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Abstract
With a simple generic approach, we develop a classification that encodes and measures the
strength of completeness (or compactness) properties in various types of spaces and ordered
structures. The approach also allows us to encode notions of functions being contractive in
these spaces and structures. As a sample of possible applications we discuss metric spaces,
ultrametric spaces, ordered groups and fields, topological spaces, partially ordered sets, and
lattices. We describe several notions of completeness in these spaces and structures and
determine their respective strengths. In order to illustrate some consequences of the levels of
strength, we give examples of generic fixed point theorems which then can be specialized to
theorems in various applications which work with contracting functions and some complete-
ness property of the underlying space. Ball spaces are nonempty sets of nonempty subsets
of a given set. They are called spherically complete if every chain of balls has a nonempty
intersection. This is all that is needed for the encoding of completeness notions. We discuss
operations on the sets of balls to determine when they lead to larger sets of balls; if so, then
the properties of the so obtained new ball spaces are determined. The operations can lead to
increased level of strength, or to ball spaces of newly constructed structures, such as products.
Further, the general framework makes it possible to transfer concepts and approaches from
one application to the other; as examples we discuss theorems analogous to the Knaster–
Tarski Fixed Point Theorem for lattices and theorems analogous to the Tychonoff Theorem
for topological spaces.
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1 Introduction

In view of the notions of completeness ofmetric spaces, spherical completeness of ultrametric
spaces and compactness of topological spaces, the question arose how these notions can be
“reconciled”, which indicates the search for some “umbrella” notion. The question was
triggered in the early 1990s by the appearance of an ultrametric version of Banach’s Fixed
Point Theorem (see [23]), which turned out to be a useful tool in valuation theory. An
attempt at finding a generic fixed point theorem for “metric and order fixed point theory” was
made by Kostanek and Waszkiewicz in an unpublished paper in the early 2010s. However,
the structure they introduced for this purpose is quite involved. Likewise, it was noticed in
private communications in the late 1990s (inspired by the article [12]) that ultrametric fixed
point and related theorems appear to have a deeper topological background; but it was only in
2011 that this observation led to the ideas for the article [13], in which ball spaces were first
introduced. They allowed us to extract the essential core of the proofs of several fixed point
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theorems and present it in the simplest possible structure. The resulting “umbrella theorems”
were then used in [12,14,15,17]) to prove fixed point theorems in several different settings.

While fixed point theory was the driving force behind this development, the notions we
introduced are fundamental and have a multitude of other aspects and applications. They
helped to shape the approach and results on symmetrically complete ordered fields in [16].
Analogues of basic notions from topology are studied in [1]. The articles [10,11] are deal-
ing with problems in ultrametric and ball spaces that arose when ultrametric spaces were
investigated from the particular ball spaces point of view. In [2] the ball spaces approach is
used to prove several principles that are related to Banach’s Fixed Point Theorem but are not
themselves fixed point theorems.

The purpose of the present paper is to systematically develop the abstract theory of ball
spaces and to provide a centerpiece that ties the various applications and directions of research
together. While presenting several new results, its aim is also to present an overview.

Amain goal is to show that ball spaces are suitable to encode various completeness notions,
and to measure and compare the strength of these notions. Fixed point theorems will be used
to illustrate the consequences of the level of strength and to show (with more details than in
[13]) how the umbrella notion makes it possible to formulate generic fixed point theorems
which then can be specialized to theorems in the various applications.

The inspiration for the minimal structure that allows the encoding of notions of complete-
ness is taken from ultrametric spaces and their notions of “ultrametric ball” and “spherically
complete”. We recall here the basic definitions that were first introduced in [13].

Definition 1.1 A ball space (X ,B) consists of a nonempty set X together with a nonempty
family B of distinguished nonempty subsets B of X (called balls).

Note that B, a subset of the power set P(X), is partially ordered by inclusion; we will
write (B,⊆) when we refer to this partially ordered set (in short: poset).

Definition 1.2 A nest of balls in (X ,B) is a nonempty totally ordered subset of (B,⊆).
A ball space (X ,B) is called spherically complete if every nest of balls has a nonempty
intersection.

Wenote that if (X ,B) is spherically complete and ifB′ ⊆ B, then also (X ,B′) is spherically
complete.

Beyond the basic notion of “spherically complete”, we will distinguish various levels of
spherical completeness, which then provide a tool for measuring the strength of completeness
in the spaces and ordered structures under consideration. On the one hand, we can specify
what the intersection of a nest really is, apart from being nonempty. On the other hand, we
can consider intersections of more general collections of balls than just nests.

A directed system of balls is a nonempty collection of balls such that the intersection of
any two balls in the collection contains a ball included in the collection. A centered system
of balls is a nonempty collection of balls such that the intersection of any finite number
of balls in the collection is nonempty. Note that every nest is a directed system, and every
directed system is a centered system (but in general, the converses are not true).

We introduce the following hierarchy of spherical completeness properties:

S1: The intersection of each nest in (X ,B) is nonempty.
S2: The intersection of each nest in (X ,B) contains a ball.
S3: The intersection of each nest in (X ,B) contains maximal balls.
S4: The intersection of each nest in (X ,B) contains a largest ball.
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S5: The intersection of each nest in (X ,B) is a ball.
Sdi : The same as Si , but with “directed system” in place of “nest”.
Sci : The same as Si , but with “centered system” in place of “nest”.

Note that S1 is just the property of being spherically complete. We will use both names,
depending on the context.

The strongest of these properties is Sc5; we will abbreviate it as S
∗ as it will play a central

role, enabling us to prove useful results about several important ball spaces that have this
property (it is the “star” among the above properties). In Sect. 5.6 we will define an even
stronger (but much more rare) property, namely that arbitrary intersections of balls are again
balls.

We have the following implications:

S1 ⇐ Sd1 ⇐ Sc1⇑ ⇑ ⇑
S2 ⇐ Sd2 ⇐ Sc2⇑ ⇑ ⇑
S3 ⇐ Sd3 ⇐ Sc3⇑ ⇑ ⇑
S4 ⇐ Sd4 ⇐ Sc4⇑ ⇑ ⇑
S5 ⇐ Sd5 ⇐ Sc5 = S∗

(1)

Aquestionwhichwill be addressed at various points in this paper is underwhich conditions
some of the implications can be reversed. For instance, it will be shown in Corollary 4.3 that
S4 and Sd4 are equivalent.

In Sect. 2 we exemplify the (explicit or implicit) use of spherical completeness and its
stronger versions by presenting generic fixed point theorems for ball spaces. We discuss
various ways of encoding the property of a function of being contractive in the ball space
language. We demonstrate the flexibility of ball spaces, which allows us to taylor them to the
specific function under consideration. In connection with Theorem 2.7 we introduce the idea
of associating with every element x ∈ X a ball Bx ∈ B, leading to the very useful notion of
“Bx–ball space”.

The proofs for the generic fixed point theorems will be given in Sect. 3. We use Zorn’s
Lemma as the main tool in two different ways: it can be applied to the set of all balls as well
as to the set of all nests, as both are partially ordered by inclusion.

The properties of hierarchy (1) will be studied in more detail in Sect. 4. We clarify the
connection between properties in the hierarchy and properties of posets. Finally we reveal the
strong properties of ball spaces that are closed under various types of nonempty intersections
of balls.

In Sect. 5 we discuss the ways in which ball spaces can be associated with metric spaces,
ultrametric spaces, ordered groups and fields, topological spaces, partially ordered sets, and
lattices. In each case we determinewhich completeness property is expressed by the spherical
completeness of the associated ball space; an overview is given in the table below. We also
study the properties of the associated ball spaces, in particular which of the properties in the
hierarchy (1) they satisfy.
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Spaces Balls Completeness property

Ultrametric spaces All closed ultrametric balls Spherically complete
Metric spaces Metric balls with radii in suitable sets

of positive real numbers
Complete

Totally ordered sets, ordered abelian
groups and fields

All intervals [a, b] with a ≤ b Symmetrically
complete

Posets Intervals [a, ∞) Inductively ordered
Topological spaces All nonempty closed sets Compact
Metric spaces Caristi–Kirk balls or Oettli–Théra

balls
Complete

In this table, the second column indicates a ball space whose spherical completeness is
equivalent to the completeness property stated in the third column. In the case ofmetric spaces,
the intuitive ball space to consider is that of all closed metric balls. However, the spherical
completeness of this ball space in general is stronger than completeness. See Sect. 5.2 for
details.

The last entry, the second one for metric spaces, is different from all the other ones.
In all other cases the table has to be read as saying that the completeness property of the
given space is equivalent to the spherical completeness of one single associated ball space
containing the indicated balls. But if we work with Caristi–Kirk balls or Oettli–Théra balls,
then the completeness of the metric space is equivalent to the spherical completeness of a
whole variety of Caristi–Kirk ball spaces or Oettli–Théra ball spaces that can be defined on
it (see Sect. 5.3). While this may appear impracticable at first glance, it turns out that these
types of balls offer a much better ball spaces approach to metric spaces than the metric balls.

Not only the specialization of the general framework to particular applications is important.
It is also fruitful to develop the abstract theory of ball spaces, in particular the behaviour of
the various levels of spherical completeness in the hierarchy (1) under basic operations on
ball spaces.

In Sect. 6.1 we study S∗ ball spaces. Examples are the compact topological spaces, where
we take the balls to be the nonempty closed sets. Their ball spaces are closed under arbitrary
nonempty intersections of balls, and we make use of the results of Sect. 4. We show that S∗
ball spaces allow the definition of what we call “spherical closures” of subsets. They help us
to deal with ball space structures induced on subsets of the set underlying the ball space.

In Sect. 7 we consider set theoretic operations on ball spaces, such as their closure under
finite unions or nonempty intersections of balls, and we study the behaviour of spherical
completeness properties under these operations. We use these preparations to associate a
topology to each ball space and show that it is compact if and only if the ball space is Sc1.

Products of ball spaces will be studied in Sect. 8. In the paper [1], we discuss a notion
of continuity for functions between ball spaces, as well as quotient spaces and category
theoretical aspects of ball spaces. The products we define here turn out to be the products in
a suitable category of ball spaces.

Further, the fact that a general framework links various quite different applications can
help to transfer ideas, approaches and results from one to the other. For instance, the Knaster–
Tarski Theorem in the theory of complete lattices [31] presents a useful property of the set of
fixed points: they form again a complete lattice. In Sect. 6.2, using the results from Sect. 6.1,
we prove a ball spaces analogue of the Knaster–Tarski Theorem (Theorem 6.8), and an
analogue for topological spaces (Theorem 6.12). A further transfer to other settings, such as
ultrametric spaces, is possible and will be presented in a subsequent paper.
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Similarly, in Sect. 8 the Tychonoff Theorem from topology is proven for ball spaces and
then transferred to ultrametric spaces. To derive the topological Tychonoff Theorem from its
ball spaces analogue, essential use is made of the results of Sect. 7.

We hope that we have convinced the reader that the advantage of a general framework is
(at least) threefold:

• compare the strength of completenes properties in various spaces and ordered structures,
and transfer concepts and results from one to another,

• provide generic proofs of results (such as generic fixed point theorems) which then can
be specialized to various applications,

• exhibit the underlying principles that are essential for theorems working with some
completeness notion in various spaces and ordered structures.

2 Generic fixed point theorems and the notion of “contractive
function”

Fixed Point Theorems (FPTs) can be divided into two classes: those dealing with functions
that are in some sense “contracting”, like Banach’s FPT and its ultrametric variant (cf. [23,
26]), and those that do not use this property (explicitly or implicitly), like Brouwer’s FPT. In
this section, we will be concerned with the first class.

Under which conditions do “contracting” functions have a fixed point? First of all, we
have to say in which space we work, and we have to specify what we mean by “contracting”.
These specifications will have to be complemented by a suitable condition on the space, in
the sense that it is “rich” or “complete” enough to contain fixed points for all “contracting”
functions. Ball spaces constitute a simple minimal setting in which the necessary conditions
on the function and the space can be formulated.

We will now give examples of generic FPTs for ball spaces. More such theorems and
related results such as coincidence theorems and so-called attractor theorems are presented
in [13–15,17]. In the present paper we will not discuss the uniqueness of fixed points; see the
cited papers for this aspect. However, an exception will be made in Theorem 2.2, as this will
be used later for an interesting comparison with a topological fixed point theorem proven in
[30].

For the remainder of this section, we fix a function f : X → X .We abbreviate f (x) by
f x . Further, we call a subset S of X f -closed if f (S) ⊆ S. An f -closed set S will be called
f -contracting if it satisfies f (S) � S unless it is a singleton. In the search for fixed points,
it is a possible strategy to try to find f -closed singletons {a} because then the condition
f ({a}) ⊆ {a} implies that f a = a. The significance of this idea is particularly visible in the
case of Caristi–Kirk and Oettli–Théra ball spaces discussed in Sect. 5.3.

The proofs of the following seven theorems can be found in Sect. 3.4.

Theorem 2.1 Assume that the ball space (X ,B) is an S1 ball space.

1) If every f -closed subset of X contains an f -contracting ball, then f has a fixed point in
each f -closed set.

2) If every f -closed subset of X is an f -contracting ball, then f has a unique fixed point.

We will now give examples showing how some of the stronger notions of spherical com-
pleteness can be employed in general FPTs. In the next theorem, observe how stronger
assumptions on the ball space and on f allow us to only talk about f -closed balls instead of
f -closed subsets.
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Theorem 2.2 Assume that (X ,B) is an S5 ball space and that f (B) ∈ B for every B ∈ B.
1) If every f -closed ball contains an f -contracting ball, then f has a fixed point in each

f -closed ball.
2) If every f -closed ball is f -contracting, then f has a unique fixed point in each f -closed

ball. If in addition X ∈ B, then f has a unique fixed point.

The next theorem is a variation on the first parts of the previous two theorems.

Theorem 2.3 Assume that (X ,B) is an S2 ball space. If every ball in B contains a fixed point
or a smaller ball, then f has a fixed point in every ball.

A condition like “contains a fixed point or a smaller ( f -closed) ball” may appear a little
unusual at first. However, a possible algorithm for finding fixed points should naturally be
allowed to stop when it has found one, so from this point of view the condition is quite
natural. We also sometimes use a condition like “each f -closed ball is a singleton or contains
a smaller f -closed ball”. This implies “contains a fixed point or a smaller f -closed ball”
because in an f -closed singleton {a} the element a must be a fixed point. But this condition
is too strong: as we will see below, there are cases where finding a ball with a fixed point
is easier and more natural than finding a singleton. One example are partially ordered sets
where the balls are taken to be sets of the form [a,∞). On the other hand, Sect. 5.3 shows
that there are settings in which in a natural way we are led to finding f -closed singletons
(cf. Proposition 3.9).

The assumptions of these theorems can be slightly relaxed by adapting them to the given
function f . Instead of talking about the intersections of all nests of balls, we need information
only about the intersections of nests of f -closed balls. Trivially, if ∅ �= B′ ⊆ B, then also
(X ,B′) is a ball space, and if (X ,B) is an S1 ball space, then so is (X ,B′). This flexibility of
ball spaces appeared already implicitly in Theorem 2.2 where only f -closed balls are used;
if nonempty, the subset of all f -closed balls is also a ball space, and it inherits important
properties from the (possibly) larger ball space. Tayloring the assumptions on the ball space
to the given function also comes in handy in the following refinement of Theorem 2.2. In its
formulation, the condition “spherically complete” does not appear explicitly anymore, but is
implicitly present for the ball space that is chosen in dependence on the function f .

Theorem 2.4 Assume that for the given function f there is a ball space (X ,B f ) such that

(B1) each ball in B f is f -closed,
(B2) the intersection of every nest of balls in B f is a singleton or contains a smaller ball
B ∈ B f .

Then f admits a fixed point in every ball in B f .

At first glance, certain conditions of these theorems may appear somewhat unusual. But
the reader should note that their strength lies in the fact that we can freely choose the ball
space. For example, it does not have to be a topology, and in fact, for essentially all of our
applications it should not be. This makes it possible to even choose the balls relative to the
given function, which leads to results like the theorem above.

Whenuniqueness of fixedpoints is not required, then in certain settings (such as ultrametric
spaces, see Sect. 5.1) the condition that a function be “contracting” on all of the space can
often be relaxed to the conditions that the function just be “non-expanding” everywhere and
“contracting” on orbits. Again, there is some room for relaxation, and this is why we will
now introduce the following notion. For each i ∈ N, f i will denote the i-th iteration of f ,
that is, f 0x = x and f i+1x = f ( f i x).
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Definition 2.5 The function f is calledultimately contracting onorbits if there is a function

X  x �→ Bx ∈ B (2)

such that for all x ∈ X , the following conditions hold:

(NB) x ∈ Bx ,
(CO) B f x ⊆ Bx , and if x �= f x , then B f i x � Bx for some i ≥ 1.

If in addition (CO) always holds with i = 1, then we call f contracting on orbits.

Note that (NB) and (CO) imply that f i x ∈ Bx for all i ≥ 0.
The second assertion of our next theorem will show that instead of asking for general

spherical completeness, the scope can be restricted to a particular kind of nests.

Definition 2.6 A nestN of balls is called an f -nest ifN = {Bx | x ∈ S} for some set S ⊆ X
that is closed under f .

Theorem 2.7 Assume that the function f on the ball space (X ,B) is ultimately contracting
on orbits and that for every f -nest N in this ball space there is some z ∈ ⋂N such that
Bz ⊆ ⋂N . Then for every x ∈ X, f has a fixed point in Bx .

The following is the ball spaces analogue of the Ultrametric Banach Fixed Point Theorem
first proved in [23]. We will use the following condition:

(C1) For all x ∈ X , if y ∈ Bx , then By ⊆ Bx .

Theorem 2.8 Assume that the function f on the ball space (X ,B) is ultimately contracting
on orbits and that condition (C1) is satisfied. If (X ,B) is an S1 ball space, then for every
x ∈ X, f has a fixed point in Bx .

A particularly elegant version of our approach can be given in the case of Caristi–Kirk
and Oettli–Théra ball spaces (see Theorems 5.11, 5.12 in Sect. 5.3). These ball spaces are
used in complete metric spaces. Usually, proofs of fixed point theorems in this setting work
with Cauchy sequences, while the use of metric balls is inefficient and complicated. For this
reason, a ball spaces approach to metric spaces may seem pointless at first glance. However,
it has turned out that ball spaces made up of Caristi–Kirk or Oettli–Théra balls have a
particularly strong property (cf. Proposition 3.9), which makes the ball space approach in
this case exceptionally successful, as demonstrated in Sect. 5.3 and the papers [2,15].

To describe the properties of Caristi–Kirk and Oettli–Théra balls, we introduce the fol-
lowing notions for ball spaces.

Definition 2.9 A ball space (X ,B) is a Bx–ball space if there is a function (2) such that
B = {Bx | x ∈ X}. We call a Bx–ball space (X ,B) normalized if it satisfies condition (NB),
and contractive if condition (C1) and the following additional condition are satisfied:

(C2) For all x ∈ X , if Bx is not a singleton, then there exists y ∈ Bx such that By � Bx .

A Bx–ball space (X ,B) is strongly contractive if it satisfies (C1) and:

(C2s) For all x ∈ X , if y ∈ Bx \ {x}, then By � Bx .

Note that condition (C2s) implies (C2) as well as that the function (2) is a bijection. In
particular, every strongly contractive ball space is contractive. Proposition 5.10 will show
that all Caristi–Kirk andOettli–Théra ball spaces are strongly contractive normalizedBx–ball
spaces. Properties of contractive ball spaces are discussed in Sect. 3.3.

It will turn out that condition (NB), while present in many applications, is not always
necessary for our purposes. The next theorem has some similarity with Theorem 2.7, but it
does not require the Bx -ball space to be normalized.
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Theorem 2.10 If (X ,B) is a spherically complete contractive Bx–ball space and the function
f satisfies

f x ∈ Bx for all x ∈ X , (3)

then it has a fixed point in every ball B ∈ B.
We note that if (X ,B) is a strongly contractive Bx -ball space and the function f satisfies

(3), then it also satisfies (CO) (with i = 1 for all x).
Interestingly, the exceptional strength of the Caristi–Kirk and Oettli–Théra ball spaces is

shared by the ball space made up of the final segments [a,∞) on partially ordered sets. It
would be worthwhile to find more examples of such strong ball spaces.

The proofs of the above generic fixed point theorems above are based on Zorn’s Lemma.
They will be given in Sect. 3 after first investigating the relation between partially ordered
sets and ball spaces. In the present paper we are not interested in avoiding the use of the axiom
of choice, nor is it our task to study its equivalence with certain fixed point theorems. For a
detailed discussion of the case of Caristi–Kirk andOettli–Théra ball spaces, see Remark 5.13.

3 Zorn’s Lemma in the context of ball spaces

Consider a poset (T ,<). By a chain in T we mean a nonempty totally ordered subset of T .
An element a ∈ T is said to be an upper bound of a subset S ⊆ T if b ≤ a for all b ∈ S. A
poset is said to be inductively ordered if every chain has an upper bound.

Zorn’s Lemma states that every inductively ordered poset contains maximal elements. By
restricting the assertion to the set of all elements in the chain and above it, we obtain the
following more precise assertion:

Lemma 3.1 In an inductively ordered poset, every chain has an upper bound which is a
maximal element in the poset.

Corollary 3.2 In an inductively ordered poset, every element lies below a maximal element.

Definition 3.3 We order ball spaces (X ,B) by reverse inclusion, that is, we set B1 < B2 if
B1 � B2 . In this way we obtain a poset (B,<). Now nests of balls in B correspond to chains
in the poset. A maximal element in the poset (B,<) is a minimal ball, i.e., a ball that does
not contain any smaller ball.

3.1 The case of S2 ball spaces

The proof of the following lemma is straightforward:

Lemma 3.4 The ball space (X ,B) is S2 if and only if every chain in (B,<) has an upper
bound.

From this fact, one easily deduces the following result.

Proposition 3.5 In an S2 ball space, every ball and therefore also the intersection of every
nest contains a minimal ball. If in addition every ball is either a singleton or contains a
smaller ball, then every ball and therefore also the intersection of every nest contains a
singleton ball.
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In view of Lemma 3.4 it is important to note that every S1 ball space (X ,B) can easily be
extended to an S2 ball space by adding all singleton subsets of X : we define

Bs := B ∪ {{a} | a ∈ X} .

The proof of the following result is straightforward.

Lemma 3.6 The ball space (X ,Bs) is S2 if and only if (X ,B) is S1 .

However, in many situations the point is exactly to prove that a given ball space admits
singleton balls. This is in particular the case when we work with ball spaces that are adapted
to a given function, as in Theorem 2.4. In such cases, instead of applying Zorn’s Lemma to
chains of balls, one can work with chains of nests instead, as we will discuss in Sect. 3.2.

3.2 Posets of nests of balls

We call a poset chain complete if every chain of elements has a least upper bound (which
we also call a supremum). Note that commonly the condition “nonempty” is dropped from
the definition of chains, in which case a chain complete poset must have a least element.
However, for our purposes it is more convenient to only consider chains as nonempty totally
ordered sets.

Lemma 3.7 For every ball space (X ,B), the set of all nests of balls, ordered by inclusion, is
a chain complete poset.

Proof The union over a chain of nests of balls is again a nest of balls, and it is the smallest
nest that contains all nests in the chain. ��

This shows that in particular every chain of nests that contains a given nest N0 has an
upper bound. Hence Zorn’s Lemma shows:

Corollary 3.8 Every nest N0 of balls in a ball space is contained in a maximal nest.

3.3 The case of contractive Bx-ball spaces

In general, a (strongly) contractive Bx -ball space (X ,B) may not contain balls of the form
{a} for every a ∈ X , in which case B � Bs . Hence we cannot apply Lemma 3.6 in order to
prove that for such ball spaces, S1 and S2 are equivalent. However, the following proposition
provides a “sufficient” amount of singleton balls for this purpose. We also obtain that these
singletons satisfy Ba = {a} even if (X ,B) is not assumed to be normalized.

Proposition 3.9 In a contractive Bx -ball space, the intersection of a maximal nest of balls,
if nonempty, is a singleton ball of the form Ba = {a}.
Proof LetM be a maximal nest of balls and assume that a ∈ ⋂M for some element a ∈ X .
Since a ∈ B for every ball B ∈ M, we obtain from (C1) that Ba ⊆ B for every B ∈ M
and thus Ba ⊆ ⋂M. This means that M ∪ {Ba} is a nest of balls, so by maximality of M
we have that Ba ∈ M. Consequently, Ba = ⋂M. Suppose that Ba is not a singleton. Then
by condition (C2) there is some element b such that Bb � Ba whence Bb /∈ M. But then
M ∪ {Bb} is a nest which strictly contains M. This contradiction to the maximality of M
shows that Ba is a singleton. Since a ∈ ⋂M = Ba , we must have that Ba = {a}. ��
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Since by Corollary 3.8 every nest is contained in a maximal nest, this proposition yields:

Theorem 3.10 1) A contractive Bx -ball space is S1 if and only if it is S2 .
2) In a contractive Bx -ball space which is S1 every ball Bx contains a singleton ball of the

form Ba = {a}.

3.4 Proofs of the fixed point theorems

Take a ball space (X ,B) and a function f : X → X . By B f we will denote the collection of
all f -closed balls in B, provided there exist any. From Corollary 3.8 we infer that every nest
in (X ,B) and every nest in (X ,B f ) is contained in a maximal nest.

Under various conditions on f and on (X ,B) or (X ,B f ), we have to make sure that the
intersections of such nests contain a fixed point for f . The proof of the following Lemma is
straightforward.

Lemma 3.11 1) If S is an f -closed set, then f f (S) ⊆ f (S) since f (S) ⊆ S, hence f (S)

is f -closed.
2) The intersection over any collection of f -closed sets is again an f -closed set.

Proof of Theorem 2.1 Take an S1 ball space (X ,B). For the proof of part 1) of the theorem,
assume that every f -closed subset of X contains an f -contracting ball B. We have to prove
that f has a fixed point in each f -closed set S.

By assumption, S contains an f -contracting ball B. By definition, B is f -closed. By
Corollary 3.8 there exists a maximal nest N in the set B f of all f -closed balls in B which
contains the nest {B}. Then by part 2) of Lemma3.11,

⋂N is an f -closed set. By assumption,
it contains an f -contracting ball B ′. Suppose that B ′ is not a singleton. Then B ′ properly
contains f (B ′), which by part 1) of Lemma 3.11 is an f -closed set. Again by assumption,
it contains an f -contracting and hence f -closed ball B ′′. Since B ′′ ⊆ f (B ′) � B ′ ⊆ ⋂N ,
we find that N ∪ {B ′′} is a larger nest than N , which contradicts the maximality of N . This
proves that B ′ is an f -closed singleton contained in S and thus, S contains a fixed point. This
proves part 1) of the theorem.

In order to prove part 2), assume that every f -closed subset of X is an f -contracting ball.
We have to prove that f has a unique fixed point.

Take any fixed points x and y of f . Then the set S = {x, y} is f -closed, hence by
assumption it is f -contracting. Since f (S) = S, it must be a singleton, i.e., x = y. ��
Proof of Theorem 2.2 Assume that (X ,B) is an S5 ball space and that f (B) ∈ B for every
B ∈ B. Take an arbitrary f -closed ball B0 ∈ B.

For the proof of part 1) of the theorem, we have to prove, under the assumption that every
f -closed ball contains an f -contracting ball, that B0 contains a fixed point.
By Corollary 3.8 there exists a maximal nest N in B f which contains the nest {B0}. By

part 2) of Lemma 3.11,
⋂N is an f -closed set. As (X ,B) is assumed to be an S5 ball space,⋂N is also a ball, so

⋂N ∈ B f . Hence by assumption,
⋂N contains an f -contracting ball

B. If this were not a singleton, then it would contain the smaller ball f (B), which by part 1) of
Lemma 3.11 is f -closed. This would give rise to the nestN ∪ { f (B)} that properly contains
N , contradicting the maximality ofN . Thus,

⋂N is an f -closed singleton contained in B0

and therefore, B0 contains a fixed point.
For the proof of part 2) of the theorem,we assume that every f -closed ball is f -contracting;

now we have to prove that B0 contains a fixed point.
Using transfinite induction, we build a nest N consisting of f -closed balls as follows.

We set N0 := {B0}. Having constructed Nν for some ordinal ν with smallest f -closed
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ball Bν ∈ Nν , we set Bν+1 := f (Bν) ⊆ Bν and Nν+1 := Nν ∪ {Bν+1}. By part 1) of
Lemma 3.11, also Bν+1 is f -closed, and by assumption, it is again a ball.

If λ is a limit ordinal and we have constructedNν for all ν < λ, we observe that the union
over all Nν is a nest N ′

λ . We set Bλ := ⋂N ′
λ and Nλ := N ′

λ ∪ {Bλ}. Since (X ,B) is an S5
ball space, we know that Bλ ∈ B, and by part 2) of Lemma 3.11, Bλ is f -closed.

The construction becomes stationary when we reach an f -closed ball Bμ that does not
properly contain f (Bμ). By assumption, Bμ is f -contracting, so this means that Bμ ⊆ B0

is a singleton {x}. As it is f -closed, x is a fixed point contained in B0 .
If x �= y ∈ B0 , then y /∈ Bμ which means that there is some ν < μ such that y ∈ Bν ,

but y /∈ Bν+1 = f (Bν). This shows that y cannot be a fixed point of f . Therefore, x is the
unique fixed point of f in B0 .

The second assertion of part 2), which states that if every f -closed ball is f -contracting
and X ∈ B, then f has a unique fixed point, is an immediate consequence of the first assertion
of part 2), because X is clearly f -closed. ��
Proof of Theorem 2.3 Assume that (X ,B) is an S2 ball space and that every ball in B contains
a fixed point or a smaller ball. We have to prove that f has a fixed point in every ball.

Take any ball B0 ∈ B. By Proposition 3.5, B0 contains a minimal ball B. As B cannot
contain a smaller ball, it must contain a fixed point by assumption, which then is also an
element of B0 . ��
Proof of Theorem 2.4 Assume thatB f is a ball space of f -closed balls and that the intersection
of every nest of balls in B f is a singleton or contains a smaller ball B ∈ B f . We have to
prove that f has a fixed point in every ball B ∈ B f .

Take a maximal nest N in B f which contains the nest {B}. The intersection ⋂N cannot
contain a smaller ball B ′ ∈ B f since this would contradict the maximality of N . Hence by
assumption,

⋂N must be a singleton. As it is also f -closed by part 2) of Lemma 3.11 and
contained in B, we have proved that f has a fixed point in B. ��

For the next two proofs we will use the following fact.

Lemma 3.12 Take a function f on a ball space (X ,B).

1) Every f -nest N0 in B is contained in a maximal f -nest.
2) Assume that f is ultimately contracting on orbits. Assume further that N is a maximal

f -nest in B containing a ball Bx , and that z ∈ ⋂N such that Bz ⊆ ⋂N . Then z is a
fixed point of f contained in Bx .

Proof 1)The set of all f -nests is partially ordered in the followingway. IfN1 = {Bx | x ∈ S1}
andN2 = {Bx | x ∈ S2} are f -nests with S1 and S2 closed under f , then we defineN1 ≤ N2

if S1 ⊆ S2 . Then the union over an ascending chain of f -nests is again an f -nest since the
union over sets that are closed under f is again closed under f . Hence by Corollary 3.2, for
every f -nest N0 in B there is a maximal f -nest N containing N0 .
2) If z �= f z would hold, then by (CO), B f i z � Bz ⊆ ⋂N for some i ≥ 1, and the f -nest
N ∪ {B f k z | k ∈ N} would properly containN . But this would contradict the maximality of
N . Hence, z ∈ ⋂N ⊆ Bx is a fixed point of f . ��
Proof of Theorem 2.7 Take a function f on a ball space (X ,B)which is ultimately contracting
onorbits and assume that for every f -nestN inB there is some z ∈ ⋂N such that Bz ⊆ ⋂N .
We have to prove that or every x ∈ X , f has a fixed point in Bx .

The set {B f i x | i ≥ 0} is an f -nest. Hence by part 1) of Lemma 3.12 there is a maximal
f -nest N containing {B f i x | i ≥ 0}. By assumption, there is some z ∈ ⋂N such that
Bz ⊆ ⋂N . By part 2) of Lemma 3.12, z is a fixed point of f contained in Bx . ��
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Proof of Theorem 2.8 Assume that the function f on the S1 ball space (X ,B) is ultimately
contracting on orbits and that condition (C1) is satisfied, that is, for all x ∈ X , if y ∈ Bx ,
then By ⊆ Bx . We have to prove that or every x ∈ X , f has a fixed point in Bx .

By part 1) of Lemma 3.12 there exists a maximal f -nestN containing the f -nest {B f i x |
i ≥ 0}. Since (X ,B) is assumed to be an S1 ball space, there is some z ∈ ⋂N . Hence for
every By in N we have that z ∈ Bx , whence Bz ⊆ By by condition (C1). Consequently,
Bz ⊆ ⋂N . By part 2) of Lemma 3.12, z is a fixed point of f contained in Bx . ��

Proof of Theorem 2.10 Take a spherically complete contractive Bx -ball space (X ,B) and a
function f : X → X such that f x ∈ Bx for all x ∈ X . We have to prove that f has a fixed
point in every ball.

By part 2) of Theorem 3.10, every ball Bx contains a singleton ball of the form Ba = {a}.
Since f a ∈ Ba = {a}, we find that a is a fixed point of f which is contained in Bx . ��

4 Some facts about the hierarchy of ball spaces

4.1 Connection with posets

In this section, we will consider properties of the poset (B,<) that we derive from a ball
space (X ,B) via Definition 3.3, i.e., through ordering B by reverse inclusion.

A directed system in a poset is a nonempty subset which contains an upper bound for any
two of its elements. A poset is called directed complete if every directed system has a least
upper bound. Note that commonly the condition “nonempty” is dropped; but for our purposes
it is more convenient to only consider nonempty systems (cf. our remark in Sect. 3.2). As
every chain is a directed system, every directed complete poset is chain complete.

The proof of the following observations is straightforward:

Proposition 4.1 1) A ball space (X ,B) is S2 if and only if (B,<) is inductively ordered.
2) A ball space (X ,B) is Sd2 if and only if every directed system in (B,<) has an upper

bound.
3) A ball space (X ,B) is S4 if and only if (B,<) is chain complete.
4) A ball space (X ,B) is Sd4 if and only if (B,<) is directed complete.

Let us point out that the intersection of a system of balls may not be itself a ball, even if it
is nonempty (but if it is a ball, then it is clearly the largest ball contained in all of the balls in
the system). For this reason, in general, the properties S1 , Sd1 , S5 and S

d
5 cannot be translated

into a corresponding property of (B,<). This shows that ball spaces have more expressive
strength than the associated poset structures.

A proof of the following fact can be found in [5, p. 33]. See also [19] for generalizations.

Proposition 4.2 Every chain complete poset is directed complete.

This proposition together with Proposition 4.1 yields:

Corollary 4.3 Every S4 ball space is an Sd4 ball space.

In the next sections, we will give further criteria for the equivalence of various properties
in the hierarchy.
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4.2 Singleton balls

In many applications (e.g. metric spaces with all closed metric balls, ultrametric spaces, T1

topological spaces) the associated ball spaces have the property that singleton sets are balls.
The following observation is straightforward:

Proposition 4.4 For a ball space in which all singleton sets are balls, S1 is equivalent to S2 ,
Sd1 is equivalent to Sd2 , and S

c
1 is equivalent to S

c
2 .

4.3 Tree-like ball spaces

We will call a ball space (X ,B) tree-like if any two balls in B with nonempty intersection
are comparable by inclusion. We will see in Sect. 5.1 (Proposition 5.1) that the ball spaces
associated with classical ultrametric spaces are tree-like.

Proposition 4.5 In a tree-like ball space, every centered system of balls is a nest. For such a
ball space, Si , Sdi and Sci are equivalent, for each i ∈ {1, . . . , 5}. If in addition, in this ball
space all singleton sets are balls, then S1 is equivalent to Sc2 .

Proof The first assertion follows from the fact that in a tree-like ball space, every two balls in
a centered system have nonempty intersection and therefore are comparable by inclusion, so
the system is a nest. From this, the second assertion follows immediately. The third assertion
follows by way of Proposition 4.4. ��

4.4 Intersection closed ball spaces

A ball space (X ,B) will be called finitely intersection closed if B is closed under nonempty
intersections of any finite collection of balls, chain intersection closed or nest intersection
closed if B is closed under nonempty intersections of nests of balls, and intersection closed
if B is closed under nonempty intersections of arbitrary collections of balls.

We will deduce the following result from Proposition 4.5:

Proposition 4.6 Every chain intersection closed tree-like ball space is intersection closed.

Proof Every collection C of balls with nonempty intersection in an arbitrary ball space is
a centered system. If the ball space is tree-like, then by Proposition 4.5, C is a nest. If in
addition the ball space is chain intersection closed, then the intersection

⋂ C is a ball. Hence
under the assumptions of the proposition, the ball space is intersection closed. ��

The proofs of the following two propositions are straightforward:

Proposition 4.7 Assume that the ball space (X ,B) is finitely intersection closed. Then by
closing under finite intersections, every centered system of balls can be expanded to a directed
system of balls which has the same intersection. Hence for a finitely intersection closed ball
space, Sdi is equivalent to Sci , for 1 ≤ i ≤ 5.

Proposition 4.8 For chain intersection closed ball spaces, the properties S1 , S2 , S3 , S4 and
S5 are equivalent.

As can be expected, the intersection closed ball spaces are the strongest when it comes to
equivalence of the properties in the hierarchy.
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Theorem 4.9 For an intersection closed ball space, S1 is equivalent to S∗, so all properties
in the hierarchy (1) are equivalent.

Proof Since (X ,B) is intersection closed, it is in particular chain intersection closed, hence by
Proposition 4.8, S1 implies S4 . By Corollary 4.3, S4 implies Sd4 . Since (X ,B) is intersection
closed, Proposition 4.7 shows that Sd4 implies Sc4. Again since (X ,B) is intersection closed,
the intersection over every directed system of balls, if nonempty, is a ball; hence Sc4 implies
Sc5. Altogether, we have shown that S1 implies Sc5, which shows that all properties in the
hierarchy (1) are equivalent. ��
Proposition 4.10 Every S∗ ball space is intersection closed.

Proof Take any collection of balls with nonempty intersection. Each element in the intersec-
tion lies in every ball, so the collection is a centered system. By assumption, the intersection
is again a ball. ��

In a poset, a set S of elements is bounded if and only if it has an upper bound. A poset
is bounded complete if every nonempty bounded set has a least upper bound. A bounded
system of balls is a nonempty collection of balls whose intersection contains a ball. Note
that a bounded system of balls is a centered system, but the converse is in general not true
(not even a nest of balls is necessarily a bounded system if the ball space is not S2).

The proof of the next lemma is straightforward.

Lemma 4.11 The poset (B,<) is bounded complete if and only if the intersection of every
bounded system of balls in (X ,B) contains a largest ball. In an intersection closed ball space,
the intersection of every bounded system of balls is a ball.

4.5 Overview of conditions for equivalences in the hierarchy

The following table will give an overview of conditions for equivalences in the hierarchy (1)
as presented in the previous sections.

Condition on ball spaces Equivalent properties in the hierarchy

No condition S4 ⇔ Sd4
All singletons are balls S1 ⇔ S2 ; Sd1 ⇔ Sd2 ; Sc1 ⇔ Sc2
Tree-like Si ⇔ Sdi ⇔ Sci for 1 ≤ i ≤ 5 (each row)
Tree-like, all singletons are balls S1 ⇔ Sd1 ⇔ Sc1 ⇔ S2 ⇔ Sd2 ⇔ Sc2 and Si ⇔ Sdi ⇔ Sci for 3 ≤ i ≤ 5
Finitely intersection closed Sdi ⇔ Sci for 1 ≤ i ≤ 5
Chain intersection closed S1 ⇔ S2 ⇔ S3 ⇔ S4 ⇔ S5 (first column)
Intersection closed All properties in the hierarchy

5 Ball spaces and their properties in various applications

In what follows, we will give the interpretation of various levels of spherical completeness
in our applications of ball spaces. At this point, let us define a notion that we will need
repeatedly. In a (totally or partially) ordered set (S,<) a subset S is a final segment if for all
s ∈ S, s < t implies t ∈ S; similarly, S is an initial segment if for all s ∈ S, s > t implies
t ∈ S.
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5.1 Ultrametric spaces

For background on ultrametric spaces see [12,23–28]. An ultrametric u on a set X is a
function from X × X to a partially ordered set � with smallest element 0, such that for all
x, y, z ∈ X and all γ ∈ �,

(U1) u(x, y) = 0 if and only if x = y,
(U2) if u(x, y) ≤ γ and u(y, z) ≤ γ , then u(x, z) ≤ γ ,
(U3) u(x, y) = u(y, x) (symmetry).

The pair (X , u) is called an ultrametric space. Condition (U2) is the ultrametric triangle
law.

We set uX := {u(x, y) | x, y ∈ X} and call it the value set of (X , u). If uX is totally
ordered, we will call (X , u) a classical ultrametric space; in this case, (U2) is equivalent to:

(UT) u(x, z) ≤ max{u(x, y), u(y, z)}.
We will now introduce three ways of deriving a ball space from an ultrametric space. A

closed ultrametric ball is a set

Bα(x) := {y ∈ X | u(x, y) ≤ α} ,

where x ∈ X and α ∈ �. We obtain the ultrametric ball space (X ,Bu) from (X , u) by
taking B to be the set of all such balls Bα(x).

It follows from symmetry and the ultrametric triangle law that every element in a ball is
a center, meaning that

Bα(x) = Bα(y) if y ∈ Bα(x) . (4)

Further,

Bβ(y) ⊆ Bα(x) if y ∈ Bα(x) and β ≤ α . (5)

A problem with the ball Bα(x) can be that it may not contain any element y such that
u(x, y) = α; if it does, it is called precise. It is therefore convenient to work with the precise
balls of the form

B(x, y) := {z ∈ X | u(x, z) ≤ u(x, y)} ,

where x, y ∈ X . We obtain the precise ultrametric ball space (X ,B[u]) from (X , u) by
taking B to be the set of all such balls B(x, y).

It follows from symmetry and the ultrametric triangle law that

B(x, y) = B(y, x)

and that

B(t, z) ⊆ B(x, y) if and only if t ∈ B(x, y) and u(t, z) ≤ u(x, y) . (6)

In particular,

B(t, z) ⊆ B(x, y) if t, z ∈ B(x, y) . (7)

More generally,

B(t, z) ⊆ Bα(x) if t, z ∈ Bα(x) . (8)
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Two elements γ and δ of � are comparable if γ ≤ δ or γ ≥ δ. Hence if u(x, y) and
u(y, z) are comparable, then B(x, y) ⊆ B(y, z) or B(y, z) ⊆ B(x, y). If u(y, z) < u(x, y),
then in addition, x /∈ B(y, z). We note:

u(y, z) < u(x, y) �⇒ B(y, z) � B(x, y) . (9)

In classical ultrametric spaces every two values α, β are comparable. Hence in this case one
can derive from (4) and (5) that every two ultrametric balls with nonempty intersection are
comparable by inclusion.

From (5), we derive:

Proposition 5.1 In a classical ultrametric space (X , u), any two balls with nonempty inter-
section are comparable by inclusion. Hence (X ,B[u]) and (X ,Bu) are tree-like ball spaces.

We define (X , u) to be spherically complete if its ultrametric ball space (X ,Bu) is
spherically complete, i.e., an S1 ball space. For this definition, it actually makes no difference
whether we work with Bu or B[u] :

Proposition 5.2 The classical ultrametric ball space (X ,Bu) is spherically complete if and
only if the precise ultrametric ball space (X ,B[u]) is.

Proof Since B[u] ⊆ Bu , the implication “⇒” is clear. Now take a nest N of balls in Bu .
We may assume that it does not contain a smallest ball since otherwise this ball equals
the intersection over the nest, which consequently is nonempty. Further, there is a coinitial
subnest (Bαν (xν))ν<κ such that κ is an infinite limit ordinal and μ < ν < κ implies that
Bαν (xν) � Bαμ(xμ). It follows that this subnest has the same intersection as N .

For every ν < κ , also ν + 1 < κ and thus Bαν+1(xν+1) � Bαν (xν). Hence there is
yν+1 ∈ Bαν (xν) \ Bαν+1(xν+1). It follows that

u(xν+1, yν+1) > αν+1 ,

and from (5) we obtain that

Bαν+1(xν+1) ⊆ Bu(xν+1,yν+1)(xν+1) = B(xν+1, yν+1) .

Since xν+1, yν+1 ∈ Bαν (xν), we know from (8) that

B(xν+1, yν+1) ⊆ Bαν (xν) .

It follows that
⋂

N =
⋂

ν<κ

Bαν (xν) =
⋂

ν<κ

B(xν+1, yν+1) .

Consequently, if B[u] is S1 , then this intersection is nonempty and we have proved that also
Bu is S1 . ��

Since uX contains the smallest element 0 := u(x, x), Bu contains all singletons {x} =
B0(x). Therefore, each ultrametric ball space is already S2 once it is S1 . The same is true for
the precise ultrametric ball space (X ,B[u]) in place of (X ,Bu). However, these ball spaces
will in general not be S3 , S4 or S5 because even if an intersection of a nest is nonempty, it
will not necessarily be a ball of the form Bα(x) or B(x, y), respectively.

In a classical ultrametric space, every two balls are comparable by inclusion once they
have nonempty intersection. Therefore, every centered system is already a nest of balls. This
shows:
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Proposition 5.3 A classical ultrametric space (X , u) is spherically complete if and only if
the ball space (X ,Bu) (or equivalently, (X ,B[u])) is an Sc2 ball space.

If (X , u) is a classical ultrametric space, then we can obtain stronger completeness prop-
erties if we work with a larger set of ultrametric balls. Given x ∈ X and an initial segment
S �= ∅ of uX , we define:

BS(x) = {y ∈ X | u(x, y) ∈ S} .

Setting

Bu+ := {BS(x) | x ∈ X andSa nonempty initial segment ofuX} ,

we obtain what we will call the full ultrametric ball space (X ,Bu+). Note that X =
BuX (x) ∈ Bu+. We leave it to the reader to prove:

BS(x) =
⋃

α∈S
Bα(x) ⊆

⋂

β≥S

Bβ(x) (10)

where β ≥ S means that β ≥ γ for all γ ∈ S, and the intersection over an empty index set is
taken to be X . We note that the inclusion on the right hand side is proper if and only if S has
no largest element but admits a supremum α in uX and there is y ∈ X such that α = u(x, y).
Indeed, if S = {β | β < α}, then BS(x) is the open ultrametric ball

B◦
α(x) := {y ∈ X | u(x, y) < α} ,

which is a proper subset of Bα(x) = ⋂
β≥S Bβ(x) if and only if Bα(x) is precise.

We have that

B[u] ⊆ Bu ⊆ Bu+

where the second inclusion holds because Bα(x) = BS(x) for the initial segment S = [0, α]
of uX . We have an easy generalization of (8):

if B ∈ Bu+ and t, z ∈ B , then B(t, z) ⊆ B . (11)

The following results are proven in [11]:

Theorem 5.4 Let (X , u) be a classical ultrametric space. Then the following assertions hold.

1) The intersection over every nest of balls in (X ,Bu+) is equal to the intersection over a
nest of balls in (X ,Bu) and therefore, (X ,Bu+) is chain intersection closed.

2) The ball space (X ,Bu+) is an S1 ball space if and only if (X ,Bu) is.
3) The ball space (X ,Bu+) is tree-like and intersection closed. If (X ,Bu) is an S1 ball

space, then (X ,Bu+) is an S∗ ball space.

By [10, Theorem 1.2], assertions 1) and 2) of Theorem 5.4 also hold for all ultrametric
spaces (X , u)with countable narrow value sets uX ; the condition narrowmeans that all sets
of mutually incomparable elements in uX are finite. On the other hand, it is shown in [10]
that the condition “narrow” cannot be dropped in this case. It is however an open question
whether the condition “countable” can be dropped.

A large number of ultrametric fixed point and coincidence point theorems have been
proven by S. Prieß-Crampe and P. Ribenboim (see e.g. [23–26,28]). Using ball spaces, some
of them have been reproven and new ones have been proven in [13,14,17].
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5.2 Metric spaces withmetric balls

In metric spaces (X , d) we can consider the closed metric balls

Bα(x) := {y ∈ X | d(x, y) ≤ α}
for x ∈ X and α ∈ R≥0 := {r ∈ R | r ≥ 0}. We set

Bd := {Bα(x) | x ∈ X , α ∈ R≥0} .

The following theorem will be deduced from Theorem 5.6 below:

Theorem 5.5 If the ball space (X ,Bd) is spherically complete, then (X , d) is complete.

The converse is not true. Consider a rational function field k(x) together with the x-adic
valuation vx . Choose an extension of vx to a valuation v of the algebraic closure K0 of k(x).
Then the value group is Q. An ultrametric in the sense of Sect. 5.1 is obtained by setting, for
instance,

u(a, b) := e−v(a−b) .

Take (K , u) to be the completion of (K0, u). It can be shown that the balls

Bαi

⎛

⎝
i−1∑

j=1

x− 1
j

⎞

⎠ with αi = e
1
i (2 ≤ i ∈ N)

have empty intersection in K . Hence (K , u) is not spherically complete, that is, the ultrametric
ball space induced by u on K is not spherically complete. But this ultrametric is a complete
metric.

Note that from Theorem 5.19 below it follows that the ball space (X ,Bd) is spherically
complete if every closed metric ball in (X , d) is compact under the topology induced by d ,
as the closed metric balls are closed in this topology.

In order to characterize complete metric spaces by spherical completeness, we have to
choose smaller induced ball spaces. For any subset S of the set R>0 of positive real numbers,
we define:

BS := {Br (x) | x ∈ X , r ∈ S} .

Theorem 5.6 The following assertions are equivalent:

a) (X , d) is complete,
b) the ball space (X ,BS) is spherically complete for some S ⊂ R>0 which admits 0 as its

only accumulation point,
c) the ball space (X ,BS) is spherically complete for every S ⊂ R>0 which admits 0 as its

only accumulation point.

Proof a) ⇒ c): Assume that (X , d) is complete and take a set S ⊂ R>0 which admits 0 as
its only accumulation point. This implies that S is discretely ordered, hence every infinite
descending chain in S with a maximal element can be indexed by the natural numbers.

Take any nest N of closed metric balls in BS . If the nest contains a smallest ball, then its
intersection is nonempty; so we assume that it does not. If B ∈ N , then NB := {B ′ ∈ N |
B ′ ⊆ B} is a nest of balls with ⋂N = ⋂NB ; therefore, we may assume from the start that
N contains a largest ball. Then the radii of the balls in N form an infinite descending chain

123



156 Page 20 of 44 H. Ćmiel et al.

in S with a maximal element, and 0 is their unique accumulation point. Hence we can write
N = {Bri (xi ) | i ∈ N} with r j < ri for i < j , and with limi→∞ ri = 0.

For every i ∈ N and all j ≥ i , the element x j lies in Bri (xi ) and therefore satisfies
d(xi , x j ) ≤ ri . This shows that (xi )i∈N is a Cauchy sequence. Since (X , d) is complete, it
has a limit x in X . We have that d(xi , x) ≤ ri , so x lies in every ball Bri (xi ). This proves
that the nest has nonempty intersection.

c) ⇒ b): Trivial.
b) ⇒ a): Assume that (X ,BS) is spherically complete. Take any Cauchy sequence (xn)n∈N
in X . By our assumptions on S, we can choose a sequence (si )i∈N in {s ∈ S | s < s0} such
that 0 < 2si+1 ≤ si . Now we will use induction on i ∈ N to choose an increasing sequence
(ni )i∈N of natural numbers such that the balls Bi := Bsi (xni ) form a nest.

Since (xn)n∈N is a Cauchy sequence, we have that there is n1 such that d(xn, xm) < s2 for
all n,m > n1 . Once we have chosen ni−1 , we choose ni > ni−1 such that d(xn, xm) < si+1

for all n,m ≥ ni . We show that the so obtained balls Bi form a nest. Take i ∈ N and
x ∈ Bi+1 = Bsi+1(xni+1). This means that d(xni+1 , x) ≤ si+1. Since ni , ni+1 ≥ ni , we have
that d(xni , xni+1) < si+1. We compute:

d(xni , x) ≤ d(xni , xni+1) + d(xni+1 , x)

≤ si+1 + si+1 = 2si+1 ≤ si .

Thus x ∈ Bi and hence Bi+1 ⊆ Bi for all i ∈ N. The intersection of this nest (Bi )i∈N
contains some y, by our assumption. We have that y ∈ Bi for all i ∈ N, which means that
d(xni , y) ≤ si . Since

lim
i→∞ si = 0,

we obtain that

lim
i→∞ xni = y,

which proves that (X , d) is a complete metric space. ��

Proof of Theorem 5.5 Assume that (X ,Bd) is spherically complete. Then so is (X ,B′) for
every nonempty B′ ⊂ Bd . Taking B′ = BS with S as in Theorem 5.6, we obtain that (X , d)

is complete. ��

Remark 5.7 Theorems 5.5 and 5.6 remain true if instead of the closed metric balls the open
metric balls

Bα(x) := {y ∈ X | d(x, y) < α}
are used for the metric ball space.

5.3 Metric spaces with Caristi–Kirk balls and Oettli–Théra balls

Consider a metric space (X , d). A function ϕ : X → R is lower semicontinuous if for every
y ∈ X ,

lim inf
x→y

ϕ(x) ≥ ϕ(y) .
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If ϕ is lower semicontinuous and bounded from below, we call it a Caristi–Kirk function
on X . For a fixed Caristi–Kirk function ϕ we consider Caristi–Kirk balls of the form

Bϕ
x := {y ∈ X | d(x, y) ≤ ϕ(x) − ϕ(y)}, x ∈ X , (12)

and the corresponding Caristi–Kirk ball space (X ,Bϕ) given by

Bϕ := {Bϕ
x | x ∈ X}.

These ball spaces and their underlying theory can be employed to prove the Caristi–Kirk
Theorem in a simple manner (see below). We found the sets that we call Caristi–Kirk balls
in a proof of the Caristi–Kirk Theorem given by Penot in [21].

We say that a function φ : X × X → (−∞,+∞] is an Oettli–Théra function on X if it
satisfies the following conditions:

(a) φ(x, ·) : X → (−∞,+∞] is lower semicontinous for all x ∈ X;
(b) φ(x, x) = 0 for all x ∈ X;
(c) φ(x, y) ≤ φ(x, z) + φ(z, y) for all x, y, z ∈ X;
(d) there exists x0 ∈ X such that inf

x∈X φ(x0, x) > −∞.

This notion was, to our knowledge, first introduced by Oettli and Théra in [20]. An Oettli–
Théra function φ yields balls of the form

Bφ
x := {y ∈ X | d(x, y) ≤ −φ(x, y)}, x ∈ X ,

which will be called Oettli–Théra balls. If an element x0 satisfies condition (d) above, then
we will call it an Oettli–Théra element for φ in X . For a fixed Oettli–Théra element x0 we
define the associated Oettli–Théra ball space to be (Bφ

x0 ,Bφ
x0), where

Bφ
x0 := {Bφ

x | x ∈ Bφ
x0}.

We observe that for a given Caristi–Kirk function ϕ : X → R, the mapping

φ(x, y) := ϕ(y) − ϕ(x)

is an Oettli–Théra function. Furthermore, every Caristi–Kirk ball is also an Oettli–Théra ball.
In general the balls defined above are notmetric balls. However, whenworking in complete

metric spaces they prove to be amore useful tool thanmetric balls. As observed in the previous
section, the completeness of ametric space neednot imply spherical completeness of the space
ofmetric balls (X ,Bd). In the case of Caristi–Kirk andOettli–Théra balls, completeness turns
out to be equivalent to spherical completeness, as shown in the following two propositions.

Proposition 5.8 Let (X , d) be a metric space. Then the following assertions are equivalent:

a) The metric space (X , d) is complete.
b) Every Caristi–Kirk ball space (X ,Bϕ) is spherically complete.
c) For every continuous function ϕ : X → R bounded from below, the Caristi–Kirk ball

space (X ,Bϕ) is spherically complete.

Proposition 5.9 A metric space (X , d) is complete if and only if the Oettli–Théra ball space
(Bφ

x0 ,Bφ
x0) is spherically complete for every Oettli–Théra function φ on X and every Oettli–

Théra element x0 for φ in X.
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The proofs of Propositions 5.8 and 5.9 can be found in [15, Proposition 3] and in [2],
respectively.

The easy proof of the next proposition is provided in [2].

Proposition 5.10 Every Caristi–Kirk ball space (X ,Bϕ) and every Oettli–Théra ball space
(Bφ

x0 ,Bφ
x0) is a strongly contractive normalized Bx–ball space.

We will meet another strongly contractive ball space in the case of partially ordered sets; see
Proposition 5.30.

The following is the Caristi–Kirk Fixed Point Theorem:

Theorem 5.11 Take a complete metric space (X , d) and a lower semicontinuous function
ϕ : X → R which is bounded from below. If a function f : X → X satisfies the Caristi
condition

d(x, f x) ≤ ϕ(x) − ϕ( f x) , (13)

for all x ∈ X, then f has a fixed point on X.

Also in [2], the same tools (with Proposition 5.8 replaced by Proposition 5.9) are used to
prove the following generalization:

Theorem 5.12 Take a complete metric space (X , d) and φ an Oettli–Théra function on X. If
a function f : X → X satisfies

d(x, f x) ≤ −φ(x, f x), (14)

for all x ∈ X, then f has a fixed point on X.

The conditions (13) and (14) guarantee that f x ∈ Bx for every Bx ∈ Bϕ or Bx ∈ Bφ
x0 ,

respectively. Hence Theorem 2.10 in conjunction with Propositions 5.8, 5.9 and 5.10 proves
Theorems 5.11 and 5.12 . Similar proofs were given in [2] (see also [15]). Note that conditions
(13) and (14) do not necessarily imply that every ball Bx is f -closed.

A variant of part 2) of Theorem 3.10 is used in [2] to give quick proofs of several theorems
that are known to be equivalent to the Caristi–Kirk Fixed Point Theorem (see [20–22] for
presentations of these equivalent results and generalizations).

Remark 5.13 Assume that (X ,B) is a contractive Bx -ball space. Then we can define a partial
ordering on X by setting

x ≺ y :⇔ By � Bx .

If (X ,B) is strongly contractive, then the function x �→ Bx is injective, and X together with
the reverse of the partial order we have defined is order isomorphic to B with inclusion, that
is, the function x �→ Bx is an order isomorphism from (X ,≺) onto (B,<) where the latter
is defined as in the beginning of Sect. 3.

If the Bx are the Caristi–Kirk balls defined in (12), then we have that

x ≺ y ⇔ d(x, y) < ϕ(x) − ϕ(y) ,

which means that ≺ is the Brønsted ordering on X . The Ekeland Variational Principle
(cf. [2]) states that if the metric space is complete, then (X ,≺) admits maximal elements,
or in other words, B admits minimal balls. The Brønsted ordering has been used in several
different proofs of the Caristi–Kirk Fixed Point Theorem. However, at least in the proofs that
also define and use the Caristi–Kirk balls (such as the one of Penot in [21]), it makes more
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sense to use directly their natural partial ordering (as done in [15]). But the main incentive
to use the balls instead of the ordering is that it naturally subsumes the metric case in the
framework of fixed point theorems in several other areas of mathematics which is provided
by the general theory of ball spaces as laid out in the present paper (see also [13,14,17]).

It has been shown that the Ekeland Variational Principle can be proven in the Zermelo
Fraenkel axiom system ZF plus the axiom of dependent choice DC which covers the usual
mathematical induction (but not transfinite induction, which is equivalent to the full axiom of
choice). Conversely, it has been shown in [4] that the Ekeland Variational Principle implies
the axiom of dependent choice.

Several proofs have been provided for the Caristi–Kirk FPT that work in ZF+DC.
Kozlowski has given a proof that is purely metric as defined in his paper [9], which implies
that the proof works in ZF+DC. The proofs of Proposition 5.8 in [15] and of Proposition 5.9
in [2] are purely metric. The existence of singleton balls in Caristi–Kirk and Oettli–Théra
ball spaces over complete metric spaces can also be shown directly by purely metric proofs
and this result can be used to give quick proofs of many principles that are equivalent to the
Caristi–Kirk FPT in ZF+DC (cf. [2]). However, in other settings it may not be possible to
deduce the existence in ZF+DC, so then the axiom of choice is needed. Therefore, in view
of the number of possible applications even beyond the scope as presented in this paper, we
do not hesitate to use Zorn’s Lemma for the proofs of our generic fixed point theorems.

We should point out that proofs have been given that apparently prove the Caristi–Kirk
FPT in ZF (see [7,18]). This means that the Caristi–Kirk FPT and the Ekeland Variational
Principle are equivalent in ZF+DC, but not in ZF. For the topic of axiomatic strength, see the
discussions in [6,8,9].

5.4 Totally ordered sets, abelian groups and fields

Take any ordered set (I ,<). We define the closed interval ball space associated with (I ,<)

to be (I ,Bci)where Bci consists of all closed intervals [a, b]with a, b ∈ I . By a cut in (I ,<)

wemean a partition (C, D) of I such that c < d for all c ∈ C , d ∈ D andC, D are nonempty.
The cofinality of a totally ordered set is the least cardinality of all cofinal subsets, and the
coinitiality of a totally ordered set is the cofinality of this set under the reverse ordering. A
cut (C, D) is asymmetric if the cofinality of C is different from the coinitiality of D. For
example, every cut inR is asymmetric. The following fact was first proved in [29] for ordered
fields, and then in [16] for any totally ordered sets.

Lemma 5.14 The ball space (I ,Bci) associated with the totally ordered set (I ,<) is spher-
ically complete if and only if every cut (C, D) in (I ,<) is asymmetric.

Totally ordered sets, abelian groups or fields whose cuts are all asymmetric are called
symmetrically complete. By our above remark,R is symmetrically complete. The following
theorem was proved in [16]; its first assertion follows from the previous lemma. The second
assertion addresses the natural valuation of an ordered abelian group or field, which is the
finest valuation compatible with the ordering; it is nontrivial if and only if the ordering is
nonarchimedean.

Theorem 5.15 A totally ordered set, abelian group or field is symmetrically complete if and
only if its associated closed interval ball space is spherically complete. The ultrametric ball
space associated with the natural valuation of a symmetrically complete ordered abelian
group or field is a spherically complete ball space.
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In [29] it was shown that arbitrarily large symmetrically complete ordered fields exist.
With a different construction idea, this was reproved and generalized in [16] to the case
of ordered abelian groups and totally ordered sets, and a characterization of symmetrically
complete ordered abelian groups and fields has been given.

In order to give an example of a fixed point theorem that can be proven in this setting, it is
enough to consider symmetrically complete ordered abelian groups, as the additive group of
a symmetrically complete ordered field is a symmetrically complete ordered abelian group.
The following is Theorem 21 of [13] (see also [16]).

Theorem 5.16 Take an ordered abelian group (G,<) and a function f : G → G. Assume
that every nonempty chain of closed intervals in G has nonempty intersection and that f has
the following properties:
1) f is nonexpanding:

| f x − f y| ≤ |x − y| for all x, y ∈ G ,

2) f is contracting on orbits: there is a positive rational number m
n < 1 with m, n ∈ N such

that

n| f x − f 2x | ≤ m|x − f x | for all x ∈ G .

Then f has a fixed point.

As in the case of ultrametric spaces, all singletons in Bci are balls: {a} = [a, a]. So also
here, (I ,Bci) is S2 as soon as it is S1 . But again as in the case of ultrametric spaces, S2
does not necessarily imply S5 or even S3 . For example, consider a nonarchimedean ordered
symmetrically complete field. The set of infinitesimals is the intersection of balls [−a, a]
where a runs through all positive elements that are not infinitesimals. This intersection is not
a ball, nor is there a largest ball contained in it.

Further, we note:

Lemma 5.17 Assume that (I ,<) is a totally ordered set and its associated ball space (I ,Bci)

is an Sd1 or S3 ball space. Then (I ,<) is cut complete, that is, for every cut (C, D) in (I ,<),
C has a largest or D has a smallest element.

Proof First assume that (I ,Bci) is an Sd1 ball space, and take a cut (C, D) in I . If
a, c ∈ C and b, d ∈ D, then max{a, c} ∈ C and min{b, d} ∈ D and [a, b] ∩ [c, d] =
[max{a, c},min{b, d}]. This shows that

{[c, d] | c ∈ C , b ∈ D}
is a directed system in Bci . Hence its intersection is nonempty; if a is contained in this
intersetion, it must be the largest element of C or the least element of D. Hence (I ,<) is cut
complete.

Now assume that (I ,<) is not cut complete; we wish to show that (I ,Bci) is not an S3
ball space. Take a cut (C, D) in I such that C has no largest element and D has no least
element. Pick some c ∈ C . Then

{[c, d] | d ∈ D}
is a nest of balls in (I ,Bci). Its intersection is the set {a ∈ C | c ≤ a}. Since C has no largest
element, this set does not contain a maximal ball. This shows that (I ,Bci) is not an S3 ball
space. ��
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It is a well known fact that the only cut complete densely ordered abelian group or ordered
field is R. So we have:

Proposition 5.18 The associated ball space of the reals is S∗ . For all other densely ordered
abelian groups and ordered fields the associated ball space can at best be S2 .

Proof Take any centered system {[ai , bi ] | i ∈ I } of intervals in R. We set a := supi∈I ai
and b := inf i∈I bi . Then

⋂

i∈I
[ai , bi ] = [a, b] .

We have to show that [a, b] �= ∅, i.e., a ≤ b. Suppose that a > b. Then there are i, j ∈ I
such that ai > b j . But by assumption, [ai , bi ] ∩ [a j , b j ] �= ∅, a contradiction. We have now
proved that the associated ball space of the reals is S∗ .

The second assertion follows from Lemma 5.17. ��

5.5 Topological spaces

If X is a topological space on a set X , then we will take its associated ball space to be (X ,B)

where B consists of all nonempty closed sets. Since the intersections of arbitrary collections
of closed sets are again closed, this ball space is intersection closed.

The following theorem shows how compact topological spaces are characterized by the
properties of their associated ball spaces; note that we use “compact” in the sense of “quasi-
compact”, that is, it does not imply the topology being Hausdorff.

Theorem 5.19 The following are equivalent for a topological space X :

a) X is compact,
b) the nonempty closed sets in X form an S1 ball space,
c) the nonempty closed sets in X form an S∗ ball space.

Proof a)⇒ b): Assume thatX is compact. Take a nest (Xi )i∈I of balls in (X ,B) and suppose
that

⋂
i∈I Xi = ∅. Then ⋃

i∈I X \ Xi = X , so {X \ Xi | i ∈ I } is an open cover of X .
It follows that there are i1, . . . , in ∈ I such that X \ Xi1 ∪ · · · ∪ X \ Xin = X , whence
Xi1 ∩ · · · ∩ Xin = ∅. But since the Xi form a nest, this intersection equals the smallest of the
Xi j , which is nonempty. This contradiction proves that the nonempty closed sets in X form
an S1 ball space.
b) ⇒ c): This follows from Theorem 4.9.
c) ⇒ a): Assume that the nonempty closed sets in X form an S∗ ball space. Take an open
cover Yi , i ∈ I , of X . Since

⋃
i∈I Yi = X , we have that

⋂
i∈I X \ Yi = ∅. As the ball space

is S∗, this means that {X \ Yi | i ∈ I } cannot be a centered system. Consequently, there are
i1, . . . , in ∈ I such that X \ Yi1 ∩ · · · ∩ X \ Yin = ∅, whence Yi1 ∪ · · · ∪ Yin = X . ��

Some of the assertions of the following topological fixed point theorems were already
proven in [13, Theorem 11]. We will give their modified and improved proofs here as they
illustrate applications of Theorems 2.2 and 2.7 .

Theorem 5.20 Take a compact space X and a closed function f : X → X. Assume that for
every x ∈ X with f x �= x there is a closed subset B of X such that x ∈ B and x /∈ f (B) ⊆ B.
Then f has a fixed point in B.
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Proof For every x ∈ X we consider the following family of balls:

Bx := {B | B closed subset of X , x ∈ B and f (B) ⊆ B}.
Note that Bx is nonempty because it contains X . We define

Bx :=
⋂

Bx . (15)

We see that x ∈ Bx and that f (Bx ) ⊆ Bx by part 2) of Lemma 3.11. Further, Bx is closed,
being the intersection of closed sets. This shows that Bx is the smallest member of Bx .

For every B ∈ Bx we have that f x ∈ B and therefore, B ∈ B f x . Hence we find that
B f x ⊆ Bx .

Assume that f x �= x . Then by hypothesis, there is a closed set B in X such that x ∈ B and
x /∈ f (B) ⊆ B. Since f is a closed function, f (B) is closed. Moreover, f ( f (B)) ⊆ f (B)

and f x ∈ f (B), so f (B) ∈ B f x . Since x /∈ f (B), we conclude that x /∈ B f x , whence
B f x � Bx . We have proved that f is contracting on orbits. Our theorem now follows from
Theorem 2.7 in conjunction with Theorem 5.19. ��
Note that if B satisfies the assumptions of the theorem, then B ∈ Bx . Hence the set Bx

defined in (15) satisfies Bx ⊆ B, f (Bx ) ⊆ f (B) and therefore x /∈ f (Bx ). This shows that
Bx is the smallest of all closed subsets B of X for which x ∈ B and x /∈ f (B) ⊆ B.

An interesting interpretation of the ball Bx defined in (15) will be given in Remark 6.3
below.

The next theorem follows immediately from part 1) of Theorem 2.2 in conjunction with
Theorem 5.19.

Theorem 5.21 Take a compact space X and a closed function f : X → X.

1) If every nonempty closed and f -closed subset B of X contains a closed f -contracting
subset, then f has a fixed point in X.

2) If every nonempty closed and f -closed subset B of X is f -contracting, then f has a
unique fixed point in X.

The condition that every f -closed ball is f -contracting may appear to be quite strong.
Yet there is a natural example in the setting of topological spaces where this condition is
satisfied in a suitable collection of closed sets. In [30], Steprans, Watson and Just define the
notion of “J -contraction” for a continuous function f : X → X on a topological space X
as follows. An open cover U of X is called J -contractive for f if for every U ∈ U there is
U ′ ∈ U such that the image of the closure of U under f is a subset of U ′. Then f is called
a J -contraction if any open cover U has a J -contractive refinement for f . We will use two
important facts about J -contractions f on a connected compact Hausdorff space X which
the authors prove in the cited paper:

(J1) If B is a closed subset of X with f (B) ⊆ B, then the restriction of f to B is also a
J -contraction ([30, Proposition 1, p. 552]);

(J2) If f is onto, then |X | = 1 ([30, Proposition 4, p. 554]).

The following is Theorem 4 of [30]:

Theorem 5.22 Take a connected compactHausdorff space X and a continuous J -contraction
f : X → X. Then f has a unique fixed point.

We will deduce our theorem from Theorem 2.2. We take B to be the set of all nonempty
closed connected subsets of X ; in particular, X ∈ B. Take any B ∈ B. As f is a continuous
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function on the compact Hausdorff space X , it is a closed function, so f (B) is closed. Since
B is connected and f is continuous, f (B) is also connected. Hence f (B) ∈ B.

Further, the intersection of any chain of closed connected subsets of X is closed and
connected. This shows that B is chain intersection closed. By Theorem 5.19 the ball space
consisting of all nonempty closed subsets of the compact space X is S∗. As it contains B,
(X ,B) is S1 and it follows from Proposition 4.8 that (X ,B) is an S5 ball space.

Finally, we have to show that every f -closed ball B ∈ B is f -contracting. As B is closed in
X , it is also compact Hausdorff, and it is connected as it is a ball in B. By (J1), the restriction
of f to B is also a J -contraction. Therefore, we can replace X by B and apply (J2) to find
that if f is onto, then B is a singleton; this shows that B is f -contracting. Now Theorem 5.22
follows from part 2) of Theorem 2.2 as desired.

It should be noted that J -contractions appear in a natural way in the metric setting. The
following is the content of Theorems 2 and 3 of [30]:

Theorem 5.23 Any contraction on a compact metric space is a J -contraction. Conversely,
if f is a J -contraction on a connected compact metrizable space X, then X admits a metric
under which f is a contraction.

5.6 Partially ordered sets

Take any nonempty partially ordered set (T ,<). We will associate with it two different ball
spaces; first, the ball space of principal final segments, and then later the segment ball space.

A principal final segment is a set [a,∞) := {c ∈ T | a ≤ c} with a ∈ T . Then the
ball space of principal final segments is (T ,Bpfs) where Bpfs := {[a,∞) | a ∈ T }. The
following proposition gives the interpretation of spherical completeness for this ball space;
we leave its straightforward proof to the reader.

Proposition 5.24 The following assertions are equivalent:

a) the poset (T ,<) is inductively ordered,
b) the ball space (T ,Bpfs) is an S1 ball space,
c) (T ,Bpfs) is an S2 ball space.

We also leave it to the reader to show that (T ,Bpfs) is an S3 (or Sd3 or S
c
3) ball space if and

only if every chain (or directed system, or centered system, respectively) has minimal upper
bounds.

If {ai | i ∈ I } is a subset of T , then supi∈I ai will denote its supremum, if it exists. We
will need the following fact, whose proof we again leave to the reader.

Lemma 5.25 The equality

[a,∞) =
⋂

i∈I
[ai ,∞)

holds if and only if a = supi∈I ai . Further,
⋂

i∈I [ai ,∞) is the (possibly empty) set of all
upper bounds for {ai | i ∈ I }.

An element a in a poset is called top element if b ≤ a for all elements b in the poset,
and bottom element if b ≥ a for all elements b in the poset. A top element is commonly
denoted by �, and a bottom element by ⊥. A poset (T ,<) is an upper semilattice if every
two elements in T have a supremum, and a complete upper semilattice if every nonempty
set of elements in T has a supremum.
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Proposition 5.26 1) (T ,Bpfs) is finitely intersection closed if and only if every nonempty
finite bounded subset of T has a supremum.
2) (T ,Bpfs) is intersection closed if and only if every nonempty bounded subset of T has a
supremum, i.e., (T ,<) is bounded complete.
3) If (T ,<) has a top element, then (T ,<) is an upper semilattice if and only if (T ,Bpfs) is
finitely intersection closed,
4) (T ,<) is a complete upper semilattice if and only if (T ,<) has a top element and (T ,Bpfs)

is intersection closed.

Proof 1), 2): Assume that (T ,Bpfs) is (finitely) intersection closed and take a nonempty
(finite) subset {ai | i ∈ I } of T . If this set is bounded, then ⋂

i∈I [ai ,∞) is nonempty, and
thus by assumption it is equal to [a,∞) for some a ∈ T . By Lemma 5.25, this implies that
a = supi∈I ai , showing that {ai | i ∈ I } has a supremum.

Now assume that every nonempty (finite) bounded subset of T has a supremum. Take a
nonempty (finite) set {[ai ,∞) | i ∈ I } of balls in Bpfs with nonempty intersection. Take
b ∈ ⋂

i∈I [ai ,∞). Then b is an upper bound of {ai | i ∈ I }. By assumption, there exists
a = supi∈I ai in T . Again by Lemma 5.25, this implies that

⋂
i∈I [ai ,∞) = [a,∞). Hence,

(T ,Bpfs) is (finitely) intersection closed.
3) and 4) follow from 1) and 2), respectively, because if (T ,<) has a top element, then every
nonempty subset is bounded. ��

We add to our hierarchy (1) an even stronger property: we say that the ball space (X ,B)

is an S∗∗ ball space if B is closed under arbitrary intersections; in particular, this implies that
intersections of arbitrary collections of balls are nonempty. Every S∗∗ ball space is an S∗ ball
space. Note that every complete upper semilattice has a top element.

Proposition 5.27 1) Assume that (T ,<) has a top element �. Then every intersection of
balls in (T ,Bpfs) contains the ball [�,∞), and (T ,Bpfs) is an Sc2 ball space. Moreover,
(T ,Bpfs) is an S∗ ball space if and only if it is an S∗∗ ball space.
2) (T ,Bpfs) is an S∗∗ ball space if and only if (T ,<) has a top element and (T ,Bpfs) is
intersection closed.
3) (T ,<) is a complete upper semilattice if and only if (T ,Bpfs) is an S∗∗ ball space.

Proof 1): The first two statements are obvious. If (T ,<) has a top element, then every
collection of balls in Bpfs is a centered system. Hence if (T ,Bpfs) is an S∗ ball space, then it
is an S∗∗ ball space.
2): Assume that (T ,Bpfs) is an S∗∗ ball space. Then it follows directly from the definition
that it is intersection closed. Further, the intersection over {[a,∞) | a ∈ T } is a ball [b,∞).
By Lemma 5.25, b is the supremum of T and thus a top element.

Now assume that (T ,<) has a top element � and (T ,Bpfs) is intersection closed, and
take an arbitrary collection of balls in Bpfs. As all of the balls contain �, their intersection is
nonempty, and hence by our assumption, it is a ball.
3): This follows from part 2) of our proposition together with part 4) of Proposition 5.26. ��

Nowwe can characterize chain complete and directed complete posets by properties from
our hierarchy:

Theorem 5.28 Take a poset (T ,<). Then the following are equivalent:

a) (T ,<) is chain complete,
b) (T ,<) is directed complete,

123



Measuring the strength of completeness Page 29 of 44 156

c) (T ,Bpfs) is an S5 ball space,
d) (T ,Bpfs) is an Sd5 ball space.

If every nonempty finite bounded subset of T has a supremum, then the above properties
are also equivalent to

e) (T ,Bpfs) is an S∗ ball space.

Proof The equivalence of assertions a) and b) follows from Proposition 4.2.
b)⇒ d): Assume that (T ,<) is directed complete and take a directed system S = {[ai ,∞) |
i ∈ I } in Bpfs . Then also {ai | i ∈ I } is a directed system in (T ,<). By our assumption
on (T ,<) it follows that {ai | i ∈ I } has a supremum a in T . By Lemma 5.25, [a,∞) =⋂

i∈I [ai ,∞), which shows that the intersection of S is a ball.
d) ⇒ c) holds by the general properties of the hierarchy.
c)⇒ a): Take a chain {ai | i ∈ I } in T . Since (T ,Bpfs) is an S5 ball space, the intersection of
the nestN = ([ai ,∞))i∈I is a ball [a,∞). It follows by Lemma 5.25 that a is the supremum
of the chain, which proves that (T ,<) is chain complete.

If every nonempty finite bounded subset of T has a supremum, then by part 1) of Propo-
sition 5.26, (T ,Bpfs) is finitely intersection closed, hence by Proposition 4.7, properties Sd5
and S∗ are equivalent. ��
Remark 5.29 Note that we define chains to be nonempty totally ordered sets and similarly,
consider directed systems to be nonempty. If we drop this convention, then the theorem
remains true if we require in c) and d) that (T ,<) has a least element.

The ball space (T ,Bpfs) shares an important property with Caristi–Kirk and Oettli–Théra
ball spaces, as shown by the next proposition, whose straightforward proof we omit.

Proposition 5.30 The ball space (T ,Bpfs) is a normalized strongly contractive Bx -ball space,
where

Bx := [x,∞) ∈ Bpfs .

A function f on a poset (T ,<) is increasing if f (x) ≥ x for all x ∈ T . The following
result is an immediate consequence of Zorn’s Lemma, but can also be seen as a corollary to
Propositions 5.24 and 5.30 together with Theorem 2.10:

Theorem 5.31 Every increasing function f : X → X on an inductively ordered poset (T ,<)

has a fixed point.

Note that this theorem implies the Bourbaki-Witt Theorem (see [3,32] or the short
description onWikipedia), which differs from it by assuming that every chain in (T ,<) even
has a supremum.

A function f on a poset (T ,<) is called order preserving if x ≤ y implies f x ≤ f y.
The following result is an easy consequence of Theorem 5.31:

Theorem 5.32 Take an order preserving function f on a nonempty poset (T ,<) which con-
tains at least one x such that f x ≥ x (in particular, this holds when (T ,<) has a bottom
element). Assume that (T ,<) is chain complete. Then f has a fixed point.

Proof Take S := {x ∈ T | f x ≥ x} �= ∅. Then also S is chain complete. Indeed, if (xi )i∈I
is a chain in S, hence also in T , then it has a supremum z ∈ T by assumption. Since z ≥ xi
and f is order preserving, we have that f z ≥ f xi ≥ xi for all i ∈ I , so f z is also an upper
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bound for (xi )i∈I . Therefore, f z ≥ z since z is the supremum of the chain, showing that
z ∈ S.

Further, S is closed under f , because if x ∈ S, then f x ≥ x , hence f 2x ≥ f x since f is
assumed to be order preserving; this shows that f x ∈ S Now the existence of a fixed point
follows from Theorem 5.31. ��

The second ball space we associate with posets will be particularly useful for the study of
lattices. We define the principal segment ball space (T ,Bps) of the poset (T ,<) by taking
Bps to contain all principal segments (which may also be called “closed convex subsets”),
that is, the closed intervals [a, b] := {c ∈ T | a ≤ c ≤ b} for a, b ∈ T with a ≤ b, the
principal initial and final segments {c ∈ T | c ≤ a} and {c ∈ T | a ≤ c} for a ∈ T , and T
itself. Note that all of these sets are of the form [a, b] if and only if T has a top element� and
a bottom element ⊥. Even if T does not have these elements, we will still use the notation
[⊥, b] for {c ∈ T | c ≤ b} and [a,�] for {c ∈ T | a ≤ c}. Hence,

Bps = {[a, b] | a ∈ T ∪ {⊥}, b ∈ T ∪ {�}} .

If ⊥,� ∈ T (as is the case for complete lattices), this is a generalization to posets of the
closed interval ball space Bci that we defined for linearly ordered sets. We will thus also talk
again of “closed intervals” [a, b].

A greatest lower bound of a subset S of T will also be called its infimum. If {ai | i ∈ I }
is a subset of T , then inf i∈I ai will denote its infimum, if it exists.

Lemma 5.33 Take subsets {ai | i ∈ I } and {bi | i ∈ I } of T such that ai ≤ b j for all i, j ∈ I .
If a = supi∈I ai and b = inf i∈I bi exist, then a ≤ b and

[a, b] =
⋂

i∈I
[ai , bi ] .

Proof We can write
⋂

i∈I
[ai , bi ] =

⋂

i∈I
([ai ,�] ∩ [⊥, bi ]) =

⋂

i∈I
[ai ,�] ∩

⋂

i∈I
[⊥, bi ]

Applying Lemma 5.25, we obtain that [a,�] = ⋂
i∈I [ai ,�], and applying it to L with the

reverse order, we obtain that [⊥, b] = ⋂
i∈I [⊥, bi ]. Hence the above intersection is equal to

[a, b], which we will now show to be nonempty.
By the assumption of our lemma, every b j is an upper bound of the set {ai | i ∈ I }. Since

a is the least upper bound of this set, we find that a ≤ bi for all i ∈ I . As b is the greatest
lower bound of the set {bi | i ∈ I }, it follows that a ≤ b. ��

5.7 Lattices

A lattice is a poset in which every two elements have a supremum and an infimum (greatest
lower bound). It then follows that all finite sets in a lattice (L,<) have a supremum and an
infimum. A complete lattice is a poset in which all nonempty sets have a supremum and an
infimum. Lemma 5.33 implies the following analogue to Proposition 5.26:

Proposition 5.34 The ball space (L,Bps) associated to a lattice (L,<) is finitely intersection
closed. The ball space (L,Bps) associated to a complete lattice (L,<) is intersection closed.

For a lattice (L,<), we denote by (L,>) the lattice endowed with the reverse order. We
will now characterize complete lattices by properties from our hierarchy.
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Theorem 5.35 For a poset (L,<), the following assertions are equivalent.

a) (L,<) is a complete lattice,
b) (L,<) and (L,>) are complete upper semilattices,
c) the principal final segments of (L,<) and of (L,>) form S∗∗ ball spaces,
d) (L,Bps) is an S∗ ball space and (L,<) admits a top and a bottom element,
e) (L,Bps) is an S∗ ball space and every finite set in (L,<) has an upper and a lower

bound.

Proof The equivalence of a) and b) follows directly from the definitions. The equivalence of
b) and c) follows from part 3) of Proposition 5.27.
a) ⇒ d): Assume that (L,<) is a complete lattice. Then it admits a top element (supremum
of all its elements) and a bottom element (infimum of all its elements). Take a centered system
{[ai , bi ] | i ∈ I } in (L,Bps). Then for all i, j ∈ I , [ai , bi ] ∩ [a j , b j ] �= ∅, so ai ≤ b j . Since
(L,<) is a complete lattice, a := supi∈I ai and b := inf i∈I bi exist. From Lemma 5.33 it
follows that

⋂
i∈I [ai , bi ] = [a, b] �= ∅, which consequently is a ball in Bps. We have proved

that (L,Bps) is an S∗ ball space.
d) ⇒ e): A top element is an upper bound and a bottom element a lower bound for every set
of elements.
e) ⇒ a): Take a poset (L,<) that satisfies the assumptions of e), and any subset S ⊆ L . If
S0 is a finite subset of S, then it has an upper bound b by assumption. Hence the balls [a,�],
a ∈ S0 , have a nonempty intersection, as it contains b. This shows that {[a,�] | a ∈ S} is a
centered system of balls. Since (L,Bps) is an S∗ ball space, its intersection is a ball [c, d],
where we must have d = �. By Lemma 5.25, c is the supremum of S.

Working with the reverse order, one similarly shows that S has an infimum since (L,Bps)

is an S∗ ball space. Hence, (L,<) is a complete lattice. ��
For our next theorem, we will need one further lemma:

Lemma 5.36 For a lattice (L,<), the following are equivalent:

a) (L,<) is a complete lattice,
b) (L,<) and (L,>) are directed complete posets,
c) (L,<) and (L,>) are chain complete posets.

Proof The implication a) ⇒ b) is trivial as every nonempty set in a complete lattice has a
supremum and an infimum.
b) ⇒ a): Take a nonempty subset S of L . Let S′ be the closure of S under suprema and
infima of arbitrary finite subsets of S. Then S′ is a directed system in both (L,<) and (L,>).
Hence by b), S′ has an infimum a and a supremum b. These are lower and upper bounds,
respectively, for S. Suppose there was an upper bound c < b for S. Then there would be
a supremum d of some finite subset of S such that d > c. But as c is also an upper bound
of this finite subset, we must have that d ≤ c. This contradiction shows that b is also the
supremum of S. Similarly, one shows that a is also the infimum of S. This proves that (L,<)

is a complete lattice.
b) ⇔ c) follows from Proposition 4.2. ��

Now we can prove:

Theorem 5.37 For a lattice (L,<), the following are equivalent:

a) (L,<) is a complete lattice,
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b) (L,Bps) is an S5 ball space,
c) (L,Bps) is an S∗ ball space.

Proof a) ⇒ c): This follows from Theorem 5.35.
c) ⇒ b) holds by the general properties of the hierarchy.
b)⇒ a): By Lemma 5.36 it suffices to prove that (L,<) and (L,>) are chain complete posets.
Take a chain {ai | i ∈ I } in (L,<). Then {[ai ,�] | i ∈ I } is a nest of balls in (L,Bps). Since
(L,Bps) is an S5 ball space, the intersection of this nest is a ball [a, b] for some a, b ∈ L;
it must be of the form [a,�] since the intersection contains �. From Lemma 5.25 we infer
that a = supi∈I ai . This shows that (L,<) is a chain complete poset. The proof for (L,>)

is similar. ��
An example of a fixed point theorem that holds in complete lattices is the Knaster–Tarski

Theorem, which we have mentioned in the Introduction.

6 Spherical closures in S∗ ball spaces

6.1 Spherical closures and subspaces

The particular strength of S∗ ball spaces enables us to introduce a closure operation similar
to the topological closure. We will also introduce a notion of sub-ball space and show that a
sub-ball space of an S∗ ball space will again be an S∗ ball space.

In order to distinguish between a ball space on a set X and one on a subset Y , we will
use the notations BX and BY , respectivly. As before, if f : X → X is a function, then B f

X
will denote the collection of all f -closed balls in BX . The next lemma presents a simple
but useful observation. It follows from the fact that the intersection over any collection of
f -closed sets is again f -closed, see part 2) of Lemma 3.11.

Lemma 6.1 If (X ,BX ) is an S∗ ball space, then so is (X ,B f
X ), provided that B f

X �= ∅.
For every nonempty subset S of some ball in BX , we define

sclBX (S) :=
⋂

{B ∈ BX | S ⊆ B}
and call it the spherical closure of S in BX .

Lemma 6.2 Take an S∗ ball space (X ,BX ).
1) For every nonempty subset S of some ball in BX , sclBX (S) is the smallest ball in BX

containing S.
2) If f : X → X is a function, then for every nonempty subset S of some f -closed ball in
BX , sclB f

X
(S) is the smallest f -closed ball containing S.

Proof 1) The collection of all balls containing S is nonempty by our condition that S is a
subset of a ball in BX . The intersection of this collection contains S �= ∅, so it is a centered
system, and since (X ,BX ) is S∗, its intersection is a ball. As all balls containing S appear in
the system, the intersection must be the smallest ball containing S.
2) This follows from part 1) together with Lemma 6.1. ��
Note that if X ∈ BX , then we can drop the condition that S is the subset of some ball (or
some f -closed ball, respectively) in BX .
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Remark 6.3 The ball Bx defined in (15) in the proof of Theorem 5.20 is equal to sclB f ({x}),
where B f

X is the set of all closed f -closed sets of the topological space under consideration.

The proof of the following observation is straightforward:

Lemma 6.4 Take an S∗ ball space (X ,BX ). If S ⊆ T are nonempty subsets of a ball in BX ,
then sclBX (S) ⊆ sclBX (T ).

For any subset Y of X , we define:

BX ∩ Y := {B ∩ Y | B ∈ BX } \ {∅} . (16)

If there is at least one ball B ∈ BX such that Y ∩ B �= ∅, then BX ∩ Y �= ∅ and (Y ,BX ∩ Y )

is a ball space.

Lemma 6.5 Take an S∗ ball space (X ,BX ) and a subset Y ⊆ X such that BX ∩ Y �= ∅.
1) For each B ∈ BX ∩ Y ,

sclX (B) ∩ Y = B .

2) The function

BX ∩ Y  B �→ sclX (B) (17)

preserves inclusion in the strong sense that

B1 ⊆ B2 ⇐⇒ sclX (B1) ⊆ sclX (B2) .

3) If (Bi )i∈N is a centered system of balls in (Y ,BX ∩ Y ), then (sclX (Bi ))i∈I is a centered
system of balls in (X ,BX ) with

⋂

i∈I
Bi =

(
⋂

i∈I
sclX (Bi )

)

∩ Y . (18)

Proof 1): It follows from the definition of sclX (B) that B ⊆ sclX (B), so B ⊆ sclX (B)∩Y .
Since B ∈ BX ∩Y , we canwrite B = B ′∩Y for some B ′ ∈ BX . Since sclX (B) is the smallest
ball containing B, it must be contained in B ′ and therefore, sclX (B) ∩ Y ⊆ B ′ ∩ Y = B.
2): In view of Lemma 6.4, it suffices to show that B1 �= B2 implies sclX (B1) �= sclX (B2).
This is a consequence of part 1) of this lemma.
3): Take a centered system of balls (Bi )i∈I in (Y ,BX ∩Y ). Then (sclX (Bi ))i∈I is a centered
system of balls in (X ,BX ) since Bi1∩· · ·∩Bin �= ∅ implies that sclX (Bi1)∩· · ·∩sclX (Bin ) �=
∅. By part 1), Bi = sclX (Bi ) ∩ Y , whence

⋂

i∈I
Bi =

⋂

i∈I
(sclX (Bi ) ∩ Y ) =

(
⋂

i∈I
sclX (Bi )

)

∩ Y .

��
With the help of this lemma, we obtain:

Proposition 6.6 Take anS∗ ball space (X ,BX ) and assume that B∩Y �= ∅ for every B ∈ BX .
Then also (Y ,BX ∩ Y ) is an S∗ ball space.

Proof Take a centered system of balls (Bi )i∈N in (Y ,BX ∩Y ). Then by part 3) of Lemma 6.5,
(sclBX (Bi ))i∈N is a centered system of balls in (X ,BX )with

⋂
i∈I Bi = (⋂

i∈I sclBX (Bi )
) ∩

Y . Since (X ,BX ) is assumed to be S∗,
⋂

i∈I sclBX (Bi ) is a ball in BX . Therefore,
⋂

i∈I Bi =(⋂
i∈I sclBX (Bi )

) ∩ Y �= ∅ is a ball in BX ∩ Y . ��
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6.2 Analogues of the Knaster–Tarski Theorem

Proposition 6.6 can be applied to the special case where a function f : X → X is given and
Y is the set Fix( f ) of all fixed points of f . Using also Lemma 6.1, we obtain:

Corollary 6.7 Take an S∗ ball space (X ,BX ) and a function f : X → X. If each ball in BX

contains a fixed point, then

(Fix( f ),BX ∩ Fix( f ))

is an S∗ ball space. If each f -closed ball in BX contains a fixed point, then

(Fix( f ),B f
X ∩ Fix( f ))

is an S∗ ball space.

Using these results, a ball spaces analogue of the Knaster-Tarski Theorem can be proved:

Theorem 6.8 Take an S∗ ball space (X ,B) and a function f : X → X.
1) Assume that every ball in B contains a fixed point or a smaller ball. Then every ball in B
contains a fixed point, and (Fix( f ),B ∩ Fix( f )) is an S∗ ball space.
2) Assume that B contains an f -closed ball and every f -closed ball in B contains a fixed
point or a smaller f -closed ball. Then every f -closed ball in B contains a fixed point, and
(Fix( f ),B f ∩ Fix( f )) is an S∗ ball space.

Proof 1): It follows from our assumptions together with Theorem 2.3 that every B ∈ B
contains a fixed point. Therefore, B ∩ Fix( f ) �= ∅. From Corollary 6.7 it follows that
(Fix( f ),B f ∩ Fix( f )) is an S∗ ball space.
2): By Lemma 6.1, (X ,B f ) is an S∗ ball space. Hence it follows from our assumptions
together with part 1) of our theorem, applied to B f in place of B, that every f -closed ball B
in B contains a fixed point and that (Fix( f ),B f ∩ Fix( f )) is an S∗ ball space. ��

Let us apply this theorem to the case of topological spaces. Take a compact topological
space X and (X ,B) the associated ball space formed by the collection B of all nonempty
closed sets. If f : X → X is any function, then B f can be taken as the set of all nonempty
closed sets of a (possibly coarser) topology, as arbitrary unions and intersections of f -closed
sets are again f -closed. By Theorem 5.19 and Lemma 6.1, both (X ,B) and (X ,B f ) are S∗
ball spaces (note that B f is nonempty since it contains X ). From part 2) of Theorem 6.8 we
now obtain the following result:

Theorem 6.9 Take a compact topological space X and a function f : X → X. Assume that
every nonempty closed, f -closed set contains a fixed point or a smaller closed, f -closed set.
Then the topology on the set Fix( f ) of fixed points of f having B f ∩Fix( f ) as its collection
of nonempty closed sets is itself compact.

As we are rather interested in the topology on Fix( f ) induced by the original topology of
X , we ask for a criterion on f which guarantees that

B f
X ∩ Fix( f ) = BX ∩ Fix( f ) . (19)

Proposition 6.10 Take an S∗ ball space (X ,B) and a function f : X → X.
1) If BX ∩ Fix( f ) �= ∅ and B0 ∈ BX ∩ Fix( f ) is such that sclBX (B0) is f -closed, then

sclBX (B0) = sclB f
X
(B0) . (20)
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If this holds for every B0 ∈ BX ∩ Fix( f ), then equation (19) holds.
2) Assume that f −1(B) ∈ BX for every B ∈ BX that contains a fixed point. Then Eq. (19)
holds.

Proof 1): Pick B0 ∈ BX ∩ Fix( f ). By part 1) of Lemma 6.2, sclBX (B0) is the smallest of
all balls in BX that contain B0 . Consequently, if sclBX (B0) is f -closed, then it is also the

smallest of all balls in B f
X that contain B0 . Then by part 2) of Lemma 6.2, it must be equal

to sclB f
X
(B0).

Since B0 = sclBX (B0) ∩ Fix( f ) by part 1) of Lemma 6.5, equality (20) implies that

B0 = sclB f
X
(B0) ∩ Fix( f ) ∈ B f

X ∩ Fix( f ). If equality (20) holds for all B0 ∈ BX ∩ Fix( f ),

then this implies the inclusion “⊇” in (19). The converse inclusion follows from the fact that
B f
X ⊆ BX .

2): Pick B0 ∈ BX ∩ Fix( f ). Since B := sclBX (B0) ∈ BX , we have by assumption that
f −1(B) ∈ BX . All fixed points contained in B are also contained in f −1(B), hence B0 ⊆
f −1(B). As B is the smallest ball in BX containing B0 , it follows that B ⊆ f −1(B) and
thus f (B) ⊆ f ( f −1(B)) ⊆ B, i.e., B is f -closed. Hence by part 1) of our proposition, (20)
holds for arbitrary balls B0 ∈ BX ∩ Fix( f ), which implies that (19) holds. ��

The condition of part 2) of this proposition inspires the following definition.

Definition 6.11 A function on a ball space (X ,B) is ball continuous if f −1(B) ∈ BX for
every B ∈ BX .

If the function f is continuous in the topology of X , then it is ball continuous on the
associated ball space (X ,B) and the equation (19) follows from Proposition 6.10. Hence we
obtain:

Theorem 6.12 Take a compact topological space X and a continuous function f : X → X.
Assume that every nonempty closed, f -closed set contains a fixed point or a smaller closed,
f -closed set. Then the induced topology on the set Fix( f ) of fixed points of f is itself compact.

7 Set theoretic operations on ball spaces

7.1 Subsets of ball spaces

Proposition 7.1 Take two ball spaces (X ,B1) and (X ,B2) on the same set X such that
B1 ⊆ B2 . If (X ,B2) is S1 (or Sd1 or Sc1), then also (X ,B1) is S1 (or Sd1 or Sc1, respectively).
This does in general not hold for any other property in the hierarchy.

Proof The first assertion holds since every nest (or directed system, or centered system) in
B1 is also a nest (or directed system, or centered system) in B2 . To prove the second assertion
one constructs an S∗ ball space (X ,B2) and a nest (or directed system, or centered system)
N such that the intersection

⋂N ∈ B2 does not lie inN . Then to obtain B1 one removes all
balls from B2 that lie in

⋂N . ��

7.2 Unions of two ball spaces on the same set

The easy proof of the following proposition is left to the reader:
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Proposition 7.2 If (X ,B1) and (X ,B2) are S1 ball spaces on the same set X, then so is
(X ,B1 ∪ B2). The same holds with S2 or S5 in place of S1 , and for all properties in the
hierarchy if B2 is finite.

Note that the assertion may become false if B2 is infinite and we replace S1 by S3 or S4 .
Indeed, the intersection of a nest in B1 may properly contain maximal balls which do not
remain maximal balls contained in the intersection in B1 ∪ B2 .

It is also clear that in general infinite unions of S1 ball spaces on the same set X will not
again be S1 . For instance, ball spaces with just one ball are always S1 , but by a suitable
infinite union of such spaces one can build nests with empty intersection.

For any ball space (X ,B), we define the ball space (X , B̂) by setting:

B̂ := B ∪ {X} .

Taking B1 = B and B2 = {X} in Proposition 7.2, we obtain:

Corollary 7.3 A ball space (X ,B) is S1 if and only if (X , B̂) is S1 . The same holds for all
properties in the hierarchy in place of S1 .

7.3 Closure under finite unions of balls

Take a ball space (X ,B). By f-un(B) we denote the set of all unions of finitely many balls in
B. The following lemma is inspired by Alexander’s Subbase Theorem:

Lemma 7.4 If S is a maximal centered system of balls in f-un(B) (that is, no subset of f-un(B)

properly containg S is a centered system), then there is a subset S0 of S which is a centered
system in B and has the same intersection as S.

Proof It suffices to prove the following: if B1, . . . , Bn ∈ B such that B1 ∪ · · ·∪ Bn ∈ S, then
there is some i ∈ {1, . . . , n} such that Bi ∈ S.

Suppose that B1, . . . , Bn ∈ B \ S. By the maximality of S this implies that for each
i ∈ {1, . . . , n}, S ∪ {Bi } is not centered. This in turn means that there is a finite subset Si of
S such that

⋂Si ∩ Bi = ∅. But then S1 ∪ · · · ∪ Sn is a finite subset of S such that
⋂

(S1 ∪ · · · ∪ Sn) ∩ (B1 ∪ · · · ∪ Bn) = ∅ .

This yields that B1 ∪ · · · ∪ Bn /∈ S, which proves our assertion. ��
The centered systems of balls in a ball space form a poset under inclusion. Since the union

of every chain of centered systems is again a centered system, this poset is chain complete.
Hence by Corollary 3.2 every centered system is contained in a maximal centered system.
We use this to prove:

Theorem 7.5 If (X ,B) is an Sc1 ball space, then so is (X , f-un(B)).

Proof Take a centered system S ′ of balls in f-un(B). Take a maximal centered system S in
f-un(B) which contains S ′. By Lemma 7.4 there is a centered system S0 of balls in B such
that

⋂S0 = ⋂S ⊆ ⋂S ′. Since (X ,B) is an Sc1 ball space, we have that
⋂S0 �= ∅, which

yields that
⋂S ′ �= ∅. This proves that (X , f-un(B)) is an Sc1 ball space. ��

In [1] it is shown that the theorem becomes false if “Sc1” is replaced by “S1”.
In [1], the notion of “hybrid ball space” is introduced. The idea is to start with the union

of two ball spaces as in Sect. 7.2 and then close under finite unions. The question is whether
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the resulting ball space is an S1 ball space if the original ball spaces are. On symmetri-
cally complete ordered fields K we have two S1 ball spaces: (K ,Bci) and (K ,Bu) where
u is the ultrametric induced by the natural valuation of (K ,<) (cf. Theorem 5.15). But by
Proposition 5.18, (K ,Bci) is not Sc1, hence Theorem 7.5 cannot be applied. Nevertheless,
the following result is proven in [1] by a direct proof. The principles that make it work still
remain to be investigated more closely.

Theorem 7.6 Take a symmetrically complete ordered field K and B to be the set of all convex
sets in K that are finite unions of closed intervals and ultrametric balls. Then (K ,B) is
spherically complete.

7.4 Closure under nonempty intersections of balls

Take a ball space (X ,B). We define:

(a) ic(B) to be the set of all nonempty intersections of arbitrarily many balls in B,
(b) fic(B) to be the set of all nonempty intersections of finitely many balls in B,
(c) ci(B) to be the set of all nonempty intersections of nests in B.
Note that (X ,B) is intersection closed if and only if ic(B) = B, finitely intersection closed
if and only if fic(B) = B, and chain intersection closed if and only if ci(B) = B. If (X ,B) is
S5 , then ci(B) = B. If (X ,B) is S∗ , then ic(B) = B by Proposition 4.10. We note:

Proposition 7.7 Take an arbitrary ball space (X ,B). Then the ball space (X , ic(B)) is inter-
section closed, and (X , fic(B)) is finitely intersection closed.

Proof Take balls Bi ∈ ic(B), i ∈ I , and for every i ∈ I , balls Bi, j ∈ B, j ∈ Ji , such that
Bi = ⋂

j∈Ji Bi, j . Then
⋂

i∈I
Bi =

⋂

i∈I , j∈Ji

Bi, j ∈ ic(B) .

If I is finite and Bi ∈ fic(B) for every i ∈ I , then every Ji can be taken to be finite and thus
the right hand side is a ball in fic(B). ��
In view of these facts, we introduce the following notions.

Definition 7.8 We call (X , ic(B)) the intersection closure of (X ,B), and (X ,fic(B)) the
finite intersection closure of (X ,B). If a chain intersection closed ball space (X ,B′) is
obtained from (X ,B) by a (possibly transfinite) iteration of the process of replacing B by
ci(B), then we call (X ,B′) a chain intersection closure of (X ,B).

Chain intersection closures are studied in [10] and conditions are given for (X , ci(B)) to
be the chain intersection closure of (X ,B). As stated already in part 1) of Theorem 5.4, this
holds for classical ultrametric spaces. This result follows from a more general theorem (cf.
[10, Theorem 2.2]):

Theorem 7.9 If (X ,B) is a tree-like ball space, then (X , ci(B)) is its chain intersection
closure, and if in addition (X ,B) is an S1 ball space, then so is (X , ci(B)).

Since chain intersection closed S1 ball spaces are S5 , we obtain:

Corollary 7.10 If (X ,B) is a tree-like S1 ball space, then (X , ci(B)) is an S5 ball space.
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Intersection closure can also increase the strength of ball spaces:

Theorem 7.11 If (X ,B) is an Sc1 ball space, then its intersection closure (X , ic(B)) is an S∗
ball space.

Proof Take a centered system {Bi | i ∈ I } in (X , ic(B)). Write Bi = ⋂
j∈Ji Bi, j with

Bi, j ∈ B. Then {Bi, j | i ∈ I , j ∈ Ji } is a centered system in (X ,B): the intersection of
finitely many balls Bi1, j1 , . . . , Bin , jn contains the intersection Bi1 ∩ · · · ∩ Bin , which by
assumption is nonempty. Since (X ,B) is Sc1,

⋂
i Bi = ⋂

i, j Bi, j �= ∅. This proves that
(X , ic(B)) is an Sc1 ball space. Since (X , ic(B)) is intersection closed, Theorem 4.9 now
shows that (X , ic(B)) is an S∗ ball space. ��

7.5 Closure under finite unions and under intersections

From Theorems 7.5 and 7.11 we obtain:

Theorem 7.12 Take any ball space (X ,B). If B′ is obtained from B by first closing under
finite unions and then under arbitrary nonempty intersections, then:

1) B′ is closed under finite unions,
2) B′ is intersection closed,
3) if in addition (X ,B) is an Sc1 ball space, then (X ,B′) is an S∗ ball space.

Proof 1): Take S1, . . . , Sn ⊆ f-un(B) such that
⋂

Si �= ∅ for 1 ≤ i ≤ n. Then
(⋂

S1
)

∪ · · · ∪
(⋂

Sn
)

=
⋂

{B1 ∪ · · · ∪ Bn | Bi ∈ Si for 1 ≤ i ≤ n} .

Since Bi ∈ f-un(B) for 1 ≤ i ≤ n, we have that also B1 ∪ · · · ∪ Bn ∈ f-un(B). This implies
that (

⋂
S1) ∪ · · · ∪ (

⋂
Sn) ∈ B′.

2): Since B′ is an intersection closure, it is intersection closed.
3): By Theorems 7.5 and 7.11 , (X ,B′) is an S∗ ball space. ��

7.6 The topology associated with a ball space

Take any ball space (X ,B). Theorem 7.12 tells us that in a canonical way we can associate
with it a ball space (X ,B′) which is closed under nonempty intersections and under finite
unions. If we also add X and ∅ to B′, then we obtain the collection of closed sets for a
topology whose associated ball space is (X ,B′ ∪ {X}).
Theorem 7.13 The topology associated with a ball space (X ,B) is compact if and only if
(X ,B) is an Sc1 ball space.

Proof The “if” direction of the equivalence follows from Theorems 7.12 and 5.19 . The other
direction follows from Theorem 5.19 and Proposition 7.1. ��
Example: the p-adics.
The field Qp of p-adic numbers together with the p-adic valuation vp is spherically com-
plete. (This fact can be used to prove the original Hensel’s Lemma via the ultrametric fixed
point theorem, see [23], or even better, via the ultrametric attractor theorem, see [12].) The
associated ball space is a classical ultrametric ball space and hence tree-like. It follows from
Proposition 4.5 that it is an Sc1 ball space. Hence by Theorem 7.13 the topology derived from
this ball space is compact.
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However,Qp is known to be locally compact, but not compact under the topology induced
by the p-adic metric. But in this topology the ultrametric balls Bα(x) are basic open sets,
whereas in the topology derived from the ultrametric ball space they are closed and their
complements are the basic open sets. It follows that the balls Bα(x) are not open. It thus turns
out that the usual p-adic topology on Qp is strictly finer than the one we derived from the
ultrametric ball space.

8 Tychonoff type theorems

8.1 Products in ball spaces

In [1] it is shown that the category consistingof all ball spaces togetherwith the ball continuous
functions (see Definition 6.11) as morphisms allows products and coproducts. The products
can be defined as follows.

Assume that (X j ,B j ) j∈J is a family of ball spaces. Recall that B̂ j = B j ∪ {X j }.
Definition 8.1 Weset X = ∏

j∈J X j anddefine theproduct (X j ,B j )
pr
j∈J to be (X , (B j )

pr
j∈J ),

where

(B j )
pr
j∈J :=

⎧
⎨

⎩

∏

j∈J

B j | for some k ∈ J , Bk ∈ Bk and ∀ j �= k : Bj = X j

⎫
⎬

⎭
.

Further, we define the topological product (X j ,B j )
tpr
j∈J to be (X , (B j )

tpr
j∈J ), where

(B j )
tpr
j∈J :=

⎧
⎨

⎩

∏

j∈J

B j | ∀ j ∈ J : Bj ∈ B̂ j and Bj = X j for almost all j

⎫
⎬

⎭
,

and the box product (X j ,B j )
bpr
j∈J of the family to be (X , (B j )

bpr
j∈J ), where

(B j )
bpr
j∈J :=

⎧
⎨

⎩

∏

j∈J

B j | ∀ j ∈ J : Bj ∈ B j

⎫
⎬

⎭
.

Since the sets Bi are nonempty, it follows that B �= ∅, and as no ball in any Bi is empty, it
follows that no ball in (B j )

pr
j∈J , (B j )

tpr
j∈J and (B j )

bpr
j∈J is empty.

We leave the proof of the following observations to the reader:

Proposition 8.2 a)We have that

(B j )
pr
j∈J ⊆ (B j )

tpr
j∈J = (B̂ j )

tpr
j∈J ⊆ (B̂ j )

bpr
j∈J .

b) The following equations hold:

fic
(
(B̂ j )

pr
j∈J

)
= fic

(
(B j )

tpr
j∈J

)
= (fic(B j ))

tpr
j∈J ,

ic
(
(B̂ j )

pr
j∈J

)
= ic

(
(B j )

tpr
j∈J

)
= (ic(B̂ j ))

bpr
j∈J .

The following theorem presents our main results on the various products.

Theorem 8.3 The following assertions are equivalent:
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a) the ball spaces (X j ,B j ), j ∈ J , are spherically complete,
b) their box product is spherically complete,
c) their topological product is spherically complete.
d) their product is spherically complete.

The same holds with “Sd1” and “Sc1” in place of “spherically complete”.
The equivalence of a) and b) also holds for all other properties in the hierarchy, and the

equivalence of a) and d) also holds for S2 , S3 , S4 and S5 .

Proof Take ball spaces (X j ,B j ), j ∈ J , and in every B j take a set of balls {Bi, j | i ∈ I }.
Then we have:

⋂

i∈I

∏

j∈J

Bi, j =
∏

j∈J

⋂

i∈I
Bi, j . (21)

If N = (
∏

j∈J Bi, j )i∈I is a nest of balls in (
∏

j∈J X j , (B j )
bpr
j∈J ), then for every j ∈ J , also

(Bi, j )i∈I must be a nest in (X j ,B j ).
a) ⇒ b): Assume that all ball spaces (X j ,B j ), j ∈ J , are spherically complete. Then for
every j ∈ J , (Bi, j )i∈I has nonempty intersection. By (21) it follows that

⋂N �= ∅. This
proves the implication a) ⇒ b).
b) ⇒ a): Assume that (

∏
j∈J X j , (B j )

bpr
j∈J ) is spherically complete. Take j0 ∈ J and a

nest of balls N = (Bi )i∈I in (X j0 ,B j0). For each i ∈ I , set Bi, j0 = Bi and Bi, j = B0, j

for j �= j0 where B0, j is an arbitrary fixed ball in B j . Then (
∏

j∈J Bi, j )i∈I is a nest in

(
∏

j∈J X j , (B j )
bpr
j∈J ). By assumption,

∅ �=
⋂

i∈I

∏

j∈J

Bi, j =
(

⋂

i∈I
Bi

)

×
⎛

⎝
∏

j0 �= j∈J

B0, j

⎞

⎠ ,

whence
⋂

i∈I Bi �= ∅. We have shown that for every j ∈ J , (X j ,B j ) is spherically complete.
This proves the implication b) ⇒ a).
a) ⇒ c): Assume that all ball spaces (X j ,B j ), j ∈ J , are spherically complete. Then by
Corollary 7.3, all ball spaces (X j , B̂ j ), j ∈ J , are spherically complete. By the already

proven implication a) ⇒ b), their box product (X j , B̂ j )
bpr
j∈J is spherically complete. By part

a) of Proposition 8.2 together with Proposition 7.1, (X ,B)
tpr
j∈J is spherically complete, too.

c) ⇒ d): Again, by part a) of Proposition 8.2 together with Proposition 7.1, the product of
the ball spaces (X j , B̂ j ), j ∈ J , is spherically complete, and as the product of the ball spaces
(X j ,B j ), j ∈ J , is a subspace of this, it is also spherically complete.
d) ⇒ a): Same as the proof of b) ⇒ a), where we now take B0, j = X j .

These proofs also work when “spherically complete” is replaced by “Sd1” or “S
c
1”, as can

be deduced from the following observations:

1) {∏ j∈J Bi, j | i ∈ I } is a centered system if and only if all sets {Bi, j | i ∈ I }, j ∈ J , are.
2) If {∏ j∈J Bi, j | i ∈ I } is a directed system, then so are {Bi, j | i ∈ I } for all j ∈ J .
3) Fix j0 ∈ J . If {Bi, j0 | i ∈ I } is a directed system, then so is {∏ j∈J Bi, j | i ∈ I } when

the balls are chosen as in the proof of b) ⇒ a) or d) ⇒ a).

A proof of the equivalence of a) and b) similar to the above also holds for all other
properties in the hierarchy. For the properties S2 , S3, S4 and S5 , one uses the fact that by
definition,

∏
j∈J B j is a ball in (B j )

bpr
j∈J if and only if every Bj is a ball in B j and that

4)
∏

j∈J B ′
j is a ball contained in

∏
j∈J B j if and only if every B ′

j is a ball contained in Bj ,
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5)
∏

j∈J B ′
j is a maximal (or largest) ball contained in

∏
j∈J B j if and only if every B ′

j is
a maximal (or largest, respectively) ball contained in Bj .

��
Example 8.4 There are S∗ ball spaces (X j ,B j ), j ∈ N, such that the ball space (X , (B j )

tpr
j∈N)

is not even S2 . Indeed, we choose a set Y with at least two elements, and for every j ∈ N

we take X j = Y and B j = {B} with ∅ �= B �= Y . Then trivially, all ball spaces (X j ,B j ) are
S∗. For all i, j ∈ N, define

Bi := B × B × · · · × B
︸ ︷︷ ︸

i times

×Y × Y × · · · ∈ (B j )
tpr
j∈N.

Then N = {Bi | i ∈ I } is a nest of balls in (B j )
tpr
j∈N, but the intersection

⋂N = ∏
j∈N B

does not contain any ball in this ball space.

Example 8.5 There are S∗ ball spaces (X ,B j ), j = 1, 2, such that the ball space
(X , (B j )

pr
j∈{1,2}) is not S

c
2. Indeed, we choose again a set Y with at least two elements and

take B1 = B2 = {B} with ∅ �= B �= Y . Then as in the previous example, (X j ,B j ), j = 1, 2
are S∗ ball spaces. Further, (B j )

pr
j∈{1,2} = {Y ×Y , B×Y , Y × B}, which is a centered system

whose intersection does not contain any ball.

8.2 The ultrametric case

If (X j , u j ), j ∈ J are ultrametric spaces with value sets u j X j = {u j (a, b) | a, b ∈ X j },
and if Bj = Bγ j (a j ) is an ultrametric ball in (X j , u j ) for each j , then

∏

j∈J

B j = {(b j ) j∈J | ∀ j ∈ J : u j (a j , b j ) ≤ γ j } .

This shows that the box product is the ultrametric ball space for the product ultrametric on∏
j∈J X j which is defined as

uprod((a j ) j∈J , (b j ) j∈J ) = (u j (a j , b j )) j∈J ∈
∏

j∈J

u j X j .

The latter is a poset, but in general not totally ordered, even if all u j X j are totally ordered
and even if J is finite. So the product ultrametric is a natural example for an ultrametric with
partially ordered value set.

If the index set J is finite and all u j X j are contained in some totally ordered set � such
that all of them have a common least element 0 ∈ �, then we can define an ultrametric on
the product

∏
j∈J X j which takes values in

⋃
j∈J u j X j ⊆ � as follows:

umax((a j ) j∈J , (b j ) j∈J ) = max
j

u j (a j , b j )

for all (a j ) j∈J , (b j ) j∈J ∈ ∏
j∈J X j . We leave it to the reader to prove that this is indeed an

ultrametric. The corresponding ultrametric balls are the sets of the form

{(b j ) j∈J | ∀ j ∈ J : u j (a j , b j ) ≤ γ }
for some (a j ) j∈J ∈ ∏

j∈J X j and γ ∈ ⋃
j∈J u j X j . Now the value set is totally ordered.

It turns out that the collection of balls so obtained is a (usually proper) subset of the full
ultrametric ball space of the product ultrametric. Therefore, if all (X j , u j ) are spherically
complete, then so is (

∏
j∈J X j , umax) by Theorem 8.3 and Proposition 7.1.
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Theorem 8.6 Take ultrametric spaces (X j , u j ), j ∈ J . Then the ultrametric space
(
∏

j∈J X j , uprod) is spherically complete if and only if all (X j , u j ), j ∈ J , are spherically
complete.

If the index set J is finite and all u j X j are contained in some totally ordered set � such
that all of them have a common least element, then the same also holds for umax in place of
uprod .

Proof As was remarked earlier, the ultrametric ball space of the product ultrametric is the
box product of the ultrametric ball spaces of the ultrametric spaces (X j , u j ). Thus the first
part of the theorem is a corollary to Theorem 8.3.

To prove the second part of the theorem, it suffices to prove the converse of the implication
we have stated just before the theorem. Assume that the space (

∏
j∈J X j , umax) is spherically

complete and choose any j0 ∈ J . Let N j0 = {Bγi (ai, j0) | i ∈ I } be a nest of balls in
(X j0 , u j0). Further, for every j ∈ J \ { j0} choose some element a j ∈ X j and for every i ∈ I
set ai, j := a j and

Bi := {(b j ) j∈J ∈
∏

j∈J

X j | umax((ai, j ) j∈J , (b j ) j∈J ) ≤ γi }

= {(b j ) j∈J ∈
∏

j∈J

X j | ∀ j ∈ J : u j (ai, j , b j ) ≤ γi } .

In order to show that N := {Bi | i ∈ I } is a nest of balls in (
∏

j∈J X j , umax), we have
to show that any two balls Bi , Bk , i, k ∈ I , have nonempty intersection. Assume without
loss of generality that γi ≤ γk . As {Bγi (ai, j0) | i ∈ I } is a nest of balls, we have that
ai, j0 ∈ Bγk (ak, j0). It follows that u j0(ak, j0 , ai, j0) ≤ γk , and since ai, j = a j = ak, j for every
j ∈ J \ { j0},

(ai, j ) j∈J ∈ Bi ∩ {(b j ) j∈J ∈
∏

j∈J

X j | ∀ j ∈ J : u j (ak, j , b j ) ≤ γk} = Bi ∩ Bk .

As (
∏

j∈J X j , umax) is assumed to be spherically complete, there is some (z j ) j∈J ∈ ⋂N ;
it satisfies u j (ai, j , z j ) ≤ γi for all i ∈ I and all j ∈ J . In particular, taking j = j0 , we find
that z j0 ∈ Bγi (ai, j0) for all i ∈ I and thus, z j0 ∈ ⋂N j0 . ��

8.3 The topological case

In which way does Tychonoff’s theorem follow from its analogue for ball spaces? The
problem in the case of topological spaces is that the topological product ball space we have
defined, while containing only closed sets of the product, does not contain all of them, as it
is not necessarily closed under finite unions and arbitrary intersections. We have to close it
under these operations.

If the topological spaces Xi , i ∈ I , are compact, then their associated ball spaces (Xi ,Bi )

are Sc1 (cf. Theorem 5.19). By Theorem 8.3 their topological product is also Sc1. Theorem 7.12

shows that the product topology of the topological spaces Xi is the closure of (B j )
tpr
j∈J under

finite unions and under arbitrary nonempty intersections, when ∅ and the whole space are
adjoined. By Theorem 7.13, this topology is compact.

We have shown that Tychonoff’s Theorem follows from its ball spaces analogue.
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2. Błaszkiewicz, P., Ćmiel, H., Linzi, A., Szewczyk, P.: Caristi–Kirk and Oettli–Théra ball spaces, and
applications. J. Fixed Point Theory Appl. 21(no. 4), Paper No. 98 (2019)

3. Bourbaki, N.: Sur le théorème de Zorn. Arch. Math. 2, 434–437 (1949)
4. Brunner, N.: Topologische Maximalprinzipien (German) [Topological maximal principles]. Z. Math.

Logik Grundlag. Math. 33, 135–139 (1987)
5. Cohn, P.M.: Universal algebra. Harper and Row, New York (1965)
6. Jachymski, J.R.: Caristi’s fixed point theorem and selections of set-valued contractions. J. Math. Anal.

Appl. 227, 55–67 (1998)
7. Jachymski, J.R.: Order-Theoretic Aspects of Metric Fixed Point Theory, Handbook of Metric Fixed Point

Theory, pp. 613–641. Kluwer Academic Publisher, Dordrecht (2001)
8. Kirk, W.A.: Metric fixed point theory: a brief retrospective. Fixed Point Theory Appl. (2015) (article 215)
9. Kozlowski, W.M.: A purely metric proof of the Caristi fixed point theorem. Bull. Aust. Math. Soc. 95,

333–337 (2017)
10. Kubis, W., Kuhlmann, F.-V.: Chain intersection closures. Topol. Appl. 262, 11–19 (2019)
11. Kubis, W., Kuhlmann, F.-V.: Chain union closures. http://math.usask.ca/fvk/ucubs.pdf (preprint)
12. Kuhlmann, F.-V.: Maps on ultrametric spaces, Hensel’s Lemma, and differential equations over valued

fields. Commun. Alg. 39, 1730–1776 (2011)
13. Kuhlmann, F.-V., Kuhlmann, K.: A common generalization ofmetric and ultrametric fixed point theorems.

Forum Math. 27(2015), 303–327; and: Correction to “A common generalization ofmetric, ultrametric
and topological fixed point theorems”, ForumMath. 27 (2015), 329–330; alternative corrected version
available at: http://math.usask.ca/fvk/GENFPTAL.pdf

14. Kuhlmann, F.-V., Kuhlmann, K.: Fixed point theorems for spaces with a transitive relation. Fixed Point
Theory 18, 663–672 (2017)

15. Kuhlmann, F.-V., Kuhlmann, K., Paulsen, M.: The Caristi–Kirk fixed point theorem from the point of
view of ball spaces. J. Fixed Point Theory Appl. 20, Art. 107 (2018)

16. Kuhlmann, F.-V., Kuhlmann, K., Shelah, S.: Symmetrically complete ordered sets, Abelian Groups and
Fields. Israel J. Math. 208, 261–290 (2015)

17. Kuhlmann, F.-V., Kuhlmann, K., Sonallah, F.: Coincidence Point Theorems for Ball Spaces and Their
Applications, to appear in: Ordered Algebraic Structures and Related Topics, CIRM, Luminy, France,
October 12–16 2015, Contemporary Mathematics, AMS (2015)
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