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Abstract
We are concerned here with Sobolev-type spaces of vector-valued functions. For an open sub-
set� ⊂ R

N and aBanach space V , we compare the classical Sobolev spaceW 1,p(�, V )with
the so-called Sobolev–Reshetnyak space R1,p(�, V ). We see that, in general, W 1,p(�, V ) is
a closed subspace of R1,p(�, V ).As amain result,weobtain thatW 1,p(�, V ) = R1,p(�, V )

if, and only if, the Banach space V has the Radon–Nikodým property
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Mathematics Subject Classification 46E35 · 46E40 · 46B22

Introduction

This paper deals with first order Sobolev spaces of vector-valued functions. For an open
subset � ⊂ R

N and a Banach space V , we will first consider the classical Sobolev space
W 1,p(�, V ) of functions defined on� and taking values in V . This space is defined using the
notion of Banach-valued weak partial derivatives in the context of Bochner integral, much
in the same way as the usual Sobolev space of scalar-valued functions.
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A different notion of Sobolev space was introduced by Reshetnyak [10] for functions
defined on an open subset � ⊂ R

N and taking values in a metric space. Here we will
consider only the case of functions with values in a Banach space V . The corresponding
Sobolev–Reshetnyak space R1,p(�, V ) has been considered in [6] and extensively studied
in [7]. This space is defined by a “scalarization” procedure, by composing the functions taking
values in V with continuous linear functionals of the dual space V ∗ in a suitable uniformway.
It should be noted that there is a further notion of Sobolev space, in the more general setting
of functions defined on ametric measure space (X , d, μ) and taking values in a Banach space
V . This is the so-called Newtonian–Sobolev space, denoted by N 1,p(X , V ), which is defined
using the notion of upper gradients and line integrals. This space was introduced byHeinonen
et al. [7], combining the approaches of Shamungalingam [11] and Reshetnyak [10]. We refer
to the book [8] for an extensive and detailed study of Newtonian–Sobolev spaces. In the case
that the metric measure space (X , d, μ) is an open subset� of euclidean spaceRN , it follows
from Theorem 3.17 in [7] or Theorem 7.1.20 in [8] that, in fact, R1,p(�, V ) = N 1,p(�, V ).

Our main purpose in this paper is to compare the spaces W 1,p(�, V ) and R1,p(�, V ). In
general, we have that W 1,p(�, V ) is a closed subspace of R1,p(�, V ). As a main result, we
obtain that W 1,p(�, V ) = R1,p(�, V ) if, and only if, the space V has the Radon–Nikodým
property (see Theorem 4.6). Note that this contradicts Theorem 2.14 of [6]. It turns out that
the proof of Theorem 2.14 of [6] is not correct, and the gap is located in Lemma 2.12, since
the so-called w∗-partial derivatives need not be measurable, and in this case they cannot be
the weak partial derivatives.

The contents of the paper are as follows. In Sect. 1, we recall some basic notions about
measurability of Banach-valued functions and Bochner integral. Section 2 is devoted to the
concept of p-modulus of a family of curves. We briefly review its definition and fundamental
properties, which will be used along the paper. In Sect. 3, the Sobolev space W 1,p(�, V )

is considered. In particular, we prove in Theorem 3.3 that every function f ∈ W 1,p(�, V )

admits a representative which is absolutely continuous and almost everywhere differentiable
along each rectifiable curve, except for a family of curveswith zero p-modulus. The Sobolev–
Reshetnyak space R1,p(�, V ) is considered in Sect. 4. We prove in Theorem 4.5 that every
function f ∈ R1,p(�, V ) admits a representative which is absolutely continuous along each
rectifiable curve, except for a family of curves with zero p-modulus. Finally, in Theorem 4.6
we obtain that the equality W 1,p(�, V ) = R1,p(�, V ) provides a new characterization of
the Radon–Nikodým property in Banach spaces.

1 Integration of vector-valued functions

Along this section, (�,�,μ) will denote a σ -finite measure space and V a Banach space.
We are going to recall first some basic facts about measurability of Banach-valued functions.
A function s : � → V is said to be a measurable simple function if there exist vectors
v1, . . . , vm ∈ V and disjoint measurable subsets E1, . . . , Em of � such that

s =
m∑

i=1

viχEi .

A function f : � → V is said to be measurable if there exists a sequence of measurable
simple functions {sn : � → V }∞n=1 that converges to f almost everywhere on �. The Pettis
measurability theorem gives the following characterization of measurable functions (see e.g.
[4] or [8]):
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Theorem 1.1 (Pettis) Consider a σ -finite measure space (�,�,μ) and a Banach space V .
A function f : � → V is measurable if and only if satisfies the following two conditions:

(1) f is weakly-measurable, i.e., for each v∗ ∈ V ∗, we have that 〈v∗, f 〉 : � → R is
measurable.

(2) f is essentially separable-valued, i.e., there exists Z ⊂ � with μ(Z) = 0 such that
f (� \ Z) is a separable subset of V .

Let ‖ · ‖ denote the norm of V . Note that, if f : � → V is measurable, the scalar-valued
function ‖ f ‖ : � → R is also measurable. Also it can be seen that any convergent sequence
of measurable functions converges to a measurable function.

For measurable Banach-valued functions, the Bochner integral is defined as follows. Sup-
pose first that s = ∑m

i=1 viχEi is a measurable simple function as before, where E1, . . . , Em

are measurable, pairwise disjoint, and furthermore μ(Ei ) < ∞ for each i ∈ {1, . . . , m}. We
say then that s is integrable and we define the integral of s by

∫

�

s dμ :=
m∑

i=1

μ(Ei )vi .

Now consider an arbitrary measurable function f : � → V . We say that f is integrable if
there exists a sequence {sn}∞n=1 of integrable simple functions such that

lim
n→∞

∫

�

‖sn − f ‖ dμ = 0.

In this case, the Bochner integral of f is defined as:
∫

�

f dμ := lim
n→∞

∫

�

sn dμ.

It can be seen that this limit exists as an element of V , and it does not depend on the choice
of the sequence {sn}∞n=1. Also, for a measurable subset E ⊂ �, we say that f is integrable
on E if f χE is integrable on �, and we denote

∫
E f dμ = ∫

�
f χE dμ. The following

characterization of Bochner integrability will be useful (see e.g. Proposition 3.2.7 in [8]):

Proposition 1.2 Let (�,�,μ) be a σ -finite measure space and V a Banach space. A function
f : � → V is Bochner-integrable if, and only if, f is measurable and

∫
�

‖ f ‖ dμ < ∞.

Furthermore, if f : � → V is integrable, then for each v∗ ∈ V ∗ we have that 〈v∗, f 〉 :
� → R is also integrable, and

〈
v∗,

∫

�

f dμ

〉
=

∫

�

〈v∗, f 〉 dμ.

In addition,
∥∥∥∥
∫

�

f dμ

∥∥∥∥ ≤
∫

�

‖ f ‖ dμ.

Finally, we introduce the classes of Banach-valued p-integrable functions on (�,�,μ)

in the usual way. We refer the reader to [4] or [8] for further information. Fix 1 ≤ p < ∞.
Then L p(�, V ) is defined as the space of all equivalence classes of measurable functions
f : � → V for which

∫

�

‖ f ‖p dμ < ∞.
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Here, two measurable functions f , g : � → V are equivalent if they coincide almost
everywhere, that is, μ({x ∈ � : f (x) �= g(x)}) = 0. It can be seen that the space L p(�, V )

is a Banach space endowed with the natural norm

‖ f ‖p :=
(∫

�

‖ f ‖pdμ

) 1
p

.

As customary, for scalar-valued functions we denote L p(�) = L p(�,R).
In the special case that � is an open subset of euclidean space R

N , endowed with the
Lebesgue measure, we will also consider the corresponding spaces L p

loc(�, V ) of Banach-
valued locally p-integrable functions.We say that ameasurable function f : � → V belongs
to L p

loc(�, V ) if every point in � has a neighborhood on which f is p-integrable.

2 Modulus of a family of curves

The concept of modulus of a curve family can be defined in the general setting of metric
measure spaces (see e.g. [5] or Chapter 5 of [8] for a detailed exposition) but we will restrict
ourselves to the case of curves defined in an open subset � of space RN , where we consider
the Lebesgue measure LN and the euclidean norm | · |. By a curve in � we understand a
continuous function γ : [a, b] → �, where [a, b] ⊂ R is a compact interval. The length of
γ is given by

�(γ ) := sup
t0<···<tn

n∑

j=1

|γ (t j−1) − γ (t j )|,

where the supremum is taken over all finite partitions a = t0 < · · · < tn = b of the interval
[a, b]. We say that γ is rectifiable if its length is finite. Every rectifiable curve γ can be
re-parametrized so that it is arc-length parametrized, i.e., [a, b] = [0, �(γ )] and for each
0 ≤ s ≤ t ≤ �(γ ) we have

�(γ |[s,t]) = t − s.

We can assume all rectifiable curves to be arc-length parametrized as above. The integral of
a Borel function ρ : � → [0,∞] over an arc-length parametrized curve γ is defined as

∫

γ

ρ ds :=
∫ �(γ )

0
ρ(γ (t)) dt .

In what follows, let M denote the family of all nonconstant rectifiable curves in �. For
each subset 	 ⊂ M, we denote by F(	) the so-called admissible functions for 	, that is, the
family of all Borel functions ρ : � → [0,∞] such that

∫

γ

ρ ds ≥ 1

for all γ ∈ 	. Then, for each 1 ≤ p < ∞, the p-modulus of 	 is defined as follows:

Modp(	) := inf
ρ∈F(	)

∫

�

ρ p dLN .

We say that a property holds for p-almost every curve γ ∈ M if the p-modulus of the family
of curves failing the property is zero. The basic properties of p-modulus are given in the next
proposition (see e.g. Theorem 5.2 of [5] or Chapter 5 of [8]):

123



Sobolev spaces of vector-valued functions Page 5 of 14 19

Proposition 2.1 The p-modulus is an outer measure on M, that is:

(1) Modp(∅) = 0.
(2) If 	1 ⊂ 	2 then Modp(	1) ≤ Modp(	2).
(3) Modp

(⋃∞
n=1 	n

) ≤ ∑∞
n=1 Modp(	n).

For the next characterization of families of curves with zero p-modulus we refer to The-
orem 5.5 of [5] or Lemma 5.2.8 of [8]:

Lemma 2.2 Let 	 ⊂ M. Then Modp(	) = 0 if, and only if, there exists a nonnegative Borel
function g ∈ L p(�) such that

∫

γ

g ds = ∞

for all γ ∈ 	.

We will also use the following fact (see, e.g. Lemma 5.2.15 in [8]):

Lemma 2.3 Let � ⊂ R
N be an open set, and consider a subset E of � with zero-measure.

Denote 	+
E := {γ ∈ M : L1({t ∈ [0, �(γ )] : γ (t) ∈ E}) > 0}. Then, for every 1 ≤ p < ∞,

Modp(	
+
E ) = 0.

Next we give a relevant example concerning p-modulus, which is similar to Theorem 5.4
of [5].

Lemma 2.4 Let N > 1 be a natural number, let w ∈ R
N be a vector with |w| = 1 and let

H be the hyperplane orthogonal to w, on which we consider the corresponding (N − 1)-
dimensional Lebesgue measure LN−1. For each Borel subset E ⊂ H consider the family
	(E) of all nontrivial straight segments parallel to w and contained in a line passing through
E. Then, for a fixed1 ≤ p < ∞, we have thatModp(	(E)) = 0 if, and only if,LN−1(E) = 0.

Proof Each curve in 	(E) is of the form γx (t) = x + tw, for some x ∈ E , and is defined
on some interval a ≤ t ≤ b. For each q, r ∈ Q with q < r , let 	q,r denote the family of all
such paths γx , where x ∈ E , which are defined on the fixed interval [q, r ]. According to the
result in 5.3.12 by [8], we have that

Modp(	q,r ) = LN−1(E)

(r − q)p
.

Suppose first thatLN−1(E) = 0. ThenModp(	q,r ) = 0 for all q, r ∈ Qwith q < r . Thus by
subadditivity we have that Modp(

⋃
q,r 	q,r ) = 0. Now each segment γx ∈ 	(E) contains a

sub-segment in some 	q,r . This implies that the corresponding admissible functions satisfy
F(

⋃
q,r 	q,r ) ⊂ F(	(E)), and therefore

Modp(	(E)) ≤ Modp

( ⋃

q,r

	q,r

)
= 0.

Conversely, if Modp(	(E)) = 0 then Modp(	q,r ) = 0 for any q, r ∈ Q with q < r , and
therefore LN−1(E) = 0. ��

We finish this Section with the classical Fuglede’s Lemma (for a proof, see e.g. Theorem
5.7 in [5] or Chapter 5 in [8]).
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Lemma 2.5 (Fuglede’s Lemma) Let � be an open subset ofRN and let {gn}∞n=1 be a sequence
of Borel functions gn : � → [−∞,∞] that converges in L p(�) to some Borel function
g : � → [−∞,∞]. Then there is a subsequence {gnk }∞k=1 such that

lim
k→∞

∫

γ

|gnk − g| ds = 0

for p-almost every rectifiable curve γ in �.

3 Sobolev spacesW1,p(Ä,V)

Let 1 ≤ p < ∞, consider an open subset � of euclidean space RN , where we consider the
Lebesgue measure LN , and let V be a Banach space. We denote by C∞

0 (�) the space of all
real-valued functions that are infinitely differentiable and have compact support in �. This
class of functions allows us to apply the integration by parts formula against functions in
L p(�, V ). In this way we can define weak derivatives as follows. Given f ∈ L p(�, V ) and
i ∈ {1, . . . , N }, a function fi ∈ L1

loc(�, V ) is said to be the i-th weak partial derivative of
f if

∫

�

∂ϕ

∂xi
f = −

∫

�

ϕ fi

for every ϕ ∈ C∞
0 (�). As defined, it is easy to see that partial derivatives are unique, so we

denote fi = ∂ f /∂xi . If f admits all weak partial derivatives, we define its weak gradient as
the vector ∇ f = ( f1, . . . , fN ), and the length of the gradient is

|∇ f | :=
(

N∑

i=1

∥∥∥∥
∂ f

∂xi

∥∥∥∥
2
) 1

2

.

Using this, the classical first-order Sobolev spaces of Banach-valued functions are defined
as follows.

Definition 3.1 Let 1 ≤ p < ∞, � be an open subset ofRN and let V be a Banach space. We
define the Sobolev space W 1,p(�, V ) as the set of all classes of functions f ∈ L p(�, V )

that admit a weak gradient satisfying ∂ f /∂xi ∈ L p(�, V ) for all i ∈ {1, . . . , N }. This space
is equipped with the natural norm

‖ f ‖W 1,p :=
(∫

�

‖ f ‖p
) 1

p +
(∫

�

|∇ f |p
) 1

p

.

We denote by W 1,p(�) = W 1,p(�,R).

It can be shown that the space W 1,p(�, V ), endowed with this norm, is a Banach space.
Furthermore, theMeyers–Serrin theorem also holds in the context of Banach-valued Sobolev
functions, so in particular the space C1(�, V ) ∩ W 1,p(�, V ) is dense in W 1,p(�, V ). We
refer to Theorem 4.11 in [9] for a proof of this fact.

Recall that a function f : [a, b] → V is absolutely continuous if for each ε > 0 there
exists δ > 0 such that for every pairwise disjoint intervals [a1, b1], . . . , [am, bm] ⊂ [a, b]
such that

∑m
i=1 |bi − ai | < δ, we have that

m∑

i=1

‖ f (bi ) − f (ai )‖ < ε.
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It is well known that every function in W 1,p(�, V ) admits a representative which is abso-
lutely continuous and almost everywhere differentiable along almost every line parallel to
a coordinate axis (see Theorem 4.16 in [9] or Theorem 3.2 in [2]). More generally, we are
going to show that this property can be extended to p-almost every rectifiable curve on �.
We first need the following lemma:

Lemma 3.2 Let � be an open subset of RN and let V be a Banach space. If f ∈ C1(�, V )

and γ is a rectifiable curve in �, parametrized by arc length, then f ◦ γ is absolutely
continuous and differentiable almost everywhere. Moreover, the derivative of f ◦ γ belongs
to L1([0, �(γ )], V ) and

( f ◦ γ )(t) − ( f ◦ γ )(0) =
∫ t

0
( f ◦ γ )′(τ ) dτ.

for each t ∈ [0, �(γ )].
Proof Since γ : [0, �(γ )] → � is a rectifiable curve parametrized by arc length, in particular
it is 1-Lipschitz, so it is differentiable almost everywhere. Furthermore, the derivative γ ′(τ )

has Euclidean norm |γ ′(τ )| = 1 whenever it exists. Additionally f ∈ C1(�, V ), so the chain
rule yields that f ◦ γ is differentiable almost everywhere. Now denote h = f ◦ γ . Since

h′(t) = lim
n→∞

h(t + 1/n) − h(t)

1/n

we see that h′ is limit of a sequence of measurable functions, and hence measurable. Fur-
thermore, as f ∈ C1(�, V ) and γ ([0, �(γ )]) is compact, there exists K > 0 such that
|∇ f (γ (τ ))| ≤ K for all τ ∈ [0, �(γ )]). Then

‖h′‖1 =
∫ �(γ )

0
‖(∇ f (γ (τ ))) · γ ′(τ )‖ dτ =

∫ �(γ )

0

∥∥∥∥∥

N∑

i=1

∂ f (γ (τ ))

∂xi
· γ ′

i (τ )

∥∥∥∥∥ dτ

≤
∫ �(γ )

0

N∑

i=1

∥∥∥∥
∂ f (γ (τ ))

∂xi

∥∥∥∥ · |γ ′
i (τ )| dτ ≤

∫ �(γ )

0
|∇ f (γ (τ ))| · |γ ′(τ )| dτ ≤ K�(γ ),

concluding that h′ ∈ L1([0, �(γ )], V ). Now for each v∗ ∈ V ∗, applying the Fundamental
Theorem of Calculus to the scalar function 〈v∗, h〉we see that for each t ∈ [0, �(γ )] we have
that

〈v∗, h〉(t) − 〈v∗, h〉(0) =
∫ t

0
〈v∗, h′(τ )〉 dτ =

〈
v∗,

∫ t

0
h′(τ ) dτ

〉
.

As a consequence, h(t) − h(0) =
∫ t

0
h′(τ ) dτ for every t ∈ [0, �(γ )]. ��

Theorem 3.3 Let 1 ≤ p < ∞, let � be an open subset of RN and let V be a Banach space.
Then every f ∈ W 1,p(�, V ) admits a representative for which f ◦γ is absolutely continuous
and differentiable almost everywhere over p-almost every rectifiable curve γ in �.

Proof Let M denote the family of all nonconstant rectifiable curves in � which, without
loss of generality, we can assume to be parametrized by arc length. By the Meyers–Serrin
density theorem, there exists a sequence { fn}∞n=1 of functions in C1(�, V ) converging to f
in W 1,p(�, V )-norm. In particular, fn converges to f in L p(�, V ), and then there exists a
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subsequence of { fn}∞n=1, still denoted by fn , converging almost everywhere to f . Choose a
null subset �0 ⊂ � such that fn → f pointwise on � \ �0. Now consider

	+
�0

:= {γ : [0, �(γ )] → � ∈ M : L1({t ∈ [0, �(γ )] : γ (t) ∈ �0}) > 0}.
By Lemma 2.3, Modp(	

+
�0

) = 0. In addition, for every curve γ ∈ M\	+
�0

the set E := {t ∈
[0, �(γ )] : γ (t) ∈ �0} has zero measure, and therefore fn ◦ γ → f ◦ γ almost everywhere
on [0, �(γ )].

On the other hand, as fn → f in W 1,p(�, V ), we also have that |∇ fn − ∇ f | → 0 in
L p(�). Then we can apply Fuglede’s Lemma 2.5 and we obtain a subsequence of { fn}∞n=1,
that we keep denoting by fn , such that

lim
n→∞

∫

γ

|∇ fn − ∇ f | ds = 0 (1)

for every curve γ ∈ M \	1, where Modp(	1) = 0. Notice that for every curve γ ∈ M \	1

the Fuglede identity (1) will also hold for any subcurve of γ , since
∫

γ |[s,t]
|∇ fn − ∇ f | ds ≤

∫

γ

|∇ fn − ∇ f | ds

for each 0 ≤ s ≤ t ≤ �(γ ).
Furthermore, by Lemma 2.2, the family of curves 	2 satisfying that

∫
γ

|∇ f |ds = ∞
or

∫
γ

|∇ fn |ds = ∞ for some n has null p-modulus. Finally, we consider the family 	 =
	1 ∪ 	2 ∪ 	+

�0
and note that, by subadditivity, Modp(	) = 0.

Now fix a rectifiable curve γ ∈ M \	. For each n ∈ N by Lemma 3.2 the function fn ◦γ

is almost everywhere differentiable, its derivative gn = ( fn ◦ γ )′ = (∇ fn ◦ γ ) · γ ′ belongs
to L1([0, �(γ )], V ) and satisfies

fn ◦ γ (t) − fn ◦ γ (s) =
∫ t

s
gn dL1 (2)

for each s, t ∈ [0, �(γ )]. Moreover, taking into account that γ is parametrized by arc-length,
we see that |γ ′| = 1 almost everywhere on [0, �(γ )], and we obtain that, for every function
u ∈ W 1,p(�, V ),

‖(∇u ◦ γ ) · γ ′‖ =
∥∥∥∥∥

N∑

i=1

(
∂u

∂xi
◦ γ

)
· γ ′

i

∥∥∥∥∥ ≤
N∑

i=1

∥∥∥∥

(
∂u

∂xi
◦ γ

)
· γ ′

i

∥∥∥∥

=
N∑

i=1

∥∥∥∥
∂u

∂xi
◦ γ

∥∥∥∥ · |γ ′
i | ≤ |∇u ◦ γ | · |γ ′| = |∇u ◦ γ |.

Then for any 0 ≤ s ≤ t ≤ �(γ ) we have that
∥∥∥∥
∫ t

s
gn dL1 −

∫ t

s
(∇ f ◦ γ ) · γ ′ dL1

∥∥∥∥ ≤
∫ t

s
‖gn − (∇ f ◦ γ ) · γ ′‖ dL1

=
∫ t

s

∥∥(∇ fn ◦ γ − ∇ f ◦ γ ) · γ ′∥∥ dL1

≤
∫ t

s
|∇ fn − ∇ f | ◦ γ dL1

≤
∫

γ

|∇ fn − ∇ f | ds
n→∞−→ 0.
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Hence (∇ f ◦ γ ) · γ ′ ∈ L1([0, �(γ )], V ) and

lim
n→∞

∫ t

s
gn dL1 =

∫ t

s
(∇ f ◦ γ ) · γ ′ dL1. (3)

Next we are going to see that the sequence { fn ◦ γ }∞n=1 is equicontinuous. This will follow
from the fact that {|∇ fn ◦ γ |}∞n=1 is equiintegrable, that is, for every ε > 0 there exists δ > 0
such that

sup
n≥1

∫

A
|∇ fn ◦ γ | dL1 ≤ ε if A ⊂ [0, �(γ )] and L1(A) < δ.

Fix ε > 0. Then by (1) there exists n0 ∈ N such that

∫ �(γ )

0
||∇ fn ◦ γ | − |∇ f ◦ γ || dL1 <

ε

2
∀n ≥ n0 (4)

Now notice that as γ /∈ 	2 then |∇ fn ◦ γ | and |∇ f ◦ γ | are integrable on [0, �(γ )], hence by
the absolutely continuity of the integral we can choose a δ > 0 such that for any A ⊂ [0, �(γ )]
with L1(A) < δ

∫

A
|∇ fn ◦ γ | dL1 <

ε

2
, (5)

for all n ∈ {1, . . . , n0} and
∫

A
|∇ f ◦ γ | dL1 <

ε

2
. (6)

Then for n ≥ n0 by (4) and (6)

∫

A
|∇ fn ◦ γ | dL1 ≤

∫

A
|∇ f ◦ γ | dL1 +

∫ �(γ )

0
||∇ fn ◦ γ | − |∇ f ◦ γ || dL1

<
ε

2
+ ε

2
= ε.

This, together with (5), gives that
∫

A
|∇ fn ◦ γ | dL1 < ε

for every n ∈ N, as we wanted to prove. Hence by (2) we have that, if 0 ≤ s ≤ t ≤ �(γ ) are
such that |s − t | < δ, then

‖ fn ◦ γ (s) − fn ◦ γ (t)‖ ≤
∫ t

s
|∇ fn ◦ γ | dL1 < ε.

This yields that { fn ◦ γ }∞n=1 is an equicontinuous sequence. Since in addition { fn ◦ γ }∞n=1
converges on a dense subset of [0, �(γ )] we obtain that, in fact, { fn ◦ γ }∞n=1 converges
uniformly on [0, �(γ )].

Now we choose a representative of f defined as follows:

f (x) :=
{
limn→∞ fn(x) if the limit exists,

0 otherwise.
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With this definition we obtain that, for every curve γ ∈ M \ 	 and every t ∈ [0, �(γ )], the
sequence {( fn ◦ γ )(t))}∞n=1 converges to f ◦ γ (t). Therefore, using (2) and (3) we see that,
for every s, t ∈ [0, �(γ )],

( f ◦ γ )(t) − ( f ◦ γ )(s) = lim
n→∞(( fn ◦ γ )(t) − ( fn ◦ γ )(s))

= lim
n→∞

∫ t

s
gn dL1 =

∫ t

s
(∇ f ◦ γ ) · γ ′ dL1.

Fromherewe deduce that f ◦γ is absolutely continuous and almost everywhere differentiable
on [0, �(γ )]. ��

Wepoint out that, as can be seen in Theorem 4.16 in [9] or Theorem 3.2 of [2], the classical
Beppo Levi characterization of Sobolev functions also holds in this setting. More precisely,
for an open subset � of RN , a Banach space V and 1 ≤ p < ∞, we have that a function
f ∈ L p(�, V ) belongs to W 1,p(�, V ) if, and only if, f admits a representative which is
absolutely continuous and almost everywhere differentiable along almost every line parallel
to a coordinate axis, and whose (a.e. pointwise defined) partial derivatives also belong to
L p(�, V ).

4 Sobolev–Reshetnyak spaces R1,p(Ä,V)

Adifferent notion of Sobolev spaceswas introduced byReshetnyak [10] for functions defined
in an open subset of RN and taking values in a metric space. Here we will consider only
the case of functions with values in a Banach space. These Sobolev–Reshetnyak spaces have
been considered in [7] and [6].We give a definition taken from [6], which is slightly different,
but equivalent, to the original definition in [10].

Definition 4.1 Let�be anopen subset ofRN and letV be aBanach space.Given1 ≤ p < ∞,
the Sobolev–Reshetnyak space R1,p(�, V ) is defined as the space of all classes of functions
f ∈ L p(�, V ) satisfying

(1) for every v∗ ∈ V ∗ such that ‖v∗‖ ≤ 1, 〈v∗, f 〉 ∈ W 1,p(�);
(2) there is a nonnegative function g ∈ L p(�) such that the inequality |∇〈v∗, f 〉| ≤ g holds

almost everywhere, for all v∗ ∈ V ∗ satisfying ‖v∗‖ ≤ 1.

We now define the norm

‖ f ‖R1,p := ‖ f ‖p + inf
g∈R( f )

‖g‖p,

where R( f ) denotes the family of all nonnegative functions g ∈ L p(�) satisfying (2).

It can be checked that the space R1,p(�, V ), endowed with the norm ‖ ·‖R1,p , is a Banach
space. We also note the following.

Remark 4.2 Let � ⊂ R
N be an open set and let V be a Banach space. If f : � → V is

Lipschitz and has bounded support, then f ∈ R1,p(�, V ) for each p ≥ 1.

As we have mentioned, our main goal in this note is to compare Sobolev and Sobolev–
Reshetnyak spaces. We first give a general result:
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Theorem 4.3 Let � be an open subset of RN and let V be a Banach space. For 1 ≤ p < ∞,
the space W 1,p(�, V ) is a closed subspace of R1,p(�, V ) and furthermore, for every f ∈
W 1,p(�, V ), we have

‖ f ‖R1,p ≤ ‖ f ‖W 1,p ≤ √
N ‖ f ‖R1,p .

Proof That W 1,p(�, V ) ⊂ R1,p(�, V ) and ‖ f ‖R1,p ≤ ‖ f ‖W 1,p for all f ∈ W 1,p(�, V )

was proved in Proposition 2.3 of [6].
Now we will show the opposite inequality. Consider f ∈ W 1,p(�, V ), let g ∈ R( f ), and

choose a vector w ∈ R
N with |w| = 1. Taking into account Theorem 3.3 and Lemma 2.4 we

see that, for almost all x ∈ �, there exists the directional derivative

Dw f (x) = lim
t→0

1

t
( f (x + tw) − f (x)) ∈ V .

For each v∗ ∈ V ∗ with ‖v∗‖ ≤ 1 we then have, for almost al x ∈ �,

|Dw〈v∗, f 〉(x)| = |∇〈v∗, f 〉(x) · w| ≤ |∇〈v∗, f 〉(x)| ≤ g(x).

Thus, again for almost all x ∈ �,

‖Dw f (x)‖ = sup
‖v∗‖≤1

|〈v∗, Dw f (x)〉| = sup
‖v∗‖≤1

|Dw〈v∗, f 〉(x)| ≤ g(x).

In this way we see that the weak partial derivatives of f are such that ‖(∂ f /∂xi )(x)‖ ≤ g(x)

for every i ∈ {1, . . . , N } and almost all x ∈ �. From here, the desired inequality follows.
Finally, from the equivalence of the norms on W 1,p(�, V )we see that it is a closed subspace.

��
However, the following simple example shows that the opposite inclusion does not hold

in general. The same example has been used in Proposition 1.2.9 of [1] and Example 6.3 of
[2].

Example 4.4 Consider the interval I = (0, 1) and let f : I → �∞ be the function given by

f (t) =
{
sin(nt)

n

}∞

n=1

for all t ∈ I . Then f ∈ R1,p(I , �∞) but f /∈ W 1,p(I , �∞).

Proof Since f is Lipschitz,we see fromRemark 4.2 that f ∈ R1,p(I , �∞) for all 1 ≤ p < ∞.
Suppose now that f ∈ W 1,p(I , �∞). FromTheorem 3.3 we have that f is almost everywhere
differentiable on p-almost every rectifiable curve in I . Since, by Lemma 2.2, the family
formed by a single nontrivial segment [a, b] ⊂ I has positive p-modulus, we obtain that f
is almost everywhere differentiable on I . In fact, this follows directly from Proposition 2.5
in [2]. But this is a contradiction, since in fact f is nowhere differentiable. Indeed, for each
t ∈ I , the limit

lim
h→0

1

h
( f (t + h) − f (t))

does not exist in �∞. This can be seen taking into account that f (I ) is contained in the space
c0 of null sequences, which is a closed subspace of �∞, while the coordinatewise limit is
{cos(nt)}∞n=1, which does not belong to c0. ��

Before going further, we give the following result, which parallels Theorem3.3, andwhose
proof is based on Theorem 7.1.20 of [8].
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Theorem 4.5 Let � ⊂ R
N be an open set, let V be a Banach space and suppose 1 ≤ p < ∞.

Then, every f ∈ R1,p(�, V ) admits a representative such that, for p-almost every rectifiable
curve γ in �, the composition f ◦ γ is absolutely continuous.

Proof Consider f ∈ R1,p(�, V ). In particular, f is measurable, hence there exists a null set
E0 ⊂ � such that f (� \ E0) is a separable subset of V . Then we can choose a countable set
{vi }∞i=1 ⊂ V whose closure in V contains the set

f (� \ E0) − f (� \ E0) = { f (x) − f (y) : x, y ∈ � \ E0} ⊂ V .

Additionally, we can apply the Hahn-Banach theorem to select a countable set {v∗
i }∞i=1 ⊂ V ∗

such that 〈v∗
i , vi 〉 = ‖vi‖ and ‖v∗

i ‖ = 1 for each i ∈ N. As before, let M denote the family
of all nonconstant rectifiable curves in �. From Theorem 3.3 we obtain that, for each i ∈ N,
there is a representative fi of 〈v∗

i , f 〉 in W 1,p(�) such that fi is absolutely continuous on
p-almost every curve γ ∈ M. Let Ei denote the set where fi differs from 〈v∗

i , f 〉, and define
�0 = ⋃

i Ei ∪ E0, which is also a null set. Now let g ∈ R( f ) and define

g∗(x) := sup
i

|∇〈v∗
i , f (x)〉|

We may also assume that g and g∗ are Borel functions and g∗(x) ≤ g(x) for each x ∈ �. In
particular, g∗ ∈ L p(�). For a curve γ : [a, b] → � inM, consider the following properties:

(1) the function g∗ is integrable on γ ;
(2) the length of γ in �0 is zero, that is, L1({t ∈ [a, b] : γ (t) ∈ �0}) = 0;
(3) for each i ∈ N and every a ≤ s ≤ t ≤ b,

| fi (γ (t)) − fi (γ (s))| ≤
∫ t

s
|∇〈v∗

i , f 〉(γ (τ ))| dτ ≤
∫

γ |[s,t]
g∗ ds.

By Lemma 2.2 and Lemma 2.3, respectively, we have that properties (1) and (2) are satisfied
by p-almost every curve γ ∈ M. From Theorem 3.3 we obtain that property (3) is also
satisfied by p-almost every curve γ ∈ M. Thus the family 	 of all curves γ ∈ M satisfying
simultaneously (1), (2) and (3) represents p-almost every nonconstant rectifiable curve on
�. Now we distinguish two cases.

First, suppose that γ : [a, b] → � is a curve in 	 whose endpoints satisfy γ (a), γ (b) /∈
�0. Hence we can choose a subsequence {vi j }∞j=1 converging to f (γ (b)) − f (γ (a)), and
then

‖ f (γ (b)) − f (γ (a))‖ = lim
j→∞ ‖vi j ‖

= lim
j→∞ |〈v∗

i j
, vi j 〉|

≤ lim sup
j→∞

(
|〈v∗

i j
, vi j − f (γ (a)) + f (γ (b))〉| + |〈v∗

i j
, f (γ (a)) − f (γ (b))〉|

)

≤ lim sup
j→∞

(
‖vi j − f (γ (a)) + f (γ (b))‖ + |〈v∗

i j
, f (γ (a))〉 − 〈v∗

i j
, f (γ (b))〉|

)

= |〈v∗
i j

, f (γ (a))〉 − 〈v∗
i j

, f (γ (b))〉|
= | fi j (γ (a)) − fi j (γ (b))| ≤

∫

γ

g∗ ds.

Suppose now that γ : [a, b] → � is a curve in 	 with at least one endpoint in �0. In fact,
we can suppose that γ (a) ∈ �0. By property (2), we can choose a sequence {tk}∞k=1 ⊂ [a, b]
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converging to a and such that γ (tk) /∈ �0. Then by the previous case

‖ f (γ (tk)) − f (γ (tl))‖ ≤
∫

γ |[tk ,tl ]
g∗ ds

for any k, l ∈ N, and hence, as g∗ is integrable on γ , then { f (γ (tk))}∞k=1 is convergent.
Suppose now that σ : [c, d] → � is another curve in 	 satisfying σ(c) = γ (a), and let
{sm}∞m=1 ⊂ [c, d] be a sequence converging to a such that σ(sm) /∈ �0 for every m ∈ N.
Then

‖ f (γ (tk)) − f (σ (sm))‖ ≤
∫

σ |[c,sm ]
g∗ds +

∫

γ |[a,tk ]
g∗ ds

k,m→∞−→ 0.

This proves that the limit of f (γ (tk)) as k → ∞ is independent of the curve γ and the
sequence {tk}∞k=1. Now we choose a representative f0 of f defined in the following way:

(1) If x ∈ � \ �0 we set f0(x) = f (x).
(2) If x ∈ �0 and there exists γ : [a, b] → � in 	 such that γ (a) = x , we set f0(x) =

limk→∞ f (γ (tk))where {tk}∞k=1 ⊂ [a, b] is a sequence converging to a such that γ (tk) /∈
�0 for each k.

(3) Otherwise, we set f0(x) = 0.

By definition, f0 = f almost everywhere and, for every γ : [a, b] → � in 	,

‖ f0(γ (b)) − f0(γ (a))‖ ≤
∫

γ

g∗ ds ≤
∫

γ

g ds.

Furthermore, as this also holds for any subcurve of γ by the definition of 	, we also have
that for every a ≤ s ≤ t ≤ b

‖ f0 ◦ γ (t) − f0 ◦ γ (s)‖ ≤
∫

γ |[s,t]
g ds. (7)

Therefore, the integrability of g on γ gives that f ◦ γ is absolutely continuous. ��
Note that in the previous theorem, in contrast with Theorem 3.3, for p-almost every

curve γ the composition f ◦ γ is absolutely continuous but, in general, it needs not be
differentiable almost everywhere unless the space V satisfies the Radon–Nikodým Property.
Recall that a Banach space V has the Radon–Nikodým Property if every Lipschitz function
f : [a, b] → V is differentiable almost everywhere. Equivalently (see e.g. Theorem 5.21 of
[3]) V has the Radon–Nikodým Property if and only if every absolutely continuous function
f : [a, b] → V is differentiable almost everywhere. The name of this property is due to
the fact that it characterizes the validity of classical Radon–Nikodým theorem in the case
of Banach-valued measures. We refer to [4] for an extensive information about the Radon–
Nikodým Property on Banach spaces.

We are now ready to give our main result:

Theorem 4.6 Let � be an open subset ofRN , let V be a Banach space and 1 ≤ p < ∞. Then
W 1,p(�, V ) = R1,p(�, V ) if, and only if, the space V has the Radon–Nikodým property.

Proof Suppose first that V has the Radon–Nikodým Property. Consider f ∈ R1,p(�, V ) and
let g ∈ R( f ). Fix a direction ei parallel to the xi -axis for any i ∈ {1, . . . , N }. From Theorem
4.5 we obtain a suitable representative of f such that, over p-almost every segment parallel
to some ei , f is absolutely continuous and, because of the Radon–Nikodým Property, almost
everywhere differentiable. Therefore, by Lemma 2.4 and Fubini Theorem we have that, for
almost every x ∈ � and every i ∈ {1, . . . , N }, there exists the directional derivative
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Dei f (x) = lim
h→0

f (x + hei ) − f (x)

h
.

Note that each Dei f is measurable, and that from Equation (7) above it follows that
‖Dei f (x)‖ ≤ g(x) for almost every x ∈ �. Thus Dei f ∈ L p(�, V ) for each i ∈ {1, . . . , N }.
In addition, for every v∗ ∈ V ∗ we have that 〈v∗, Dei f 〉 is the weak derivative 〈v∗, f 〉. Then
for every ϕ ∈ C∞

0 (�)

〈
v∗,

∫

�

ϕ Dei f

〉
=

∫

�

ϕ〈v∗, Dei f 〉 = −
∫

�

∂ϕ

∂xi
〈v∗, f 〉 =

〈
v∗,−

∫

�

∂ϕ

∂xi
f

〉
.

Thus for every i ∈ {1, . . . , N } the directional derivative Dei f is, in fact, the i-th weak
derivative of f , that is, ∂ f /∂xi = Dei f ∈ L p(�, V ). It follows that f ∈ W 1,p(�, V ).

For the converse, suppose that V does not have the Radon–Nikodým Property. Then there
exists a Lipschitz function h : [a, b] → V which is not differentiable almost everywhere.
We may also assume that [a, b] × R0 = R is an N -dimensional rectangle contained in �,
where R0 is an (N − 1)-dimensional rectangle. The function f : [a, b] × R0 → V given by
f (x1, . . . , xN ) = h(x1) is Lipschitz, so it admits an extension f̃ : � → V which is Lipschitz
and has bounded support. Then, as noted inRemark 4.2,we have that f̃ ∈ R1,p(�, V ). On the
other hand, f̃ is not almost everywhere differentiable along any horizontal segment contained
in [a, b]× R0 = R. From Lemma 2.4 and Theorem 3.3, we deduce that f̃ /∈ W 1,p(�, V ). ��

To finish with, we would like to point out that there are also other known characterizations
of Radon–Nikodým Property in terms of spaces of Banach-valued Sobolev functions. See,
e.g., the mapping properties considered by Arendt and Kreuter [2].
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