Then Example 3.4 can
be translated into this language as follows: There exists a Boolean algebra A with property
DG2, and a subalgebra B ⊆ A without this property. Theorem 3.5 says that any subalgebra
B of an algebra A with DG2, has the property DG3. Other results from this section can be
also reformulated in this way.

4 On zero-dimensional closed subspaces of nonmetrizable Eberlein
compacta

There are known several constructions, using some additional set-theoretic assumptions, of
nonmetrizable compact spaces without nonmetrizable zero-dimensional closed subspaces.
Recently, Koszmider [9] constructed the first such example without such additional assump-
tions, and Plebanek [15] constructed a consistent example of such a space which is a Corson
compact. So it is important to determine whether we can obtain such examples within some
other known classes of compact spaces, for example Eberlein compact spaces.

Joel Alberto Aguilar has asked us the following question.

Problem 4.1 Let K be an Eberlein compact space of weight κ . Does K contain a closed
zero-dimensional subspace L of the same weight?

Probably, the most natural and interesting is the following simplified version of this ques-
tion.

Problem 4.2 Let K be a nonmetrizable Eberlein compact space. Does K contain a closed
nonmetrizable zero-dimensional subspace L?

Wewill show that the negative answer to this problem is consistent with ZFC, see Corollary
4.8. We do not know if the affirmative answer is also consistent with ZFC, see Problem 4.17.

We will also consider a more complex version of Problem 4.1:

Problem 4.3 Let κ ≤ λ be uncountable cardinal numbers, and let K be an Eberlein compact
space of weight λ. Does K contain a closed zero-dimensional subspace L of weight κ?

We will prove that, for every natural numbers 1 ≤ k ≤ n, n ≥ 2, the statement: each
Eberlein compact space of weight ωn contains a closed zero-dimensional subspace L of
weight ωk is independent of ZFC, see Corollaries 4.9 and 4.14.

1 Recently, Grzegorz Plebanek has proved the following recursive estimate for the optimal constant k(n):
k(n) ≤ (2n − 1)k(n − 1) + 1.
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Webeginwith a simple observation based on the followingwell known property of Corson
compacta. Since we were not able to find a reference for it, we include a sketch of a proof of
this fact.

Proposition 4.4 Let x be a nonisolated point of a Corson compact space K such that the
character χ(K , x) = κ . Then K contains a copy of a one point compactification α(κ) of a
discrete space of cardinality κ with x as its point at infinity.

Proof Without loss of generality we can assume that K ⊆ 	(�), for some set �, and, for
each γ ∈ �, there is xγ ∈ K such that xγ (γ ) 
= 0. Translating K by the vector −x , we
can also assume that x = 0 - the constant zero function in 	(�). If κ = ω, then, by the
Fréchet-Urysohn property of K , 0 is the limit of a sequence of distinct points of K , which
gives the desired conclusion. If κ > ω, then, using transfinite induction of length κ , and the
fact that for compact spaces the pseudocharcter of a point is equal to the character, one can
easily construct a set {xα : α ∈ κ} ⊂ K of points with nonempty, pairwise disjoint supports.
Then the subspace {0} ∪ {xα : α ∈ κ} of K is as desired. 
�

Corollary 4.5 Let K be an Eberlein compact space with a point of character κ . Then K
contains a closed zero-dimensional subspace L of weight κ . In particular, each Eberlein
compact space of uncountable character contains a closed nonmetrizable zero-dimensional
subspace L.

It is worth to recall here that, by Arhangel’skii’s theorem [6, Theorem 3.1.29], for an
infinite compact space K , we have the estimate |K | ≤ 2χ(K ). Hence we obtain the following.

Corollary 4.6 Let K be an Eberlein compact space of weight greater that 2κ . Then K con-
tains a closed zero-dimensional subspace L of weight κ+. In particular, each Eberlein
compact space of cardinality greater than continuum contains a closed nonmetrizable zero-
dimensional subspace L.

Recall that the definition of a (λ, κ)-Luzin set appearing in the next lemma, can be found
in Subsection 2.6.

Example 4.7 Let κ ≤ λ be uncountable cardinal numbers, and assume that there exists a
(λ, κ)-Luzin set. Then, for each n ∈ ω (n = ∞), there exists an n-dimensional nonmetrizable
Eberlein compact space Kn of weight λ such that any closed subspace L of Kn of weight
≥ κ has dimension n.

Applying the above for the standard Luzin set we obtain that it is consistent that Problem
4.2 (Problem 4.1) has an negative answer.

Corollary 4.8 Assuming the existence of a Luzin set, there exists a nonmetrizable Eberlein
compact space K without closed nonmetrizable zero-dimensional subspaces.

As we mentioned in Sect. 2.6, for each n ≥ 1, the existence of a (ωn, ω1)-Luzin set in R

is consistent with ZFC, therefore we derive the following.

Corollary 4.9 For each n ≥ 1, it is consistent with ZFC that there exists an Eberlein compact
space K of weight ωn without closed nonmetrizable zero-dimensional subspaces.
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Construction of Example 4.7 Fix n ∈ ω (n = ∞). Let X be a (λ, κ)-Luzin set in the cube
[0, 1]n , see Sect. 2.6. We consider the following subspace of the Aleksandrov duplicate
AD([0, 1]n) (see Sect. 2.8)

K = AD([0, 1]n)\[([0, 1]n\X) × {1}] .
Since dim(AD([0, 1]n)) = n and K contains a copy of the cube [0, 1]n , the compact space
K is n-dimensional (cf. [7, Ch. 3]). By Proposition 2.8, K is uniform Eberlein compact.

Let L be a closed subspace of K of weight ≥ κ and let

Z = L ∩ ([0, 1]n × {1}) = L ∩ ([X × {1}) = Y × {1} .

Since L has weight ≥ κ , the set Y must have the cardinality ≥ κ . Let T ⊆ Y be a subset
of the same cardinality as Y , and without isolated points. By the definition of a (λ, κ)-Luzin
set, T is not nowhere dense in [0, 1]n , hence its closure Cl[0,1]n (T ) has a nonempty interior
in [0, 1]n . Therefore, Cl[0,1]n (T ) has dimension n. Since T is dense-in-itself, the closure of
T × {1} in AD([0, 1]n) (hence also in L) contains the set Cl[0,1]n (T ) × {0}, a topological
copy of Cl[0,1]n (T ). It follows that dim(L) = n. 
�

Now, we will switch to the consistent results giving an affirmative answer to some cases
of Problem 4.3.

We start with the following technical lemma (the definitions of cardinal numbers used in
this lemma can be found in Sect. 2.7).

Lemma 4.10 Let κ be a cardinal number of uncountable cofinality and assume that b > κ .
Let K be a compact subset of the product R� containing a subset X of cardinality κ such
that, for some countable subset �0 of � and for all x ∈ X, the sets supp(x)\�0 are nonempty
and pairwise disjoint. Then K contains a closed zero-dimensional subspace L of weight κ .

Proof From our assumption that b > κ , it follows that also non(M) > κ .
Let �0 ⊆ � be a countable set witnessing the property of the set X . Observe that the

property of supports of points x ∈ X , implies that X is a discrete subspace of K .
Without loss of generality we can assume that the set �0 is infinite, so we can enumerate

it as {γn : n ∈ ω}. Let Xn = {x(γn) : x ∈ X} for n ∈ ω. Since non(M) > κ , each set Xn

is meager. Therefore, for each n ∈ ω, we can find an increasing sequence (Ck
n )k∈ω of closed

nowhere dense subsets of R such that Xn ⊆ ⋃
k∈ω Ck

n . For each x ∈ X , we define a function
fx : ω → ω as follows

fx (n) = min{k : x(γn) ∈ Ck
n } for n ∈ ω.

Since b > κ , we can find a function g : ω → ω such that fx ≤∗ g for all x ∈ X . A routine
refining argument, using uncountable cofinality of κ , shows that there is a subset Y ⊆ X of
size κ and a function h : ω → ω such that fx ≤ h for all x ∈ Y .

We define L = ClKY .
The space L contains a discrete subspace Y of cardinality κ , hence L has weight ≥ κ . Let

�1 be a selector from the family {supp(x)\�0 : x ∈ Y }. Clearly, �1 has cardinality κ . One
can easily verify that the projection p : R� → R

�0∪�1 is one-to-one on L , hence w(L) ≤ κ .
It remains to verify that L is zero-dimensional.
First, observe that each space Ck

n , being closed nowhere dense in R is zero-dimensional.
Let π : L → R

ω be defined by

π(x)(n) = x(γn) for x ∈ L, n ∈ ω.
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From our choice of Y and h it follows that

π(L) ⊆ �n∈ωC
h(n)
n .

Since the product �n∈ωC
h(n)
n is zero-dimensional, so is the space π(L). From the fact that

the sets supp(x)\�0, for x ∈ Y , are pairwise disjoint, it follows that each fiber of π is
either finite, or homeomorphic to a one point compactification of a discrete space, hence it is
zero-dimensional. Therefore, by the theorem on dimension-lowering mappings [7, Theorem
3.3.10], L is zero-dimensional. 
�

Lemma 4.11 Let k < n be natural numbers, Y be a set of cardinality ωk , and C = {Cα : α <

ωn} be a family of countable subsets of Y . Then there exist a countable subset Z of Y and a
subset S of ωn of cardinality ωn such that Cα ⊆ Z for all α ∈ S.

Proof Fix n ≥ 1. The case k = 0 is trivial. For k > 0, we proceed by induction on k. Without
loss of generality we can assume that Y = ωk . Since the cofinality of ωk is uncountable, we
can find an λ < ωk and a subset R of ωn of cardinality ωn such that Cα ⊆ λ for α ∈ R. Now,
we can use the inductive hypothesis. 
�

The following lemma is probably well known. We learned about it from Grzegorz Ple-
banek, who suggested to use it for the proof of Theorem 4.13. Its proof is based on an idea
from the proof of Theorem 1.6 in [11].

Lemma 4.12 Let � be a set of cardinality ωn, n ≥ 2, andA = {Aα : α < ωn} be a family of
countable subsets of �, such that

⋃A = �. Then there exist a countable subset B of � and a
subset T of ωn of cardinality ωn such that the family {Aα\B : α ∈ T } consists of nonempty,
pairwise disjoint sets.

Proof Without loss of generality we can assume that � = ωn . For each β < ωn we pick an
α(β) < ωn such that β ∈ Aα(β). We consider the sets Aα with the order inherited from ωn .
Since we have only ω1 possible order types of these sets, we can find a countable ordinal
η, and a subset P of ωn of cardinality ωn such that, for all β ∈ P , Aα(β) has order type η.
For γ < η, let ξ(β, γ ) be the γ -th element of Aα(β). Since the union

⋃{Aα(β) : β ∈ P}
contains an unbounded set P , and ωn has uncountable cofinality, there is γ < η such that
the set {ξ(β, γ ) : β ∈ P} is unbounded in ωn . Let γ0 be the smallest such γ . Put

δ = sup{ξ(β, γ ) : β ∈ P, γ < γ0} + 1 .

Using the definition of γ0, one can easily construct, by a transfinite induction of length ωn ,
a subset Q of P of cardinality ωn , such that the family {Aα(β)\δ : β ∈ Q} consists of
nonempty, pairwise disjoint sets. Finally, we can apply Lemma 4.11, for Y = δ and the
family {Aα(β) ∩ δ : β ∈ Q}, to find a countable subset B of δ and a subset T of Q of
cardinality ωn , such that (Aα(β) ∩ δ) ⊆ B for β ∈ T . 
�

Theorem 4.13 Assume that b > ωn, n ≥ 1. Then each Corson compact space K of
weight greater that ω1 contains a closed zero-dimensional subspace L of weight equal to
min(w(K ), ωn).

Corollary 4.14 For each n ≥ 2, it is consistent with ZFC that each Corson compact space K
of weight ωn contains a closed zero-dimensional subspace L of the same weight.
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Proof of Theorem 4.13 Let λ = w(K ) ≥ ω2 and κ = min(w(K ), ωn). Let η = ω2 if
κ = ω1, otherwise η = κ . Without loss of generality we can assume that K ⊆ 	(λ)

and, for each γ ∈ λ, there is xγ ∈ K such that xγ (γ ) 
= 0. Pick a subset S of λ of
cardinality η and put � = ⋃{supp(xγ ) : γ ∈ S}. We apply Lemma 4.12 for � and the family
{supp(xγ ) : γ ∈ S}, to obtain a countable subset B of � and subset T ⊆ S of cardinality η

such that the family {supp(xγ )\B : γ ∈ T } consists of nonempty, pairwise disjoint sets. If
κ > ω1, take X = {xγ : γ ∈ T }, otherwise pick a subset T0 ⊆ T of cardinality ω1 and put
X = {xγ : γ ∈ T0}. Now, we can obtain the desired conclusion applying Lemma 4.10.

The construction from Example 4.7 and Lemma 4.10 motivated us to consider the follow-
ing class of Eberlein compacta.

We say that a compact space K belongs to the class ECωc if, for some set � there is an
embedding ϕ : K → R

� and a countable subset �0 of � such that, for each x ∈ K , the set
supp(ϕ(x))\�0 is finite. Since the product R�0 embeds into the Hilbert space 
2 equipped
with the pointwise topology, it easily follows that any compact space K ∈ ECωc is uniform
Eberlein compact. It is clear that the class ECωc is preserved by the operations of taking finite
products and closed subspaces. Example 4.16 below demonstrates that the countable power
of a space from ECωc may not belong to this class.

One can also easily verify that, for a metrizable compact space M the Aleksandrov dupli-
cate AD(M) belongs to the class ECωc (cf. the proof of Proposition 2.8), hence all spaces
constructed in such a way as in Example 4.7, are in this class. One can even show that, for
metrizable compacta Mn , the countable product of spaces AD(Mn) is in ECωc. In particular,
the product [AD(2ω)]ω belongs to ECωc. Note, that by the remarkable result of Dow and Pearl
[5] this product is an example of a homogeneous nonmetrizable Eberlein compact space. The
first such example was given by Jan van Mill in [18]. The structure of these two examples
seems to be closely related, but we do not know if they are homeomorphic.

Theorem 4.15 Assuming that b > ω1, each nonmetrizable compact space K ∈ ECωc con-
tains a closed nonmetrizable zero-dimensional subspace L.

Proof Let K ∈ ECωc. Without loss of generality we can assume that, for some set � and
its countable subset �0, K is a subset of R� such that, for each x ∈ K , the set supp(x)\�0

is finite. Since K is nonmetrizable, obviously the set � must be uncountable. We can also
assume that, for each γ ∈ �, there is xγ ∈ K such that xγ (γ ) 
= 0. For each γ ∈ �\�0,
the set Fγ = supp(xγ )\�0 is finite and nonempty. Using the �-system lemma we can find
a finite set A ⊆ � and a set S ⊆ (�\�0) of size ω1 such that, for any distinct α, β ∈ S,
Fα ∩ Fβ = A. By enlarging �0 to �0 ∪ A, we can assume that A is empty. Now, we can
apply Lemma 4.10 for the set X = {xγ : γ ∈ S}. 
�

In the light of Corollary 4.5 and Theorem 4.15 it seems natural to ask whether every
first-countable Eberlein compact space belongs to the class ECωc. Unfortunately, this is not
the case.

Example 4.16 There exists a first-countable uniform Eberlein compact space which does not
belong to the class ECωc.

Proof Our construction uses the following modification L of the Aleksandrov duplicate
AD([0, 1]) of the unit interval (roughly speaking, we replace isolated points of AD([0, 1])
by copies of [0, 1]). The space L is similar to the space X(C) used by van Mill in [18] to
construct an example of a homogeneous nonmetrizable Eberlein compact space.
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Let S = [0, 1] ∪ {2}. For any t ∈ [0, 1], u ∈ [1, 2], we define functions ft : S →
[0, 2], gt,u : S → [0, 2] by

ft (s) =
{
0 if s ∈ [0, 1] ,
t if s = 2 ;

gt,u(s) =

⎧
⎪⎨

⎪⎩

u if s = t ,

0 if s ∈ [0, 1], s 
= t ,

t if s = 2 .

We consider

L = { ft : t ∈ [0, 1]} ∪ {gt,u : t ∈ [0, 1], u ∈ [1, 2]}
as a subspace of the cube [0, 2]S . One can easily verify that L is closed in [0, 2]S . Since the
cardinality of supports of functions ft and gt,u is bounded by 2, L is an uniform Eberlein
compact space. It is also easy to observe that the space L is first-countable.

We will show that the space K = Lω has the required property. Clearly, it is enough to
show that K does not belong to the class ECωc.

Suppose the contrary, i.e., there exist a set �, its countable subset �0, and an embedding
ϕ : K → R

� such that, for each x ∈ K , the set supp(ϕ(x))\�0 is finite. We will treat K
as a subset of the product [0, 2]ω×S , namely we identify the sequence (xn)n∈ω ∈ Lω with
the function x : ω × S defined by x(n, s) = xn(s) for n ∈ ω, s ∈ S. Let π : R� → R

�0

be the projection, and let ψ = π ◦ ϕ. By the Tietze extension theorem we can extend ψ

to a continuous map � : [0, 2]ω×S → R
�0 . It is well known that such a map depends on

countablymany coordinates, i.e., there is a countable subset T ⊆ ω×S and a continuousmap
θ : [0, 2]T → R

�0 such that � = θ ◦ ρ, where ρ denotes the projection of [0, 2]ω×S onto
[0, 2]T (cf. [6, 2.7.12]). Denote the restriction ρ � K by υ. Clearly, θ ◦υ = ψ = π ◦ϕ. This
implies that, for any y ∈ ψ(K ), we have υ−1(θ−1(y)) = ϕ−1(π−1(y)). In particular, this
means that the sets υ−1(θ−1(y)) and π−1(y)∩ϕ(K ) are homeomorphic. Observe that the set
π−1(y) ∩ ϕ(K ) can be treated as a subspace of the space σ(R�\�0), consisting of functions
from R

�\�0 with finite supports. The space σ(R�\�0) is strongly countable-dimensional, i.e,
is a countable union of closed finite-dimensional subspaces, cf. [8, proof of Proposition 1].
Therefore, the space π−1(y) ∩ ϕ(K ) is also strongly countable-dimensional.

Pick a point t ∈ [0, 1] such that (ω × {t}) ∩ T = ∅. Let x = (xn)n∈ω ∈ K be the constant
sequence, where xn = ft for all n, and let y = ψ(x). One can easily verify that the set
υ−1(υ(x)) ⊆ υ−1(θ−1(y)), contains the product {gt,u : u ∈ [1, 2]}ω homeomorphic to the
Hilbert cube [0, 1]ω. Since the Hilbert cube is not strongly countable-dimensional (which
follows easily from the Baire Category Theorem), the subspace υ−1(θ−1(y)) is not strongly
countable-dimensional, a contradiction. 
�

Let us note that using a very similar argument as above one can show that the unit ball B
of the Hilbert space 
2(ω1) equipped with the weak topology is an example of an uniform
Eberlein compact space which does not belong to the class ECωc. This is much simpler
example than above one, but it is not first-countable.

Corollaries 4.9 and 4.14 indicate that probably the most interesting and left open case of
Problem 4.3 is the following

Problem 4.17 Is it consistent that every Eberlein compact space K of weight ω1 contains a
closed zero-dimensional subspace L of the same weight?
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