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Abstract
The imperfect production system with continuous-time Markovian process for maintenance
and warranty issues has been investigated in the existing literature. For practical purposes,
we apply a discrete-time Markov chain to model this imperfect system with backordering in
which the items produced are sold with free post-sale service warranty based on the failure
occurrence for given items sold following a non-homogeneous Poisson process. In this paper,
we take into account the effects of service warranty, system reliability, and maintenance on
the optimal lot size policies in the production system in order to reflect the practical situation.
These policies involve how much lot size per production run and maximum backordering
quantity should be to achieve the minimum total expected cost under various warranty peri-
ods. By applyingmathematical analytic solution procedures,we investigate the properties and
bounds to obtain the optimal lot size. Moreover, we provide an algorithm for efficiently solv-
ing the problems described herein. An illustrative example is presented to verify our proposal
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model and through parameter sensitivity analysis to provide some managerial implications.
The results of this study are a useful reference for operations/qualitymanagers and researchers
who are interested in determining levels of suitable production lot size and deploy a strategic
plan that includes process maintenance and products warranty decisions with backordering
to ensure that all items sold meet customer quality expectations.

Keywords Lot size · Deteriorating products · Discrete-time Markov chain · Warranty
policy · Shortages · Economic production quantity (EPQ) · Economic order quantity
(EOQ) · Mathematical analytic solution procedures · Supply chain management ·
Non-homogeneous Poisson process

Mathematics Subject Classification Primary 26A06 · 26A24 · 91B24 · 93C15; Secondary
26D10 · 90B30

1 Introduction

The traditional economic production quantity (EPQ) model is especially suitable for the
production-inventory environment with a perfectly reliable production process. All items are
produced with perfect quality. It is useful when production and consumption simultaneously
occur in the production run length. Once the economic production quantity is known, we can
obtain the optimal production time and achieve minimum cost or maximum profit to estab-
lish the optimal lot sizing policy for manufacturers. It should be emphasized that the above
observations in the production environment are unrealistic. For example, the manufacturing
process will not be degraded, many items are produced with 100% perfect quality when the
production system is controlled, all items produced can meet the customers’ specifications
required, but also with no involved post-sale warranty, machine capability is adequate, and
so forth (see, for example, Sarkar et al. [33], Sinha et al. [40], and Taleizadeh et al. [43]).
However, deterioration of manufacturing systems may reduce its availability and affect the
overall production capacity in a real-production environment. Therefore, the production pro-
cess may shift to an uncontrolled state from the controlled state after a period of time. In
this situation, a proportion of the items produced might be nonconforming. Of course, it may
not be practicable to meet customers’ demand. Obviously, these nonconforming products
will incur subsequent reworking or replacement costs. Then some costs of service warranty,
reverse logistics or loss of goodwill will be incurred if they pass them on to the customers. In
one realistic situation, the manufacturer’s production-inventory and service warranty deci-
sions have been given considerate attention for a deteriorating production system. In this
scenario, Murthy [21] developed a structure required for product reliability with effective
management to assist the manager in choosing appropriate warranty policies in the prod-
uct’s marketing and sales. Wu et al. [47] also emphasized that the service warranty plays an
important role in marketing. Wang and Sheu [46] developed a production lot size model in
which the items produced are sold with free post-sale service offered by the manufacturer
based on the production process following a general shift distribution. Sana [28] addressed an
imperfect production system with allowable shortages to determine preventive maintenance
and optimal buffer level for products sold with free minimal repair warranty. Chen et al.
[3] considered the product’s selling price decision in post-sale service warranty under the
assumption that the selling price depends on the warranty period offered by the manufacturer.
Shang et al. [38] determined the optimal warranty policies by considering a condition-based
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renewable replacement and hybrid preventative maintenance effects. Recently, Tang et al.
[45] investigated the decisions of pricing and warranty about products sold in a closed-loop
supply chain. For promotion, Mitra [20] considered the situation in which the service war-
ranty strategy can be expressed as a marketing tool in which a satisfactorily-extended policy
with the warranty time and usage is determined to enhance consumers’ willingness to pur-
chase products with warranty. Clearly, the product’s warranty is a very key factor in sales
services as the manufacturer expects to gain customers’ trust in product quality. It is indeed
a popular issue in this research field.

In an earlier study of imperfect production systems, Rosenball and Lee [25] assumed that
certain percentage of defects in a production lot when the production process becomes out-of-
control. Porteus [24] assumed that the manufactured products are defective with a 100% rate
when the production process becomes out of control. However, due to production uncertainty,
in both controlled and uncontrolled states, there is a fraction of the nonconforming items as
shown by Djamaludin et al. [10]. Chung and Hou [4] extended the work of Rosenball and
Lee [25] by considering shortages backordered for a deteriorating production system. Sana
[29] considered that there are a certain fraction of defective items in an uncontrolled state
in which the defective rate depends on the production run-length and the production rate.
Sana and Chaudhuri [30] further considered the impact of system deterioration, machine
breakdown and repair time with safety stocks on the optimal production decision. Recently,
Hou et al. [11] extended the work of Porteus [24] in order to determine the optimal production
lot size by considering rework and maintenance effects in which there is a proportion of the
defective items in a production lot when the system becomes out of control. More recently,
Khan et al. [13] developed two different inventory models for perishable items with advanced
payment and linearly time-dependent increasing holding cost. In their model, the demand
of the product is dependent on the selling price and advertisement as well. Khan et al. [14]
investigated an inventorymodel to study the effects of advance payment with discount facility
on supply decisions of deteriorating products where the demand function is considered to be
price and stock dependent. Shaikh and Cárdenas-Barrón [35] discussed an EOQ inventory
model for non-instantaneous deteriorating products with advertisement and price sensitive
demand by considering trade credit is dependent on order quantity. Mishra et al. [18] and
Shaikh et al. [36,37] discussed their excellent models in this direction. Yang et al. [48]
considered a two-phase maintenance framework in which imperfect inspection, preventive
maintenance, and imperfect repair are incorporated to measure the expected net revenue for a
single-component system with random defect time and delay time. Khakzad and Gholamian
[12] considered the effect of inspection times on average deterioration rate so as to minimize
the cost function by establishing the optimal number of inspections. Other related studies
can be found in the works of Bhunia et al. [2], Roy and Sana [9], Pal and Mahapatra [22],
and Panda et al. [23]. Researchers, who are interested in this topic, should pay attention to
the above references.

It should be noted that, in all of the above-mentionedmodels, it was assumed that shortages
backordered are not allowed. However, shortages may sometimes occur due to uncertainty
of the product’s quality, lead time or labour problems. Thus, clearly, shortages are often
permitted and are completely backordered practically. For example, retailers or suppliersmay
use planned shortages when sales revenue cannotmake up for the shortages; Or the customers
are usually willing to wait when they decide to buy a new brand product even if the product
is out of stock or there are not enough stocks to meet their needs. On the issue of shortage
cases, Roy et al. [26] presented an economic production lot-size model for defective items
with stochastic demand, backlogging and rework. Shaikh et al. [34] studied a fuzzy inventory
model for a deteriorating itemwith variable demand andpermissible delay in payments. In this
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work, it is considered that the shortage follows the inventory policy. Recently, Roy and Sana
[27] further developed an inter-dependent reduction strategy of lead time and ordering cost
in a two-stage single vendor and single buyer supply chain model with a variable backorder
and price-sensitive stochastic demand. In addition, a few works have examined sustainability
issues in production-inventory models. Taleizadeh et al. [44] incorporated environmental
issues to establish the optimal policies for the sustainable economic production quantity
(EPQ) model by taking account of different shortage situations. Mishra et al. [19] considered
the case when the carbon emission rate can be controlled by investing in green technology
for a sustainable production quantity model with shortages. Bhattacharyya and Sana [1]
developed a lot-sizing model by considering green technology and capital invested for setup
on eco-friendly manufacturing system under probabilistic demand. Based upon the above
arguments, the shortages cannot be ignored and are worth being discussed in this study.

The purpose of this study is two-fold. Firstly, we extend thework of Hou et al. [11] in order
to develop a Markovian EPQ model with shortages backordered and for products sold with
a free service warranty under a non-homogeneous Poisson process with increasing intensity
function. Besides, we present Theorem 1 in which we prove that there is a unique optimal
solution. Our Theorem 2, on the other hand, provides the bounds for solving the optimal
solution. Secondly, we present an algorithm to efficiently determine the optimal solution
and assess its performance by an illustrative example. The rest of the paper is designed as
follows. First, the basic assumptions and notations are provided in Sect. 2. Then, in Sect. 3, we
formulate the proposed problemas a costminimizationmodel. By following themathematical
models, we provide some properties to indicate that the unique optimal lot size is bounded in
a finite interval and we also present an algorithm to efficiently determine the optimal lot size.
In Sect. 4, a numerical example and sensitivity analysis are presented in order to illustrate
the model and to provide managerial insights. Finally, in Sect. 5, conclusions and directions
for future researches of this and other related models are given.

2 Notation and assumptions

2.1 Notations

In order to develop an imperfect EPQ model with shortages backordered, the following
notations are needed.

d Demand per unit time
p Production per unit time, p > d
C Production cost per unit
Ck Setup cost per production cycle
Ch Holding cost per unit per unit time
Cm Adjustment cost for restoring the system into an operational (in-control) state from an

out-of-control state by maintenance actions
Cr Repair cost incurred at an item sold with service warranty
Cb Stock-out cost per unit per unit time
ai j The probability of a transition from state i to state j during the production period of a

product, and state set i, j ∈ {0, 1} where 0 and 1 represent in-control state and out-of-
control state, respectively

θ0 The percentage of a nonconforming item being finished when the system is in-control
during the production period for the item
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θ1 Thepercentageof a nonconforming itembeingfinishedwhen the system is out-of-control
during the production period for the item, where θ0 < θ1

W Warranty period
V1 The mean number of free service repairs per unit item for conforming items sold within

the warranty period
V2 The mean number of free service repairs per unit item for nonconforming items sold

within the warranty period, where V1 < V2
I Maximum inventory level
N The number of nonconforming items produced for each production run
T Production cycle length
T1 Production time when backorder is replenished
T2 Production time when inventory builds up
T3 Time period when there is no production and inventory depletes
T4 Time period when there is no production and shortages occurs
B Maximum amount of backlogged demand per lot (decision variable)
y Production quantity per lot (decision variable)

2.2 Assumptions

The following assumptions are used in our model.

1. The system deteriorating behavior can be described by a two-state Markov chain with
transition matrix A given by A=

{
ai j

}
, where the state set i, j ∈ {in-control, out-of-

control}. We note that the state j = “out-of-control” state is an absorbing state, that is,
a j j = 1 and no other state is accessible from it. In other words, the system will remain
in the out-of-control state until the end of a production run when the system shifts to the
out-of-control state.

2. Due to the uncertain nature of the manufacturing process, all items sold may be either
conforming or nonconforming which depend on whether its specifications can achieve
desired quality. It is reasonable to assume that a nonconforming item is more likely to
fail than a conforming item.

3. The failure of components associated with conforming (or nonconforming) items is a
non-homogeneous Poisson process with an increasing intensity function v1(t) (or v2(t)).

4. Shortages are completely backordered.
5. The demand rate is known and constant.

3 Mathematical formulation of themodel

Figure 1 represents an imperfect production system with allowable backorders. The produc-
tion cycle is divided into four major inventory stages in which time for stage i is indicated by
Ti . We note that the production cycle length is equal to T = y/d and T= T1 + T2 + T3 + T4.
Based on the four stages shown in Fig. 1, the total expected cost incurred in a production
cycle discussed in this paper include the production cost, inventory holding cost, backorder
cost, restoration cost, and the post-sale warranty cost which are derived as follows:
The production cost The production cost per cycle, PC, is given by

The production cost PC = Ck + Cy. (1)
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Fig. 1 The inventory level for imperfect EPQ model with shortages backordered

The holding cost The inventory holding cost will occur during T2 and T3. We note that
T2 = I/(p − d) and T3 = I/d , where I = y(1 − d/p) − B represents the maximum
inventory level. Hence, we can easily derive the holding cost per cycle, HC , as shown
below:

HC = Ch [y (1 − d/p) − B]2

2d (1 − d/p)
. (2)

The backordering cost The backordering cost will occur during T1 and T4, in which
T1 = B/(p − d) and T4 = B/d . So, the backordering cost per cycle, SC , is given by

SC = CbB2

2d (1 − d/p)
. (3)

The restoration cost We note that the restoration cost is only incurred when the production
process is out-of-control at the end of a production run for a lot size y. Hence, the expected
restoration cost per cycle, RC , is given by

RC = Cm
[
1 − (a00)

y] . (4)

The warranty cost Before deriving the expected post-sale service warranty cost, we need
the following Lemma.

Lemma The expected mean number E[N ] of nonconforming items N sold in a lot size y is
given by

E[N ] = θ1y − (θ1 − θ0)

y∑

l=1

(a00)
l . (5)

Proof In a lot of size y, we note that the probability distribution of number of items produced
in the in-control state, L , is given as follows:

Pr {L = l} =
{

(a00)l [1 − a00], if 0 � l < y
(a00)y, if l = y.
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Then, clearly, the expected value of L is given by

E[L] = (1 − a00)
y−1∑

l=1

l(a00)
l + y(a00)

y =
y∑

l=1

(a00)
l . (6)

Moreover, the number of nonconforming items in a lot size y becomes

N = θ0L + θ1(y − L).

Hence, the expected value E[N ] of N is derived as follows:

E[N ] = θ1y − (θ1 − θ0)

y∑

l=1

(a00)
l .

The proof of the Lemma is thus completed. ��
Wenote that the failure of the components associatedwith conforming (or nonconforming)

items is non-homogeneous Poisson process with an increasing intensity function v1(t) (or
v2(t)). Therefore, for a given item sold under free service warranty, we have

V1 =
∫ W

0
v1(t) dt or V2 =

∫ W

0
v2(t) dt,

where V1 (or V2) represents the mean number of free service repairs per unit item for con-
forming (or nonconforming) items sold in the interval (0, W ), where V1 < V2.

Based on the above Lemma, we know that the mean number of failures under warranty
with free service repairs for the sold items, denoted by ER, is given by

ER = (y − E[N ]) V1 + E[N ]V2. (7)

Hence, we have the expected warranty cost for the sold items per cycle as follows:

CW = Cr

{

yV1 + (V2 − V1)

[

θ1y − (θ1 − θ0)

y∑

l=1

(a00)
l

]}

. (8)

Consequently, the total expected cost per cycle, TCPC(y, B), is given by

TCPC(y, B) = Ck + Cy + Ch [y (1 − d/p) − B]2

2d (1 − d/p)
+ CbB2

2d (1 − d/p)

+Cm
[
1 − (a00)

y] + Cr yV1 + Cr (V2 − V1)

[

θ1y − (θ1 − θ0)

y∑

l=1

(a00)
l

]

.

(9)

When the lot size is y, the total expected cost per cycle divided by the lot size is the total
expected cost per item as shown below:

TCPI(y, B) = Ck

y
+ C + Ch [y (1 − d/p) − B]2

2yd (1 − d/p)
+ CbB2

2yd (1 − d/p)

+Cm
[
1 − (a00)y

]

y
+ CrV1 + Cr (V2 − V1)

y

[

θ1y − (θ1 − θ0)

y∑

l=1

(a00)
l

]

.

(10)
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The main purpose in this study is to seek the optimal lot size and backordering quantity
which minimize the TCPI(y, B) given in the Eq. (10). First, we show that the optimal back-
ordering quantity, B∗, exists for given y. Next, we can get a unique y∗ that minimizes the
total expected cost per item as shown in the Eq. (12) below.

4 Optimal solution and algorithm

We know that the TCPI(y, B) is convex in B for given y because

∂2TCPI(y, B)

∂B2 > 0.

Thus, upon setting

∂TCPI(y, B)

∂B
= 0,

we have

B∗ = Ch y (1 − d/p)

Ch + Cb
. (11)

which minimizes the TCPI(y, B) in the Eq. (10) for a given y. Substituting from the
Eq. (11) into the Eq. (10), the total expected cost per item, TCPI(y), can be expressed as the
function of a single decision variable y as the following equation:

TCPI(y) = Ck

y
+ C + Ch (p − d) y

2pd

(
Cb

Ch + Cb

)

+Cm
[
1 − (a00)y

]

y
+ CrV1 + Cr (V2 − V1)

y

[

θ1y − (θ1 − θ0)

y∑

l=1

(a00)
l

]

.

(12)

Next, in order to obtain the optimal lot size y∗ which minimizes the TCPI(y) given in the
Eq. (12), by taking the first derivative of the Eq. (12) with respect to y, we have that

TCPI′(y) = −Ck

y2
+ Ch (p − d)

2pd

(
Cb

Ch + Cb

)

− 1

y2
(Cm − δ)

[
1 − (a00)

y + y (a00)
y ln (a00)

]
(0 < a00 < 1), (13)

where

δ = Cr (θ1 − θ0) (V2 − V1) a00
1 − a00

, V1 =
∫ W

0
v1(t) dt

and

V2 =
∫ W

0
v2(t) dt .

At this point, we note that, for y = y∗ to be optimal, the necessary condition is that

d

dy
{TCPI(y)} = 0.
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Hence, the following theorems verify that there exists a unique y∗ satisfying the following
condition:

d

dy
{TCPI(y)} = 0.

and also that the optimal lot size y∗ is bounded in a finite interval.

Theorem 1 There exists a unique optimal lot size y∗ which minimizes TCPI(y) given in the
Eq. (12).

Proof In view of the Eq. (13), let

TC(y) = y2TCPI′(y).

Then, for 0 < a00 < 1, we have

TC(y) = −Ck+Ch (p − d)

2pd

(
Cb

Ch + Cb

)
y2 − (Cm − δ)

[
1 − (a00)

y + y (a00)
y ln (a00)

]

(14)

Since TC(y) is a continuous function with

lim
y→0+ TC(y) = −k < 0 and lim

y→∞TC(y) = ∞ > 0,

there is at least a sign change of TC(y) from negative to positive as y increases. Additionally,
the first derivative of TC(y) with respect to y, TC′(y), is given by

TC′(y) = y

[
ch(p − d)

pd

(
Cb

Ch + Cb

)
− (Cm − δ)

[
ln (a00)

]2
(a00)

y
]

. (15)

Obviously, if Cm � δ, then TC′(y) > 0 for all y > 0. In this case, TC(y) is strictly
increasing on y > 0. It shows that there exists a unique y∗ which satisfies the following
condition:

TC(y∗) = 0,

that is, that y∗ is the optimal solution minimizing TCPI(y) given in the Eq. (12).
Alternatively, if Cm > δ, we have

TC′(y) � 0 (y � yg)

and

TC′(y) > 0 (y > yg),

where

yg = 1

ln (a00)
ln

⎡

⎢
⎣
Ch (1 − d/p) (Cb/ (Ch + Cb))

d (Cm − δ)
(
ln (a00)

)2

⎤

⎥
⎦

and yg satisfies the following condition:

TC′(yg) = 0.

It implies that TC(y) is strictly decreasing on (0, yg) and, therefore, it strictly increasing
on (yg,∞) as y increases. As a result, TC(y) has the changes of signs just one time, so does
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TCPI′(y). Thus, clearly, TC(y) is a convex function with respect to y > yg . Therefore, there
exists a unique y∗ satisfying the following condition:

TC(y∗) = 0,

that is, y∗ is the optimal solution which minimizes TCPI(y) in the Eq. (12).
By combining above results, Theorem 1 is proved. ��
Remark 1 The implication of Theorem 1 indicates the optimal lot size y∗ exists and is unique.
For the case when 0 < a00 < 1, there is no explicit formula for writing the exact solution
y∗, which can be found by using both bisection method and Newton’s method. However,
we can verify that there exists an explicit formula to solve for y∗ in the cases of a00 = 0
and a00 = 1. Later on in this paper, both of them will be discussed to provide the bounds to
obtain the optimal lot size y∗.

Remark 2 When a00 = 0, that is, the transition probability a00 equals zero, the production
process will transfer to an uncontrolled state (that is, a01 = 1) at the start of the production
run. From the Eq. (12), the total expected cost per item for a00 = 0 becomes

TCPI0(y) = Ck + Cm

y
+ C + Ch (p − d) y

2pd

(
Cb

Ch + Cb

)
+ Crθ1V2 + Cr (1 − θ1) V1.

(16)

From the Eq. (16), there is an explicit expression for the optimal lot size y∗
0 is given by

y∗
0 =

√
2d (Ck + Cm)

Ch (1 − d/p)

(
Ch + Cb

Cb

)
. (17)

Remark 3 It should be note that y∗
0 is the traditional EPQ model developed in [25] with a

fixed setup cost Ck and machine maintenance/restoration cost Cm , and a service repair cost
incurred for a nonconforming (or a conforming) itemwhich failed within the warranty period
W with the rate θ1V2(or (1 − θ1)V1).

When a00 = 1, that is, when the production process does not deteriorate and remains in
the in-control mode to keep better operating condition with the fraction of nonconforming
item θ0. From the Eq. (12), the total expected cost per item for a00 = 1 becomes

TPCI1(y) = Ck

y
+ C + Ch (p − d) y

2pd

(
Cb

Ch + Cb

)
+ Crθ0V2 + Cr (1 − θ0) V1. (18)

From the Eq. (18), there is an explicit expression for the optimal lot size y∗
1 is given by

y∗
1 =

√
2dCk

Ch(1 − d/p)

(
Ch + Cb

Cb

)
. (19)

It is also noticed that y∗
1 is the traditional EPQ model with a fixed setup cost Ck and a

service repair cost incurred for a nonconforming (or a conforming) item which failed within
the warranty periodW with rate θ0V2(or (1−θ0)V1). In other words, the classical EPQmodel
with backordering quantity, given in the Eq. (19) is a special case in our proposed model
when the system deterioration and a free-repair warranty policy are not considered.

As mentioned above, although there is no closed-form expression for y∗, the bounds of
y∗ can be obtained by comparing it to the optimal solutions y∗

0 and y∗
1 given in the Eqs. (17)

and (19), respectively. Hence, we have the following result.
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Theorem 2 If Cm � δ, then 0 < y∗ � y∗
1 � y∗

0 . Otherwise y∗
1 < y∗ < y∗

0 , where

y∗
0 =

√
2d (Ck + Cm)

Ch (1 − d/p)

(
Ch + Cb

Cb

)

and

y∗
1 =

√
2dCk

Ch (1 − d/p)

(
Ch + Cb

Cb

)
.

Proof When 0 < a00 < 1, by setting

u(y) = 1 − (a00)
y + y(a00)

y ln(a00),

we can easily verify u(y) is a strictly increasing function of y and 0 < u(y) < 1 for y > 0.
In view of Theorem 1, we know that TCPI′(y) changes its sign exactly once from negative
to positive as y increases. Hence, from the Eqs. (13) and (17), we have

TCPI′(y∗
0 ) = Cm

(y∗
0 )

2

[
1 − u(y∗

0 )
] + δ

(y∗
0 )

2 u(y∗
0 ). (20)

From the Eq. (20), we know that

TCPI′(y∗
0 ) � 0 = TCPI′(y∗),

which implies that y∗ � y∗
0 . Furthermore, from the Eqs. (13) and (19), we have

TCPI′(y∗
1 ) = − 1

(y∗
1 )

2 (Cm − δ) u(y∗
1 ). (21)

Therefore, from the Eq. (21), we see that

TCPI′(y∗
1 ) � 0 = TCPI′(y∗) (Cm � δ),

which implies that y∗ � y∗
1 . Similarly, for Cm > δ, we have

TCPI′(y∗
1 ) < 0 = TCPI′(y∗),

which implies that y∗ > y∗
1 .

Upon combining the above results, our demonstration of Theorem 2 is completed. ��
Remark 4 We know that the optimal lot size (y∗) shown in Theorem 2 is less than the
traditional EPQ (y∗

1 ) as the restoration cost is relatively low compared to the warranty cost.
However, the optimal lot size (y∗) becomesmore than the traditional EPQ (y∗

1 ) as the restora-
tion cost is higher than the warranty cost which incurred by nonconforming items. Using the
bounds as shown in Theorem 2, a simplified and efficient search procedure. which is based
on the bisection method, is provided for solving the optimal lot size y∗ as follows.

Algorithm
Step 1: Let ε = 0.001 > 0 and compute y∗

0 and y∗
1 using the Eqs. (17) and (19) , respectively.

Step 2: If Cm > δ, set yL = y∗
1 , yU = y∗

0 . Otherwise, set yL = 0 and yU = y∗
1 .

Step 3: Set yopt = yL + yU
2

.

Step 4: If |TC(yopt )| � ε , go to Step 6. Otherwise, go to Step 5.
Step 5: If TC(yopt ) < 0 , set yL = yopt ; however, if TC(yopt ) > 0 and yU = yopt , then go

to Step 3.
Step 6: Set y∗ = yopt and compute B∗(y∗) and TCPI(y∗) by using the Eqs. (11) and (12),

respectively.
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5 An illustrative numerical example and sensitivity analysis

In this section we use a numerical example to illustrate the algorithm above and through
parameter sensitivity analysis to summarise some managerial implications.

5.1 Numerical example

For numerical study, the following parameters values for a deteriorating system are consid-
ered:
Ck = 100 ($/setup), p = 2000 (items/year), d = 1000 (items/year), Ch = 1 ($/item/year),
Cb = 2 ($/item/year), C = 10 ($/item), Cr = 2 ($/item), Cm = 100 ($/item), W = 2 (year),
θ0 = 0.1, and θ1 = 0.6. Furthermore, suppose the failures of components associated with
both the conforming and nonconforming items are non-homogeneous Poisson process with
increasing intensity functions v1(t) = 0.2t and v2(t) = t , respectively. Then, we have

V1 =
∫ 2

0
0.2t dt = 0.4 and V2 =

∫ 2

0
t dt = 2.

In this example, we solve the cases for reliable systemwith a00 = 0.999 and for unreliable
system with a00 = 0.75, respectively.

5.2 Model solution and sensitivity analysis

By applying the Algorithm,The optimal lot size (y∗), optimal backordering quantity (B∗),
and corresponding the total expected cost per item (TCPI∗) are obtained and summarized in
Table 1. As shown in Theorem 2, we have the optimal lot size y∗ (y∗ = 333.84) is less than
the traditional y∗

1 (y∗
1 = 774.60) for reliable system (a00 = 0.999) since

Cm − δ = −1818.1 < 0.

However, we have the optimal lot size y∗ (y∗ = 1079.56) is greater than the traditional
y∗
1 (y∗

1 = 774.60) for unreliable system (a00 = 0.75) since

Cm − δ = 94.2 > 0.

Next, we present a sensitivity analysis to investigate the effects of transition probability a00,
warranty periodW and restoration costCm on decisions. For this, we experiment for different
values of a00, W and Cm . Table 2 and Figs. 2, 3, 4, 5 and 6 present the following numerical
results:

1. Figure 2 presents the effects of the transition probability a00 on the optimal lot size y∗.
It is shown that the y∗ is very sensitive to a00 when a00 is close to 1.

2. We solve various warranty periods for a00 = 0.999, 0.95, 0.75 cases and presented in
Table 2. From Table 2, we can see that when the transition probability a00 increases, both
the optimal lot size and the expected cost per item decrease. It is shown that the impacts
of the a00 on the optimal lot size y∗ is more significant. On the other hand, we find out
that y∗ decreases and TCPI∗ increases as W increases, since a longer warranty period
results in a higher warranty cost.

3. It should be noted that the expected proportion of nonconforming items can be reduced
by process improvement, so as to decrease the failure occurrence of items sold within the
warranty period and avoid a higher warranty cost. From Fig. 3, it is clear that the optimal
lot size y∗ decreases as W increases.
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Table 1 Lot sizes and
corresponding expected cost with
reliable/unreliable production
systems

Cases y∗
0 y∗

1 y∗ B∗

a00 = 0.999 y 1095.45 774.60 333.84 55.64

(reliable) TCPI(y) 12.049 11.872 11.689

a00 = 0.75 y 1095.45 774.60 1079.56 179.93

(unreliable) TCPI(y) 13.240 13.260 13.239

Table 2 Lot sizes and corresponding expected cost under various warranty periods for the production systems

W 0 0.5 1 1.5 2.0 2.5 3.0

a00 = 0.999 y∗ 852.14 760.82 580.37 431.97 333.84 269.11 224.40

TCPI(y∗) 10.327 10.424 10.701 11.128 11.689 12.375 13.185

a00 = 0.95 y∗ 1095.46 1089.18 1070.18 1037.73 990.52 926.28 841.14

TCPI(y∗) 10.365 10.543 11.077 11.966 13.210 14.809 16.760

a00 = 0.75 y∗ 1095.46 1094.46 1091.49 1086.54 1079.56 1070.51 1059.36

TCPI(y∗) 10.366 10.545 11.084 11.982 13.239 14.857 16.833

4. Figure 3 shows that the optimal lot size y∗ is more sensitive to warranty periodW for a00
= 0.999 (that is, reliable system case). Similarly, Fig. 4 indicate that the expected cost
TCPI∗ is also more sensitive to warranty period W for a00= 0.999 case.

5. From Fig. 5, we know that y∗ increases as Cm increases. This result is reasonable since
y∗ is an increasing function of Cm . We note that if W = 0 (taht is, without a product
warranty), then Cm > δ (where δ = 0) and hence y∗ > y∗

1 (where y∗
1 = 774.60) from

Theorem 2. For W> 0, (that is, with a product warranty) when Cm increase from 0, y∗
first is less than y∗

1 and then increases to be greater than y∗
1 .

6. From Fig. 6, it is clear that if restoration cost Cm increases, then the total expected cost
per item TCPI∗ increases under various periods W . In particular, the longer warranty
period results in a higher total expected cost.

6 Managerial implications

Wederive out some importantmanagerial implications obtained from the results asmentioned
above.

1. The expected proportion of nonconforming items can be reduced by process improve-
ment, so as to decrease the failure occurrence of items sold within the warranty period
and avoid a higher warranty cost. Therefore, the optimal lot size y∗ can be reduced asW
increases and as illustrated in Fig. 3.

2. We note that the case for a00 = 0.999 (for reliable system) can perform a lower cost
performance under various warranty periods as shown in Fig. 4. This is, because the
higher the a00, the higher the process quality level obtained through correct maintenance
activities, which will produce fewer lot sizes with good-quality items compared to unre-
liable case as shown in Table 2. It reveals that when the system or equipment status of
in-of-control increases, this can reduce the total production cost and maintenance cost
so the total expected cost decreases.
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Fig. 3 The effect of W on y∗

3. From Fig. 5, we find that under the normal one-year post-sale warranty, it is possible
to obtain larger lot sizes than those of traditional EOQ/EPQ model when the restoration
cost is relatively higher than the warranty cost as shown in Theorem 2. In this way,
if the warranty period is extended, the expected total cost will increase. Therefore, it
is important to perform appropriate warranty and maintenance actions as found in this
study.

4. Another important managerial insight of our research is considering shortage possibility
resulting from uncertainty of the product’s quality and system deterioration for a Marko-
vian EPQ model. The model can be useful for operations/quality managers who are
interested in determining levels of suitable production lot size and deploy a strategic plan
that includes process maintenance and products warranty decisions with backordering to
ensure that all items meet customer quality expectations.
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7 Concluding remarks and observations

In this paper, we have successfully employed a two-state discrete-time Markov chain to
model an imperfect production system with shortages backordered for products sold with a
free-repair warranty under non-homogeneous Poisson process. We have minimized the total
expected cost of the production system through the determination of the optimal lot size
and backordering quantity. Since there is no closed-form expression for the optimal lot size,
bounds are derived for the solution procedure. It is shown that the optimal lot sizing policy
using our proposed model can perform significantly better than the traditional EPQ policy.
This policy is supported by a numerical example, so from the practical point of view, this
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policy is valid and useful to the competitive business. Moreover, the effects of the model
parameters on the optimal solution are carried out by using sensitivity analysis.

For future researches emerging from our present investigation, there are several ways to
extend this study. For example, a possible research topic is to explore the effects of various
warranty policies and marketing factors such as different pricing strategies. With a view
to motivating interested readers, we have chosen to cite a number of other related recent
works on the subject-matter of this investigation such as those by Chung et al. [5–8], Liao et
al. [15–17], Srivastava et al. [41,42], and by other authors. Other environment performance
considering sustainability issues such as green production, green technology, and corporate
social responsible can also be taken into account (see, for example, Sana [31,32]).
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