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Abstract
In this article, we present some new improvements of Jensen’s type inequalities via 4-convex
and Green functions. These improvements are demonstrated in discrete as well as in integral
versions. The aforesaid results enable us to give some improvements of Jensen’s and the
Jensen–Steffensen inequalities. Also, we present some improvements of the reverse Jensen’s
and the Jensen–Steffensen inequalities. Then as consequences of the improved Jensen’s
inequality, we deduce some newbounds for the power, geometric and quasi-arithmeticmeans,
also obtain bounds for the Hermite–Hadamard gap and improvements of the Hölder inequal-
ity. Finally as applications of the improved Jensen’s inequality, we present some new bounds
for various divergences and Zipf–Mandelbrot entropy.
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gildapeca@gmail.com

Josip Pečarić
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1 Introduction and preliminaries

Jensen’s inequality is one of the most significant inequality in the existing literature of math-
ematical inequalities for convex functions. Several well known mathematical inequalities
for example Hölder’s, Minkowski’s, Ky Fan’s, Levinson’s, Hermite–Hadamard and Young’s
inequalities etc can be deduced from this inequality. This inequality can be utilized for solv-
ing certain optimization problems in modern analysis. In more detail, this inequality can be
used for estimation of Csiszár divergence and Zipf–Mandelbrot entropy [1,4,5,7,15,16], it
helps to investigate the stability of time-delayed systems [18], also dynamically consistent
nonlinear evaluations in probability space, Rao-Blackwell estimates for certain parameters
in their respective probability spaces and super linear expectations with its applications in
economics can be investigated through this inequality [19,20,27]. Because of its significant
role in modern applied analysis, several mathematicians have obtained some useful results
related to Jensen’s inequality in the last couple of decades [2,6,8–12,14,17,21,22,24]. In what
follows, we present some improvements of Jensen’s type inequalities in discrete as well as
in integral form via 4-convex and Green functions.

In the following theorem, the discrete form of Jensen’s inequality is givenwhile its integral
version in Riemann sense can be found in [15].

Theorem 1.1 Let T : [ρ1, ρ2] → R be a convex function, sk ∈ [ρ1, ρ2], uk ≥ 0 for k =
1, 2, . . . ,m with Um = ∑m

k=1 uk > 0, then

T
( 1

Um

m∑

k=1

uksk
)

≤ 1

Um

m∑

k=1

ukT (sk). (1.1)

About Jensen’s inequality, a question naturally comes into the mind that: is it possible to
relax the condition of non-negativity of uk (k = 1, 2, . . . ,m) at the expense of restricting sk
(k = 1, 2, . . . ,m) more severely?. The answer of this question was given by Steffensen in
the following theorem [26].

Theorem 1.2 Let T : [ρ1, ρ2] → R be a convex function, sk ∈ [ρ1, ρ2], uk ∈ R, k =
1, 2, . . . ,m. If s1 ≤ s2 ≤ · · · ≤ sm or s1 ≥ s2 ≥ · · · ≥ sm and

0 ≤
k∑

γ=1

uγ ≤
m∑

γ=1

uγ , k = 1, 2, . . . ,m,

m∑

γ=1

uγ > 0,

then (1.1) holds.

The integral form of the above theorem can be seen in [13].
The following reverse of Jensen’s inequality has been given in [25, p. 83]:

Theorem 1.3 Let T : [ρ1, ρ2] → R be a convex function, sk ∈ [ρ1, ρ2], u1 > 0, uk ≤ 0 for
k = 2, 3, . . . ,m with Um = ∑m

k=1 uk > 0. Also, let 1
Um

∑m
k=1 uksk ∈ [ρ1, ρ2], then

T
( 1

Um

m∑

k=1

uksk
)

≥ 1

Um

m∑

k=1

ukT (sk). (1.2)

The following theorem presents a reverse of the Jensen–Steffensen inequality, also given in
[25, p. 83]:

Theorem 1.4 Let T : [ρ1, ρ2] → R be a convex function, sk ∈ [ρ1, ρ2], uk ∈ R

for k = 1, 2, . . . ,m. Let Uk = ∑k
j=1 u j for k = 1, 2, . . . ,m with Um > 0 and
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1
Um

∑m
k=1 uksk ∈ [ρ1, ρ2]. If the m-tuple (s1, s2, . . . , sm) is monotonic, and there exists

a number p ∈ {1, 2, ...m} such that

Uk ≤ 0 for k < p and Um −Uk−1 ≤ 0 for k > p,

then (1.2) holds.

To derive the main results, we need the following Green functions Gi for i = 1, 2, 3, 4, 5,
defined on [ρ1, ρ2] × [ρ1, ρ2] [23]:

G1(z, x) =
{

ρ1 − x, ρ1 ≤ x ≤ z,
ρ1 − z, z ≤ x ≤ ρ2.

(1.3)

G2(z, x) =
{
z − ρ2, ρ1 ≤ x ≤ z,
x − ρ2, z ≤ x ≤ ρ2.

(1.4)

G3(z, x) =
{
z − ρ1, ρ1 ≤ x ≤ z,
x − ρ1, z ≤ x ≤ ρ2.

(1.5)

G4(z, x) =
{

ρ2 − x, ρ1 ≤ x ≤ z,
ρ2 − z, z ≤ x ≤ ρ2.

(1.6)

G5(z, x) =
{

(z−ρ2)(x−ρ1)
ρ2−ρ1

, ρ1 ≤ x ≤ z,
(x−ρ2)(z−ρ1)

ρ2−ρ1
, z ≤ x ≤ ρ2.

(1.7)

These functions are continuous and convex with respect to both the variables z and x . Also,
the following identities hold, for a function T ∈ C2[ρ1, ρ2] [23]:
Lemma 1.5 Let T ∈ C2[ρ1, ρ2], then the following identities hold.

T (z) = T (ρ1) + (z − ρ1)T
′(ρ2) +

∫ ρ2

ρ1

G1(z, x)T
′′(x)dx, (1.8)

T (z) = T (ρ2) + (z − ρ2)T
′(ρ1) +

∫ ρ2

ρ1

G2(z, x)T
′′(x)dx, (1.9)

T (z) = T (ρ2) + (z − ρ1)T
′(ρ1) − (ρ2 − ρ1)T

′(ρ2) +
∫ ρ2

ρ1

G3(z, x)T
′′(x)dx,

(1.10)

T (z) = T (ρ1) + (ρ2 − ρ1)T
′(ρ1) − (ρ2 − z)T ′(ρ2) +

∫ ρ2

ρ1

G4(z, x)T
′′(x)dx,

(1.11)

T (z) = ρ2 − z

ρ2 − ρ1
T (ρ1) + z − ρ1

ρ2 − ρ1
T (ρ2) +

∫ ρ2

ρ1

G5(z, x)T
′′(x)dx, (1.12)

where Gi , for i = 1, 2, 3, 4, 5 are given in (1.3)–(1.7) respectively.

In order to present the main results, the following inequality (1.13) will be useful, which is
a simple consequence of Jensen’s inequality.

Lemma 1.6 Let T : [ρ1, ρ2] → R be a convex function and p(x) be a nonnegative weight
function with

∫ ρ2
ρ1

p(x)dx > 0, then

T

(
1

∫ ρ2
ρ1

p(x)dx

∫ ρ2

ρ1

xp(x)dx

)

≤ 1
∫ ρ2
ρ1

p(x)dx

∫ ρ2

ρ1

T (x)p(x)dx . (1.13)
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2 Main results

We begin to present our first main result.

Theorem 2.1 Let T ∈ C2[ρ1, ρ2] be a 4-convex function and sk ∈ [ρ1, ρ2], uk ∈ R for
k = 1, 2, . . . ,m with Um := ∑m

k=1 uk �= 0 and 1
Um

∑m
k=1 uksk ∈ [ρ1, ρ2]. Also, let Gi (i =

1, 2, 3, 4, 5) be as defined in (1.3)–(1.7). If

1

Um

m∑

k=1

ukGi (sk, x) − Gi

(
1

Um

m∑

k=1

uksk, x

)

≥ 0, for i ∈ {1, 2, 3, 4, 5}, (2.14)

then

1

Um

m∑

k=1

ukT (sk) − T

(
1

Um

m∑

k=1

uksk

)

≤ T ′′(ρ2) − T ′′(ρ1)
6(ρ2 − ρ1)

(
1

Um

m∑

k=1

uks
3
k −

( 1

Um

m∑

k=1

uksk
)3

)

+ρ2T ′′(ρ1) − ρ1T ′′(ρ2)
2(ρ2 − ρ1)

⎛

⎝ 1

Um

m∑

k=1

uks
2
k −

(
1

Um

m∑

k=1

uksk

)2
⎞

⎠ . (2.15)

If the reverse inequality holds in (2.14), then the reverse inequality holds in (2.15).
If T is 4-concave function then the reverse inequality holds in (2.15).

Proof Using (1.8)-(1.12) in 1
Um

∑m
k=1 ukT (sk) − T

(
1
Um

∑m
k=1 uksk

)
, we obtain

1

Um

m∑

k=1

ukT (sk) − T

(
1

Um

m∑

k=1

uksk

)

=
∫ ρ2

ρ1

(
1

Um

m∑

k=1

ukGi (sk, x) − Gi

(
1

Um

m∑

k=1

uksk, x

))

T ′′(x)dx . (2.16)

Since (2.14) holds and T is 4-convex that is T ′′ is convex. Therefore by applying definition
of convexity in the right hand side of (2.16) we obtain

1

Um

m∑

k=1

ukT (sk) − T

(
1

Um

m∑

k=1

uksk

)

≤ T ′′(ρ1)
ρ2 − ρ1

∫ ρ2

ρ1

(
1

Um

m∑

k=1

ukGi (sk, x) − Gi

(
1

Um

m∑

k=1

uksk, x

))

(ρ2 − x)dx

+ T ′′(ρ2)
ρ2 − ρ1

∫ ρ2

ρ1

(
1

Um

m∑

k=1

ukGi (sk, x) − Gi

(
1

Um

m∑

k=1

uksk, x

))

(x − ρ1)dx . (2.17)
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Now, if T (x) = ρ2x2

2 − x3
6 , then T ′′(x) = ρ2 − x and using (2.16) for these functions we get

∫ ρ2

ρ1

(
1

Um

m∑

k=1

ukGi (sk, x) − Gi

(
1

Um

m∑

k=1

uksk, x

))

(ρ2 − x)dx

= ρ2

2

⎛

⎝ 1

Um

m∑

k=1

uks
2
k −

(
1

Um

m∑

k=1

uksk

)2
⎞

⎠ − 1

6

⎛

⎝ 1

Um

m∑

k=1

uks
3
k −

(
1

Um

m∑

k=1

uksk

)3
⎞

⎠ .

(2.18)

Similarly, using (2.16) for T (x) = x3
6 − ρ1x2

2 , we get

∫ ρ2

ρ1

(
1

Um

m∑

k=1

ukGi (sk, x) − Gi

(
1

Um

m∑

k=1

uksk, x

))

(x − ρ1)dx

= 1

6

⎛

⎝ 1

Um

m∑

k=1

uks
3
k −

(
1

Um

m∑

k=1

uksk

)3
⎞

⎠ − ρ1

2

⎛

⎝ 1

Um

m∑

k=1

uks
2
k −

(
1

Um

m∑

k=1

uksk

)2
⎞

⎠ .

(2.19)

Using (2.18) and (2.19) in (2.17), we get (2.15). �	
As an application of Theorem 2.1, we give an improvement of Jensen’s inequality.

Theorem 2.2 Let T ∈ C2[ρ1, ρ2] be a 4-convex function and sk ∈ [ρ1, ρ2], uk ≥ 0 for
k = 1, 2, . . . ,m with

∑m
k=1 uk = Um > 0, then (2.15) holds. If T is 4-concave function then

the reverse inequality holds in (2.15).

Proof Since uk ≥ 0 for all k withUm > 0 and the functions Gi are convex for all i , therefore
by Jensen’s inequality, the inequality (2.14) holds. So applying Theorem 2.1 for these facts,
we have (2.15). �	
As applications of Theorem 2.2, we give two new upper bounds for the Hölder difference.

Corollary 2.3 Let q > 1, p /∈ (2, 3) such that 1
q + 1

p = 1. Also, let [ρ1, ρ2] be
a positive interval and (a1, a2, . . . , am), (b1, b2, . . . , bm) be two positive m-tuples with
∑m

k=1 akbk∑m
k=1 b

q
k

, akb
− q

p
k ∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

(
m∑

k=1

a p
k

) 1
p
(

m∑

k=1

bqk

) 1
q

−
m∑

k=1

akbk

≤
(
p(p − 1)(ρ p−2

2 − ρ
p−2
1 )

6(ρ2 − ρ1)

⎛

⎝ 1
∑m

k=1 b
q
k

m∑

k=1

a3k b
1−2 q

p
k −

(
1

∑m
k=1 b

q
k

m∑

k=1

akbk

)3
⎞

⎠

+ p(p − 1)(ρ2ρ
p−2
1 − ρ1ρ

p−2
2 )

2(ρ2 − ρ1)

(
1

∑m
k=1 b

q
k

m∑

k=1

a2k b
1− q

p
k

−
(

1
∑m

k=1 b
q
k

m∑

k=1

akbk

)2 )) 1
p m∑

k=1

bqk . (2.20)
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Proof Using (2.15) for T (x) = x p, uk = bqk and sk = akb
− q

p
k , we derive

⎛

⎝

(
m∑

k=1

a p
k

) (
m∑

k=1

bqk

)p−1

−
(

m∑

k=1

akbk

)p
⎞

⎠

1
p

≤
(
p(p − 1)(ρ p−2

2 − ρ
p−2
1 )

6(ρ2 − ρ1)

⎛

⎝ 1
∑m

k=1 b
q
k

m∑

k=1

a3k b
1−2 q

p
k −

(
1

∑m
k=1 b

q
k

m∑

k=1

akbk

)3
⎞

⎠

+ p(p − 1)(ρ2ρ
p−2
1 − ρ1ρ

p−2
2 )

2(ρ2 − ρ1)

(
1

∑m
k=1 b

q
k

m∑

k=1

a2k b
1− q

p
k

−
(

1
∑m

k=1 b
q
k

m∑

k=1

akbk

)2 )) 1
p m∑

k=1

bqk . (2.21)

By utilizing the inequality ξ e − ζ e ≤ (ξ − ζ )e, 0 ≤ ζ ≤ ξ, e ∈ [0, 1] for ξ =
(∑m

k=1 a
p
k

)(∑m
k=1 b

q
k

)p−1
, ζ =

(∑m
k=1 akbk

)p
and e = 1

p , we obtain

(
m∑

k=1

a p
k

) 1
p
(

m∑

k=1

bqk

) 1
q

−
m∑

k=1

akbk

≤
⎛

⎝

(
m∑

k=1

a p
k

) (
m∑

k=1

bqk

)p−1

−
(

m∑

k=1

akbk

)p
⎞

⎠

1
p

. (2.22)

Now using (2.22) in (2.21), we get (2.20). �	

Corollary 2.4 Let 0 < p < 1, q = p
p−1 such that 1

p /∈ (2, 3). Also, [ρ1, ρ2] be
a positive interval and (a1, a2, . . . , am), (b1, b2, . . . , bm) be two positive m-tuples with
∑m

k=1 a
p
k∑m

k=1 b
q
k
, a p

k b
−q
k ∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

m∑

k=1

akbk −
(

m∑

k=1

a p
k

) 1
p
(

m∑

k=1

bqk

) 1
q

≤
(1 − p)

(

ρ
1
p −2

2 − ρ
1
p −2

1

)

6p2 (ρ2 − ρ1)

(
m∑

k=1

a3pk b−2q
k −

(∑m
k=1 a

p
k

)3

(∑m
k=1 b

q
k

)2

)

+
(1 − p)

(

ρ2ρ
1
p −2

1 − ρ1ρ
1
p −2

2

)

2p2 (ρ2 − ρ1)

( m∑

k=1

a2pk b−q
k −

(∑m
k=1 a

p
k

)2

(∑m
k=1 b

q
k

)

)

. (2.23)

Proof For the given values of p, the function T (x) = x
1
p for x ∈ [ρ1, ρ2], is convex as well

as 4-convex. Therefore by using (2.15) for T (x) = x
1
p , uk = bqk and sk = a p

k b
−q
k , we get

(2.23). �	
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Definition 2.5 Let u = (u1, u2, . . . , um) and s = (s1, s2, . . . , sm) be two positive m-tuples
with Um = ∑m

k=1 uk . Then the power mean of order α ∈ R is defined as

Mα(u, s) =
⎧
⎨

⎩

(
1
Um

∑m
k=1 uks

α
k

) 1
α

, α �= 0,
(∏m

k=1 s
uk
k

) 1
Um , α = 0.

As an application of Theorem 2.2, in the following corollary we present a bound for the
power mean.

Corollary 2.6 Let 0 < ρ1 < ρ2 and u = (u1, u2, . . . , um), s = (s1, s2, . . . , sm) be two
positive m-tuples with Um = ∑m

k=1 uk . Also, let r , t be two nonzero real numbers such that

(i) if r > 0 with 3r ≤ t or r ≤ t ≤ 2r or t < 0, then we have

Mt
t (u, s) − Mt

r (u, s)

≤ t(t − r)

6r2(ρ2 − ρ1)

(

ρ
t
r −2
2 − ρ

t
r −2
1

)
(M3r

3r (u, s) − M3r
r (u, s)

)

+ t(t − r)

2r2(ρ2 − ρ1)

(

ρ2ρ
t
r −2
1 − ρ1ρ

t
r −2
2

)
(M2r

2r (u, s) − M2r
r (u, s)

)
. (2.24)

(ii) If r < 0 with 3r ≥ t or r ≥ t ≥ 2r or t > 0, then (2.24) holds.
(iii) If r > 0 with 2r < t < 3r or r < 0 with 3r < t < 2r , then the reverse inequality holds

in (2.24).

Proof (i) Let T (x) = x
t
r for x ∈ [ρ1, ρ2], then the function T is 4-convex. Therefore using

(2.15) for T (x) = x
t
r and sk → srk , we get (2.24).

(ii) Also, in this case the function T (x) = x
t
r for x ∈ [ρ1, ρ2] is 4-convex, therefore adopting

the procedure of part (i), we obtain (2.24).
(iii) For such values of r , t the function T (x) = x

t
r for x ∈ [ρ1, ρ2] is 4-concave. Thus

following the procedure of part (i) but for T as a 4-concave function, we obtain the
reverse inequality in (2.24).

�	
The following corollary provides an interesting relation between different means as an appli-
cation of Theorem 2.2.

Corollary 2.7 Let 0 < ρ1 < ρ2 and u = (u1, u2, . . . , um), s = (s1, s2, . . . , sm) be two
positive m-tuples with Um = ∑m

k=1 uk, then

(i)
M1(u, s)
M0(u, s)

≤ exp

(
ρ2
1 + ρ1ρ2 + ρ2

2

2ρ2
1ρ

2
2

(M2
2(u, s) − M2

1(u, s)
) − ρ1 + ρ2

6ρ2
1ρ

2
2

(M3
3(u, s) − M3

1(u, s)
)
)

.

(2.25)

(i i)M1(u, s) − M0(u, s)

≤ eρ2 − eρ1

6(ρ2 − ρ1)

(
1

Um

m∑

k=1

uk ln
3 sk − ln3 M0(u, s)

)

−ρ2eρ1 − ρ1eρ2

2(ρ2 − ρ1)

(
1

Um

m∑

k=1

uk ln
2 sk − ln2 M0(u, s)

)

. (2.26)

123
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Proof (i) Let T (x) = − ln x for x ∈ [ρ1, ρ2], then T is 4-convex. Therefore using (2.15)
for this function, we get (2.25).

(ii) Using (2.15) for the 4-convex function T (x) = ex , x ∈ [ρ1, ρ2] and sk = ln sk, we get
(2.26).

�	
Definition 2.8 Let u = (u1, u2, . . . , um) and s = (s1, s2, . . . , sm) be two positive m-tuples
with Um = ∑m

k=1 uk . Then for ϕ as a strictly monotone, continuous function, the quasi
arithmetic mean is defined as

Mϕ(u, s) = ϕ−1

(
1

Um

m∑

k=1

ukϕ(sk)

)

.

As an application of Theorem 2.2, in the following corollary we present a bound for the quasi
arithmetic mean.

Corollary 2.9 Let 0 < ρ1 < ρ2, and u = (u1, u2, . . . , um), s = (s1, s2, . . . , sm) be two
positivem-tuples withUm = ∑m

k=1 uk .Also, letϕ be a strictly monotone, continuous function
and assume that β ◦ ϕ−1 is a 4-convex function on [ρ1, ρ2], then the following inequality
holds

1

Um

m∑

k=1

ukβ(sk) − β
(Mϕ(u, s)

)

≤ (β ◦ ϕ−1)′′(ρ2) − (β ◦ ϕ−1)′′(ρ1)
6(ρ2 − ρ1)

(
1

Um

m∑

k=1

ukϕ
3(sk) − ϕ3 (Mϕ(u, s)

)
)

+ρ2(β ◦ ϕ−1)′′(ρ1) − ρ1(β ◦ ϕ−1)′′(ρ2)
2(ρ2 − ρ1)

(
1

Um

m∑

k=1

ukϕ
2(sk) − ϕ2 (Mϕ(u, s)

)
)

.

(2.27)

Proof (2.27) follows from (2.15) by assuming sk → ϕ(sk) and T → β ◦ ϕ−1. �	
As an application of Theorem 2.1, we obtain an improvement of the Jensen–Steffensen
inequality.

Corollary 2.10 Let T ∈ C2[ρ1, ρ2] be a 4-convex function and sk ∈ [ρ1, ρ2], uk ∈ R for
k = 1, 2, . . . ,m. If s1 ≤ s2 ≤ · · · ≤ sm or s1 ≥ s2 ≥ · · · ≥ sm and

0 ≤
k∑

γ=1

uγ ≤
m∑

γ=1

uγ , k = 1, 2, . . . ,m,

m∑

γ=1

uγ > 0,

then (2.15) holds. If T is 4-concave function then the reverse inequality holds in (2.15).

Proof Since the Jensen–Steffensen conditions hold and the functions Gi for all i are convex,
therefore by the Jensen–Steffensen inequality, the inequality (2.14) holds. So, by applying
Theorem 2.1, we get (2.15). �	
In the following corollary, we present a refinement of reverse of Jensen’s inequality under
the conditions stated in Theorem 1.3.
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Corollary 2.11 Let T ∈ C2[ρ1, ρ2] be a 4-convex function, sk ∈ [ρ1, ρ2], u1 > 0, uk ≤ 0
for k = 2, 3, . . . ,m with Um = ∑m

k=1 uk > 0. Also, let 1
Um

∑m
k=1 uksk ∈ [ρ1, ρ2], then the

reverse inequality in (2.15) holds.

Proof Since for each i = 1, 2, 3, 4, 5, Gi is convex function, so by Theorem 1.3 we have

Ḡ(x) := 1
Um

∑m
k=1 ukGi (sk, x) − Gi

(
1
Um

∑m
k=1 uksk, x

)
≤ 0. Hence, using Theorem 2.1

we obtain reverse inequality in (2.15). �	
In the following corollary, we present a refinement of the reverse of the Jensen–Steffensen
inequality under the conditions stated in Theorem 1.4.

Corollary 2.12 Let T ∈ C2[ρ1, ρ2] be a 4-convex function, sk ∈ [ρ1, ρ2], uk ∈ R

for k = 1, 2, . . . ,m. Let Uk = ∑k
j=1 u j for k = 1, 2, . . . ,m with Um > 0 and

1
Um

∑m
k=1 uksk ∈ [ρ1, ρ2]. If the m-tuple (s1, s2, . . . , sm) is monotonic, and there exists

a number p ∈ {1, 2, ...,m} such that

Uk ≤ 0 for k < p and Um −Uk−1 ≤ 0 for k > p,

then the reverse inequality in (2.15) holds.

Proof The proof is similar to the proof of Corollary 2.11, but using Theorem 1.4 instead of
Theorem 1.3. �	

The following theorem is the integral version of Theorem 2.1.

Theorem 2.13 Let T ∈ C2[ρ1, ρ2] be a 4-convex function. Also, let f1, f2 : [a1, a2] → R

be two integrable functions such that f1(y) ∈ [ρ1, ρ2] for all y ∈ [a1, a2] with D :=∫ a2
a1

f2(y)dy �= 0 and 1
D

∫ a2
a1

f1(y) f2(y)dy ∈ [ρ1, ρ2]. Suppose that Gi (i = 1, 2, 3, 4, 5)
are defined as in (1.3)–(1.7), and

1

D

∫ a2

a1
f2(y)Gi ( f1(y), x)dy−Gi

(
1

D

∫ a2

a1
f1(y) f2(y)dy, x

)

≥ 0, for i ∈ {1, 2, 3, 4, 5},
(2.28)

then

1

D

∫ a2

a1
(T ◦ f1)(y) f2(y)dy − T

(
1

D

∫ a2

a1
f1(y) f2(y)dy

)

≤ T ′′(ρ2) − T ′′(ρ1)
6(ρ2 − ρ1)

(
1

D

∫ a2

a1
f 31 (y) f2(y)dy −

(
1

D

∫ a2

a1
f1(y) f2(y)dy

)3
)

+ρ2T ′′(ρ1) − ρ1T ′′(ρ2)
2(ρ2 − ρ1)

×
(
1

D

∫ a2

a1
f 21 (y) f2(y)dy −

(
1

D

∫ a2

a1
f1(y) f2(y)dy

)2
)

. (2.29)

If the reverse inequality holds in (2.28), then the reverse inequality holds in (2.29).
If T is 4-concave function then the reverse inequality holds in (2.29).

The following corollary is the integral version of Theorem 2.2.

Corollary 2.14 Let T ∈ C2[ρ1, ρ2] be a 4-convex function. Also, let f1, f2 : [a1, a2] → R

be two integrable functions such that f1(y) ∈ [ρ1, ρ2] and f2(y) is non negative for all
y ∈ [a1, a2] with D := ∫ a2

a1
f2(y)dy > 0, then (2.29) holds. If T is 4-concave function then

the reverse inequality holds in (2.29).

123



43 Page 10 of 21 M. Adil Khan et al.

Remark 2.15 As applications of Corollary 2.14, two new bounds for the Hölder difference
in integral form can be obtained. The procedure will be similar to those in Corollary 2.3 and
Corollary 2.4.

Remark 2.16 As applications of Corollary 2.14, the integral versions of Corollary 2.6, Corol-
lary 2.7 and Corollary 2.9 can be presented.

As an application of Corollary 2.14, we present a bound for the Hermite–Hadamard gap.

Corollary 2.17 Let ψ ∈ C2[a1, a2] be a 4-convex function, then
1

a2 − a1

∫ a2

a1
ψ(y)dy − ψ

(
a1 + a2

2

)

≤
(
ψ ′′(a1) + ψ ′′(a2)

)
(a2 − a1)2

48
. (2.30)

Proof Using (2.29) for ψ = T , [ρ1, ρ2] = [a1, a2] and f2(y) = 1, f1(y) = y for all
y ∈ [a1, a2], we get (2.30). �	

In the following corollary, we obtain a refinement of the integral Jensen–Steffensen
inequality.

Corollary 2.18 Let T ∈ C2[ρ1, ρ2] be a 4-convex function. Also, let f1, f2 : [a1, a2] → R

be two integrable functions such that f1(y) ∈ [ρ1, ρ2] for all y ∈ [a1, a2]. If f1 is monotonic
function on [a1, a2] and f2 satisfies

0 ≤
∫ λ

a1
f2(y)dy ≤

∫ a2

a1
f2(y)dy, λ ∈ [a1, a2],

∫ a2

a1
f2(y)dy > 0,

then (2.29) holds.
If T is 4-concave function then the reverse inequality holds in (2.29).

In the following theorem, we present another improvement of Jensen’s type inequality in
discrete form.

Theorem 2.19 Let T ∈ C2[ρ1, ρ2] be a 4-convex function and sk ∈ [ρ1, ρ2], uk ∈ R for
k = 1, 2, . . . ,m. If (2.14) holds, then

1

Um

m∑

k=1

ukT (sk) − T

(
1

Um

m∑

k=1

uksk

)

≥ 1

2

⎛

⎝ 1

Um

m∑

k=1

uks
2
k −

(
1

Um

m∑

k=1

uksk

)2
⎞

⎠

×T ′′

⎛

⎜
⎜
⎝

1
Um

∑m
k=1 uks

3
k −

(
1
Um

∑m
k=1 uksk

)3

3

(
1
Um

∑m
k=1 uks

2
k −

(
1
Um

∑m
k=1 uksk

)2
)

⎞

⎟
⎟
⎠ . (2.31)

If the reverse inequality holds in (2.14), then the reverse inequality holds in (2.31).
If T is 4-concave function then the reverse inequality holds in (2.31).

Proof Using (1.13) for p(x) = 1
Um

∑m
k=1 ukGi (sk, x)−Gi

(
1
Um

∑m
k=1 uksk, x

)
and T = T ′′,

then with the help of (2.16) we get the following inequality
∫ ρ2

ρ1

Ḡi (x)dxT
′′
(∫ ρ2

ρ1
Ḡi (x)xdx

∫ ρ2
ρ1

Ḡi (x)dx

)

dx ≤ 1

Um

m∑

k=1

ukT (sk) − T

(
1

Um

m∑

k=1

uksk

)

, (2.32)
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where Ḡi (x) =
(

1
Um

∑m
k=1 ukGi (sk, x) − Gi

(
1
Um

∑m
k=1 uksk, x

))
.

Now, let T (x) = x2
2 , then T ′′(x) = 1 and so using (2.16) for these functions we obtain

∫ ρ2

ρ1

Ḡi (x)dx = 1

2

⎛

⎝ 1

Um

m∑

k=1

uks
2
k −

(
1

Um

m∑

k=1

uksk

)2
⎞

⎠ . (2.33)

Also, let T (x) = x3
6 , then T ′′(x) = x and so using (2.16) for these functions we obtain

∫ ρ2

ρ1

Ḡi (x)xdx = 1

6

⎛

⎝ 1

Um

m∑

k=1

uks
3
k −

(
1

Um

m∑

k=1

uksk

)3
⎞

⎠ . (2.34)

Using (2.33) and (2.34) in (2.32), we get (2.31). �	
As an application of the above theorem, we give a refinement of Jensen’s inequality.

Corollary 2.20 Let T ∈ C2[ρ1, ρ2] be a 4-convex function and sk ∈ [ρ1, ρ2], uk ≥ 0 for
k = 1, 2, . . . ,m with

∑m
k=1 uk = Um > 0, then (2.31) holds.

If T is 4-concave function then the reverse inequality holds in (2.31).

Proof The proof is analogous to the proof of Theorem 2.2. �	
The following corollary provides a refinement of Hölder type inequality as an application of
Corollary 2.20.

Corollary 2.21 Let 0 < p < 1, q = p
p−1 such that 1

p /∈ (2, 3). Also, [ρ1, ρ2] be
a positive interval and (a1, a2, . . . , am), (b1, b2, . . . , bm) be two positive m-tuples with
∑m

k=1 a
p
k∑m

k=1 b
q
k
, a p

k b
−q
k ∈ [ρ1, ρ2] for k = 1, 2, . . . ,m. Then

m∑

k=1

akbk −
(

m∑

k=1

a p
k

) 1
p
(

m∑

k=1

bqk

) 1
q

≥ 1 − p

2p2

⎛

⎝
m∑

k=1

a2pk b−q
k −

(∑m
k=1 a

p
k∑m

k=1 b
q
k

)2
⎞

⎠

×

⎛

⎜
⎜
⎜
⎜
⎝

∑m
k=1 a

3p
k b−2q

k∑m
k=1 b

q
k

−
(∑m

k=1 a
p
k∑m

k=1 b
q
k

)3

3

(
∑m

k=1 a
2p
k b−q

k∑m
k=1 b

q
k

−
(∑m

k=1 a
p
k∑m

k=1 b
q
k

)2
)

⎞

⎟
⎟
⎟
⎟
⎠

1
p −2

. (2.35)

Proof For the given values of p, the function T (x) = x
1
p for x ∈ [ρ1, ρ2] is convex as well

as 4-convex. Using (2.31) for T (x) = x
1
p , uk = bqk and sk = a p

k b
−q
k , we get (2.35). �	

As an application of Corollary 2.20, in the following corollary we present another bound for
the power mean.

Corollary 2.22 Let 0 < ρ1 < ρ2 and u = (u1, u2, . . . , um), s = (s1, s2, . . . , sm) be two
positive m-tuples with Um = ∑m

k=1 uk . Also, let r , t be two nonzero real numbers such that
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(i) if r > 0 with 3r ≤ t or r ≤ t ≤ 2r or t < 0, then

Mt
t (u, s) − Mt

r (u, s)

≥ t(t − r)

2r2
(M2r

2r (u, s) − M2r
r (u, s)

)
(

M3r
3r (u, s) − M3r

r (u, s)

3
(M2r

2r (u, s) − M2r
r (u, s)

)

) t
r −2

.(2.36)

(ii) If r < 0 with 3r ≥ t or r ≥ t ≥ 2r or t > 0, then we get again (2.36).
(iii) If r > 0 with 2r < t < 3r or r < 0 with 3r < t < 2r , then the reverse inequality holds

in (2.36).

Proof (i) Let T (x) = x
t
r for x ∈ [ρ1, ρ2], then the function T is 4-convex. Therefore using

(2.31) for T (x) = x
t
r and sk → srk , we get (2.36)

(ii) Also, in this case the function T (x) = x
t
r for x ∈ [ρ1, ρ2] is 4-convex, therefore adopting

the procedure of part (i), we obtain (2.36).
(iii) For such values of r , t the function T (x) = x

t
r for x ∈ [ρ1, ρ2] is 4-concave. Thus

following the procedure of part (i) but for T as a 4-concave function, we obtain the
reverse inequality in (2.36). �	

The following corollary provides an interesting relationship between different means as an
application of Corollary 2.20.

Corollary 2.23 Let 0 < ρ1 < ρ2, and u = (u1, u2, . . . , um), s = (s1, s2, . . . , sm) be two
positive m-tuples with Um = ∑m

k=1 uk, then

(i)
M1(u, s)
M0(u, s)

≥ exp

(
9

2

(M2
2(u, s) − M2

1(u, s)
)3

(M3
3(u, s) − M3

1(u, s)
)2

)

.

(2.37)

(i i)M1(u, s) − M0(u, s)

≥ 1

2

(
1

Um

m∑

k=1

uk ln
2 sk − ln2 M0(u, s)

)

× exp

⎛

⎝
1
Um

∑m
k=1 uk ln

3 sk − ln3 M0(u, s)

3
(

1
Um

∑m
k=1 uk ln

2 sk − ln2 M0(u, s)
)

⎞

⎠ . (2.38)

Proof (i) Using (2.31) for the 4-convex function T (x) = − ln x, x ∈ [ρ1, ρ2], we get
(2.37).

(ii) Let T (x) = ex , for x ∈ [ρ1, ρ2] then T is a 4-convex function. Thus using (2.31) for
T (x) = ex and sk = ln sk, we get (2.38). �	

As an application of Corollary 2.20, in the following corollary we present a bound for the
quasi arithmetic mean.

Corollary 2.24 Let u = (u1, u2, . . . , um) and s = (s1, s2, . . . , sm) be two positive m-tuples
with Um = ∑m

k=1 uk . Also, let ϕ be a strictly monotone, continuous function and assume
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that β ◦ ϕ−1 is a 4-convex function, then the following inequality holds

1

Um

m∑

k=1

ukβ(sk) − β
(Mϕ(u, s)

)

≥ 1

2

(
1

Um

m∑

k=1

ukϕ
2(sk) − ϕ2 (Mϕ(u, s)

)
)

×(β ◦ ϕ−1)′′
⎛

⎝
1
Um

∑m
k=1 ukϕ

3(sk) − ϕ3
(Mϕ(u, s)

)

3
(

1
Um

∑m
k=1 ukϕ

2(sk) − ϕ2
(Mϕ(u, s)

))

⎞

⎠ . (2.39)

Proof (2.39) follows from (2.31) by assuming sk → ϕ(sk) and T → β ◦ ϕ−1. �	
As an application of Theorem 2.19, we give a refinement of the Jensen–Steffensen inequality.

Corollary 2.25 Let T ∈ C2[ρ1, ρ2] be a 4-convex function and sk ∈ [ρ1, ρ2], uk ∈ R for
k = 1, 2, . . . ,m. If s1 ≤ s2 ≤ · · · ≤ sm or s1 ≥ s2 ≥ · · · ≥ sm and

0 ≤
k∑

γ=1

uγ ≤
m∑

γ=1

uγ , k = 1, 2, . . . ,m,

m∑

γ=1

uγ > 0,

then (2.31) holds.
If T is 4-concave function then the reverse inequality holds in (2.31).

Proof The proof is analogous to the proof of Corollary 2.10. �	
Corollary 2.26 Under the assumptions of Corollary 2.11, the reverse inequality in (2.31)
holds.

Proof The idea of the proof is similar to the proof of Corollary 2.11. �	
Corollary 2.27 Under the assumptions of Corollary 2.12, the reverse inequality in (2.31)
holds.

Proof The idea of the proof is similar to the proof of Corollary 2.12. �	
In the following theorem, we state integral version of Theorem 2.19.

Theorem 2.28 Let T ∈ C2[ρ1, ρ2] be a 4-convex function. Also, let f1, f2 : [a1, a2] → R

be two integrable functions such that f1(y) ∈ [ρ1, ρ2] for all y ∈ [a1, a2] with D :=∫ a2
a1

f2(y)dy �= 0 and 1
D

∫ a2
a1

f1(y) f2(y)dy ∈ [ρ1, ρ2]. Suppose that the inequality (2.28)
holds, then

1

D

∫ a2

a1
(T ◦ f1)(y) f2(y)dy − T

(
1

D

∫ a2

a1
f1(y) f2(y)dy

)

≥ 1

2

(
1

D

∫ a2

a1
f 21 (y) f2(y)dy −

(
1

D

∫ a2

a1
f1(y) f2(y)dy

)2
)

×T ′′

⎛

⎜
⎜
⎝

1
D

∫ a2
a1

f 31 (y) f2(y)dy −
(

1
D

∫ a2
a1

f1(y) f2(y)dy
)3

3

(
1
D

∫ a2
a1

f 21 (y) f2(y)dy −
(

1
D

∫ a2
a1

f1(y) f2(y)dy
)2

)

⎞

⎟
⎟
⎠ . (2.40)
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If the reverse inequality holds in (2.28), then the reverse inequality holds in (2.40).
If T is 4-concave function then the reverse inequality holds in (2.40).

As an application of Theorem 2.28, we give a refinement of Jensen’s inequality.

Corollary 2.29 Let T ∈ C2[ρ1, ρ2] be a 4-convex function. Also, let f1 : [a1, a2] → R be
an integrable function such that f1(y) ∈ [ρ1, ρ2] for all y ∈ [a1, a2] and f2 : [a1, a2] → R

be a nonnegative function with
∫ a2
a1

f2(y)dy = D > 0, then (2.40) holds. If T is 4-concave
function then the reverse inequality holds in (2.40).

Remark 2.30 Similarly we can present integral version of Corollary 2.25.

Remark 2.31 Adopting the procedure of Corollary 2.21, one can present a refinement of the
Hölder type inequality in integral form as an application of Corollary 2.29.

Remark 2.32 Integral versions of Corollary 2.22, Corollary 2.23 and of Corollary 2.24 can
be presented as applications of Corollary 2.29.

As an application of Corollary 2.29, we present another bound for the Hermite–Hadamard
gap.

Corollary 2.33 Let ψ ∈ C2[a1, a2] be a 4-convex function, then
1

a2 − a1

∫ a2

a1
ψ(y)dy − ψ

(
a1 + a2

2

)

≥ (a2 − a1)2

24
ψ ′′

(
a1 + a2

2

)

. (2.41)

Proof Using (2.40) for ψ = T , [ρ1, ρ2] = [a1, a2] and f2(y) = 1, f1(y) = y for all
y ∈ [a1, a2], we get (2.41). �	

3 Applications in information theory

Definition 3.1 (Csiszár divergence) Let [ρ1, ρ2] ⊂ R and f : [ρ1, ρ2] → R be a func-
tion, then for r = (r1, r2, . . . , rm) ∈ R

m and w = (w1, w2, . . . , wm) ∈ R
m+ with

rk
wk

∈ [ρ1, ρ2] (k = 1, 2, . . . ,m), the Csiszár divergence is defined by

D̄c(r, w) =
m∑

k=1

wk f

(
rk
wk

)

.

Theorem 3.2 Let f ∈ C2[ρ1, ρ2] be a 4-convex function and r = (r1, r2, . . . , rm) ∈ R
m,

w = (w1, w2, . . . , wm) ∈ R
m+ such that

∑m
k=1 rk∑m
k=1 wk

,
rk
wk

∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

1
∑m

k=1 wk
D̄c(r, w) − f

( ∑m
k=1 rk∑m
k=1 wk

)

≤ f ′′(ρ2) − f ′′(ρ1)
6(ρ2 − ρ1)

(
1

∑m
k=1 wk

m∑

k=1

r3k
w2
k

−
( ∑m

k=1 rk∑m
k=1 wk

)3
)

+ρ2 f ′′(ρ1) − ρ1 f ′′(ρ2)
2(ρ2 − ρ1)

(
1

∑m
k=1 wk

m∑

k=1

r2k
wk

−
( ∑m

k=1 rk∑m
k=1 wk

)2
)

. (3.42)

Proof The result (3.42) can easily be deduced from (2.15) by choosing T = f , sk =
rk
wk

, uk = wk∑m
k=1 wk

. �	
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Theorem 3.3 Let f ∈ C2[ρ1, ρ2] be a 4-convex function and r = (r1, r2, . . . , rm) ∈ R
m,

w = (w1, w2, . . . , wm) ∈ R
m+ such that

∑m
k=1 rk∑m
k=1 wk

,
rk
wk

∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

1
∑m

k=1 wk
D̄c(r, w) − f

( ∑m
k=1 rk∑m
k=1 wk

)

≥ 1

2

(
1

∑m
k=1 wk

m∑

k=1

r2k
wk

−
( ∑m

k=1 rk∑m
k=1 wk

)2
)

×T ′′

⎛

⎜
⎜
⎝

1∑m
k=1 wk

∑m
k=1

r3k
w2
k

−
( ∑m

k=1 rk∑m
k=1 wk

)3

3

(
1∑m

k=1 wk

∑m
k=1

r2k
wk

−
( ∑m

k=1 rk∑m
k=1 wk

)2
)

⎞

⎟
⎟
⎠ . (3.43)

Proof The result (3.43) can easily be deduced from (2.31) by choosing T = f , sk =
rk
wk

, uk = wk∑m
k=1 wk

. �	

Definition 3.4 (Rényi-divergence) For two positive probability distributions
r = (r1, r2, . . . , rm), w = (w1, w2, . . . , wm) and a nonnegative real number μ such that
μ �= 1, the Rényi-divergence is defined by

Dre(r, w) = 1

μ − 1
log

(
m∑

k=1

rμ
k w

1−μ
k

)

.

Corollary 3.5 Let [ρ1, ρ2] ⊆ R
+. Also, let r = (r1, r2, . . . , rm), w = (w1, w2, . . . , wm) be

positive probability distributions andμ > 1 such that
∑m

k=1 wk

(
rk
wk

)μ

,
(

rk
wk

)μ−1 ∈ [ρ1, ρ2]
for k = 1, 2, . . . ,m. Then

Dre(r, w) − 1

μ − 1

m∑

k=1

rk log

(
rk
wk

)μ−1

≤ ρ1 + ρ2

6(1 − μ)ρ2
1ρ

2
2

⎛

⎝
m∑

k=1

rk

(
rk
wk

)3(μ−1)

−
(

m∑

k=1

rμ
k w

1−μ
k

)3
⎞

⎠

+ρ2
1 + ρ1ρ2 + ρ2

2

2(μ − 1)ρ2
1ρ

2
2

⎛

⎝
m∑

k=1

rk

(
rk
wk

)2(μ−1)

−
(

m∑

k=1

rμ
k w

1−μ
k

)2
⎞

⎠ . (3.44)

Proof Let T (x) = − 1
μ−1 log x, x ∈ [ρ1, ρ2], then T ′′(x) = 1

(μ−1)x2
> 0 and T ′′′′(x) =

6
(μ−1)x4

> 0. This verifies that T is a 4-convex function, therefore using (2.15) for T (x) =
− 1

μ−1 log x, uk = rk and sk =
(

rk
wk

)μ−1
, we obtain (3.44). �	

Corollary 3.6 Let [ρ1, ρ2] ⊆ R
+. Also, let r = (r1, r2, . . . , rm), w = (w1, w2, . . . , wm) be

positive probability distributions and μ > 1 with
∑m

k=1 wk

(
rk
wk

)μ

,
(

rk
wk

)μ−1 ∈ [ρ1, ρ2] for
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k = 1, 2, . . . ,m. Then

Dre(r, w) − 1

μ − 1

m∑

k=1

rk log

(
rk
wk

)μ−1

≥ 9

2(μ − 1)

(
∑m

k=1 rk
(

rk
wk

)2(μ−1) −
(∑m

k=1 r
μ
k w

1−μ
k

)2
)3

(
∑m

k=1 rk
(

rk
wk

)3(μ−1) −
(∑m

k=1 r
μ
k w

1−μ
k

)3
)2 . (3.45)

Proof Using (2.31) for the 4-convex function T (x) = − 1
μ−1 log x, uk = rk and sk =

(
rk
wk

)μ−1
, we get (3.45). �	

Definition 3.7 (Shannon-entropy) If w = (w1, w2, . . . , wm), is a positive probability dis-
tribution, then the Shannon-entropy (information divergence) is defined by

Es(w) = −
m∑

k=1

wk logwk .

Corollary 3.8 Let [ρ1, ρ2] ⊆ R
+ and w = (w1, w2, . . . , wm) be a positive probability dis-

tribution such that 1
wk

∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

logm − Es(w) ≤ ρ2
1 + ρ1ρ2 + ρ2

2

2ρ2
1ρ

2
2

(
m∑

k=1

1

wk
− m2

)

− ρ1 + ρ2

6ρ2
1ρ

2
2

(
m∑

k=1

1

w2
k

− m3

)

. (3.46)

Proof Let f (x) = − log x, x ∈ [ρ1, ρ2], then f ′′′′(x) = 6
x4

> 0. This shows that f
is a 4-convex function, therefore using (3.42) for f (x) = − log x and (r1, r2, . . . , rm) =
(1, 1, . . . , 1), we get (3.46). �	
Corollary 3.9 Let [ρ1, ρ2] ⊆ R

+ and w = (w1, w2, . . . , wm) be a positive probability dis-
tribution such that 1

wk
∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

logm − Es(w) ≥
9

(∑m
k=1

1
wk

− m2
)3

2

(
∑m

k=1
1

w2
k

− m3

)2 . (3.47)

Proof Using (3.43) for the 4-convex function f (x) = − log x and (r1, r2, . . . , rm) =
(1, 1, . . . , 1), we get (3.47). �	
Definition 3.10 (Kullback-Leibler divergence) If r = (r1, r2, . . . , rm) and w = (w1,

w2, . . . , wm), are two positive probability distributions, then the Kullback-Leibler diver-
gence is defined by

Dkl(r, w) =
m∑

k=1

rk log
rk
wk

.

Corollary 3.11 Let [ρ1, ρ2] ⊆ R
+ and r = (r1, r2, . . . , rm), w = (w1, w2, . . . , wm) be

positive probability distributions such that rk
wk

∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

Dkl(r, w) ≤ ρ1 + ρ2

2ρ1ρ2

(
m∑

k=1

r2k
wk

− 1

)

− 1

6ρ1ρ2

(
m∑

k=1

r3k
w2
k

− 1

)

. (3.48)
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Proof Let f (x) = x log x, x ∈ [ρ1, ρ2], then f ′′′′(x) = 2
x3

> 0, which shows that f is a
4-convex function. So we get (3.48) by using (3.42) for f (x) = x log x . �	
Corollary 3.12 Let [ρ1, ρ2] ⊆ R

+ and r = (r1, r2, . . . , rm), w = (w1, w2, . . . , wm) be
positive probability distributions such that rk

wk
∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

Dkl(r, w) ≥
3

(
∑m

k=1
r2k
wk

− 1

)2

2

(
∑m

k=1
r3k
w2
k

− 1

) . (3.49)

Proof We get (3.49) by using (3.43) for the 4-convex function f (x) = x log x . �	
Definition 3.13 (χ2-divergence) For two positive probability distributions r = (r1, r2, . . . ,
rm), w = (w1, w2, . . . , wm), the χ2-divergence is defined by

Dχ2(r, w) =
m∑

k=1

(rk − wk)
2

wk
.

Corollary 3.14 If [ρ1, ρ2] ⊆ R
+ and r = (r1, r2, . . . , rm), w = (w1, w2, . . . , wm) are two

positive probability distributions such that rk
wk

∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

Dχ2(r, w) ≤
m∑

k=1

r2k
wk

− 1. (3.50)

Proof Let f (x) = (x − 1)2 for x ∈ [ρ1, ρ2], then f ′′′′(x) = 0. This shows that f is a
4-convex function, therefore inequality (3.50) follows by using (3.42) for f (x) = (x − 1)2.

�	
Corollary 3.15 If [ρ1, ρ2] ⊆ R

+ and r = (r1, r2, . . . , rm), w = (w1, w2, . . . , wm) are two
positive probability distributions with rk

wk
∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

Dχ2(r, w) ≥
m∑

k=1

r2k
wk

− 1. (3.51)

Proof The inequality (3.51) follows by using (3.43) for f (x) = (x − 1)2. �	
Definition 3.16 (Bhattacharyya-coefficient) Bhattacharyya-coefficient for two positive
probability distributions r = (r1, r2, . . . , rm) and w = (w1, w2, . . . , wm) is defined by

Cb(r, w) =
m∑

k=1

√
rkwk .

Corollary 3.17 Let [ρ1, ρ2] ⊆ R
+ and r = (r1, r2, . . . , rm), w = (w1, w2, . . . , wm) be two

positive probability distributions such that rk
wk

∈ [ρ1, ρ2] for k = 1, 2, . . . ,m. Then

1 − Cb(r, w)

≤ ρ
3
2
1 − ρ

3
2
2

24ρ
3
2
1 ρ

3
2
2 (ρ2 − ρ1)

(
m∑

k=1

r3k
w2
k

− 1

)

+ ρ
5
2
2 − ρ

5
2
1

8ρ
3
2
1 ρ

3
2
2 (ρ2 − ρ1)

(
m∑

k=1

r2k
wk

− 1

)

. (3.52)
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Proof Let f (x) = −√
x, x ∈ [ρ1, ρ2]. Then f ′′′′(x) = 15

16x
7
2

> 0, which shows that f is a

4-convex function. Thus we get (3.52) by following (3.42) for f (x) = −√
x . �	

Corollary 3.18 Let [ρ1, ρ2] ⊆ R
+ and r = (r1, r2, . . . , rm), w = (w1, w2, . . . , wm) be two

positive probability distributions such that rk
wk

∈ [ρ1, ρ2] for k = 1, 2, . . . ,m, then

1 − Cb(r, w) ≥
3

3
2

(
∑m

k=1
r2k
wk

− 1

) 5
2

8

(
∑m

k=1
r3k
w2
k

− 1

) 3
2

. (3.53)

Proof Inequality (3.53) can be obtained by using (3.43) for the 4-convex function f (x) =
−√

x . �	

3.1 Applications for the Zipf–Mandelbrot entropy

The probability mass function for the Zipf–Mandelbrot law can be written as:

f(k,m,θ,s) = 1/(k + θ)s

Mm,θ,s
,

for k = 1, 2, . . . ,m, m ∈ {1, 2, . . . }, θ ≥ 0, s > 0 and Mm,θ,s = ∑m
k=1

1
(k+θ)s

is a
generalized harmonic number. In connection to the attitude of information theory, we utilize
entropies to compute the amount of information in a written text. The Zipf–Mandelbrot
entropy mentioned in [3] is given by:

Z(M, θ, s) = s

Mm,θ,s

m∑

k=1

log(k + θ)

(k + θ)s
+ logMm,θ,s .

Corollary 3.19 Let 0 < ρ1 < ρ2, θ ≥ 0, s > 0 and wk ≥ 0 for k = 1, 2, . . . ,m with∑m
k=1 wk = 1. Then

−Z(M, θ, s) − 1

Mm,θ,s

m∑

k=1

logwk

(k + θ)s

≤ ρ1 + ρ2

2ρ1ρ2

(
m∑

k=1

1

wk(k + θ)2sM2
m,θ,s

− 1

)

− 1

6ρ1ρ2

(
m∑

k=1

1

w2
k (k + θ)3sM3

m,θ,s

− 1

)

.

(3.54)

Proof For rk = 1
(k+θ)s Mm,θ,s

, k = 1, 2, . . . ,m, we have

m∑

k=1

rk log
rk
wk

=
m∑

k=1

1

(k + θ)sMm,θ,s

(−s log(k + θ) − logMm,θ,s − logwk
)

= −Z(M, θ, s) − 1

Mm,θ,s

m∑

k=1

logwk

(k + θ)s
. (3.55)
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Also,

ρ1 + ρ2

2ρ1ρ2

(
m∑

k=1

r2k
wk

− 1

)

− 1

6ρ1ρ2

(
m∑

k=1

r3k
w2
k

− 1

)

= ρ1 + ρ2

2ρ1ρ2

(
m∑

k=1

1

wk(k + θ)2sM2
m,θ,s

− 1

)

− 1

6ρ1ρ2

(
m∑

k=1

1

w2
k (k + θ)3sM3

m,θ,s

− 1

)

.

(3.56)

Now using (3.55) and (3.56) in (3.48), we get (3.54). �	
Corollary 3.20 Let 0 < ρ1 < ρ2, θ1, θ2 ≥ 0, s1, s2 > 0, then

−Z(M, θ1, s1) +
m∑

k=1

log(k + θ2)
s2Mm,θ2,s2

(k + θ1)s1Mm,θ1,s1

≤ ρ1 + ρ2

2ρ1ρ2

(
m∑

k=1

(k + θ2)
s2Mm,θ2,s2

(k + θ1)2s1M2
m,θ1,s1

− 1

)

− 1

6ρ1ρ2

(
m∑

k=1

(k + θ2)
2s2M2

m,θ2,s2

(k + θ1)3s1M3
m,θ1,s1

− 1

)

.

(3.57)

Proof For rk = 1
(k+θ1)

s1Mm,θ1,s1
, wk = 1

(k+θ2)
s2Mm,θ2,s2

, k = 1, 2, . . . ,m, we have

m∑

k=1

rk log
rk
wk

=
m∑

k=1

1

(k + θ1)s1Mm,θ1,s1

(
log(k + θ2)

s2Mm,θ2,s2 − log(k + θ1)
s1Mm,θ1,s1

)

= −Z(M, θ1, s1) +
m∑

k=1

log(k + θ2)
s2Mm,θ2,s2

(k + θ1)s1Mm,θ1,s1
. (3.58)

Also,

ρ1 + ρ2

2ρ1ρ2

(
m∑

k=1

r2k
wk

− 1

)

− 1

6ρ1ρ2

(
m∑

k=1

r3k
w2
k

− 1

)

= ρ1 + ρ2

2ρ1ρ2

(
m∑

k=1

(k + θ2)
s2Mm,θ2,s2

(k + θ1)2s1M2
m,θ1,s1

− 1

)

− 1

6ρ1ρ2

(
m∑

k=1

(k + θ2)
2s2M2

m,θ2,s2

(k + θ1)3s1M3
m,θ1,s1

− 1

)

.

(3.59)

Now utilizing (3.58) and (3.59) in (3.48), we get (3.57). �	
Corollary 3.21 Let 0 < ρ1 < ρ2, θ ≥ 0, s > 0 and wk ≥ 0 for k = 1, 2, . . . ,m with∑m

k=1 wk = 1. Then

−Z(M, θ, s) − 1

Mm,θ,s

m∑

k=1

logwk

(k + θ)s

≥
3

(
∑m

k=1
1

wk (k+θ)2s M2
m,θ,s

− 1

)2

2

(
∑m

k=1
1

w2
k (k+θ)3s M3

m,θ,s
− 1

) . (3.60)

Proof Using (3.49) for rk = 1
(k+θ)s Mm,θ,s

, k = 1, 2, . . . ,m, we get (3.60). �	
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Corollary 3.22 Let 0 < ρ1 < ρ2, θ1, θ2 ≥ 0, s1, s2 > 0, then

−Z(M, θ1, s1) +
m∑

k=1

log(k + θ2)
s2Mm,θ2,s2

(k + θ1)s1Mm,θ1,s1

≥
3

(
∑m

k=1
(k+θ2)

s2Mm,θ2,s2
(k+θ1)

2s1M2
m,θ1,s1

− 1

)2

2

(
∑m

k=1
(k+θ2)

2s2M2
m,θ2,s2

(k+θ1)
3s1M3

m,θ1,s1

− 1

) . (3.61)

Proof Using (3.49) for rk = 1
(k+θ1)

s1Mm,θ1,s1
, wk = 1

(k+θ2)
s2Mm,θ2,s2

, k = 1, 2, . . . ,m, we

get (3.61). �	
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