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Abstract
Recently, Huang and Hsu (J Oper Res Soc Jpn 50:1–13, 2007) investigated the retailer’s
optimal replenishment policy with non-instantaneous receipt under trade credit and cash
discount. Basically, their inventory model is correct and interesting. However, they ignored
explorations of interrelations of functional behaviors of the annual total cost to locate the
optimal solutions so much so that the accuracy and reliability of the process of the proof
of their solution procedure are questionable. The main purpose of this paper is to provide
accurate and reliable mathematical analytic solution procedures to improve the findings in
the aforementioned work of Huang and Hsu (J Oper Res Soc Jpn 50:1–13, 2007). Some
related recent works on the subject-matter of this investigation are also cited with a view
to providing incentive and motivation for making further advances along the lines of the
supply chain management and associated inventory problems which we have discussed in
this article.

Keywords Mathematical analytic solution procedure · Inventory model · Retailer’s optimal
replenishment policy · Economic order quantities (EOQ) · Trade credits · Cash discounts ·
Permissible delay in payment · Cash discount

Mathematics Subject Classification Primary 26A06 · 26A24 · 91B24 · 93C15; Secondary
26D10 · 90B30.

1 Introduction

In the year 1998,Borde andMcCarty [1] pointed out that, in inventorymanagement, economic
order quantities (EOQ)may be affected as a result of the payment delays associatedwith trade
credit, which implies that interactions may occur between trade credit and other operational
considerations. From a retailer’s viewpoint, not accepting the discount and paying later may
be advantageous in the presence of rapid inflation in which case a finite fund would become
worthless in real terms. On the other hand, from the supplier’s perspective, Hill and Riener [8]
identified several benefits and costs which are associated with cash discounts. Cash discounts
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typically induce some customers to pay early in exchange for a pre-specified discount. To
the supplier, cash is received sooner, thereby reducing the need to borrow. An early payment
discount is, in effect, a price reduction. If retailers are price elastic, cash discounts may
generate greater demand for the firm’s products. Thus, cash discount can be used as a tool in
the process of fine tuning the product’s price. Early payment may reduce the possibility of
bad debt losses as less timewould be available for buyers to develop and resolve the payment-
related problems. However, on the negative side, a cash discount may directly reduce total
sales revenue if unit sales volume does not increase sufficiently to offset the unit revenue
loss. This may occur if buyers are price inelastic and, therefore, are not induced to buy
proportionally more units of the product in response to a price reduction.

Given the importance of trade credit and the fact that some features of the firm’s cash
discount problem, a lot of published articles can be found in the literature such as those by
(for example) Borde and McCarty [1], Rashid and Mitra [19], Huang and Chung [9], Stokes
[22], Sarker and Kindi [20], Huang and Hsu [10], Chung et al. (see [3,5,6]), Liao et al. (see
[12,14,15]), and Srivastava et al. [21]. In particular, Huang and Hsu’s model in [10] is correct
and interesting. However, they seem to have ignored or missed explorations of interrelations
of functional behaviors of the annual total cost to locate the optimal solutions. This means
that their arguments about the solution procedure are not complete. Themain purposes of this
paper is to present accurate and reliable mathematical analytic solution procedures to provide
the complete proof of, and thereby improve, the findings in the above-mentioned work of
Huang and Hsu [10]. Finally, in Sect. 7 on concluding remarks and further observations, we
have chosen to include citations of a number of related recent works on the subject-matter
of our present investigations with the hope to provide incentive and motivation for making
further advances along the lines of the supply chain management and associated inventory
problems which we have discussed in this article.

2 Model formulation

2.1 Notation

A Cost of placing one order
c Unit purchasing price per item
D Demand rate per year
h Unit stock holding cost per item per year excluding interest charges
Ie Interest which can be earned per $ per year
Ik Interest charges per $ investment in inventory per year
M1 The period of cash discount in years
M2 The period of trade credit in years, M1 < M2

P Replenishment rate per year, P > D ρ = 1 − D

P
> 0

r Cash discount rate, 0 � r < 1
s Unit selling price per item
T The cycle time in years (decision variable)

Policy I. The retailer accepts the cash discount and makes the full payment within
M1.

Policy II. The retailer does not accept the cash discount and makes the full payment
within M2.
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T VC1(T ) = the annual total relevant cost when the retail adopts Policy I and T > 0

=
⎧
⎨

⎩

T VC11(T ) if PM1/D � T
T VC12(T ) if M1 � T � PM1/D
TVC13(T ) if 0 < T � M1

T VC2(T ) = the annual total relevant cost when the retailer adopts Policy II and T > 0

=
⎧
⎨

⎩

T VC21(T ) if PM2/D � T
T VC22(T ) if M2 � T � PM2/D
TVC23(T ) if 0 < T � M2

T VC(T ) = the annual total relevant cost when T > 0

=
{
T VC1(T ) if the retailer adopts Policy I
T VC2(T ) if the retailer adopts Policy II.

T ∗ = the optimal cycle time of T VC(T ).

2.2 Assumptions

(1) Demand rate, D, is known and constant.
(2) Replenishment rate, P , is known and constant.
(3) Shortages are not allowed.
(4) Time horizon is infinite.
(5) s � c and Ik � Ie.
(6) Supplier offers a cash discount after settlement of an order if payment is paid within M1,

otherwise the full payment is paid within M2. The account is settled when the payment
is paid.

(7) During the time the account is not settled, generated sales revenue is deposited in an
interest-bearing account. At the end of the period, the retailer pays off all units sold and
keeps his/her profits, and starts paying for the higher interest charges on the items in
stock.

2.3 Mathematical model

According to Assumption (6), the retailer has the following two policies (Policy I and Policy
II) to choose from:

Policy I. The retailer accepts the cash discount and makes the full payment within
M1.

Policy II. The retailer does not accept the cash discount and makes the full payment
within M2.

Huang and Hsu [10] divided the annual total relevant cost into two cases to be discussed as
follows:
Case 1. The retailer adopts Policy I.

T VC1(T ) =
⎧
⎨

⎩

T VC11(T ) if PM1
D � T (1a)

T VC12(T ) if M1 � T � PM1
D (1b)

T VC13(T ) if 0 < T � M1, (1c)
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where

T VC11(T ) = A

T
+ DThρ

2
+ c(1 − r)D + cIk(1 − r)ρ

T

(
DT 2

2
− PM2

1

2

)

− s Ie
T

(
DM2

1

2

)

,

(2)

T VC12(T ) = A

T
+ DThρ

2
+ c(1 − r)D + cIk(1 − r)

T

(
D(T − M1)

2

2

)

− s Ie
T

(
DM2

1

2

)

(3)

and

T VC13(T ) = A

T
+ DThρ

2
+ c(1 − r)D − s Ie

T

(
DT 2

2
+ DT (M1 − T )

)

. (4)

Case 2. The retailer adopts Policy II.

T VC2(T ) =
⎧
⎨

⎩

T VC21(T ) if PM2
D � T (5a)

T VC22(T ) if M2 � T � PM2
D (5b)

T VC23(T ) if 0 � T � M2, (5c)

where

T VC21(T ) = A

T
+ DThρ

2
+ cD + cIkρ

T

(
DT 2

2
− PM2

2

2

)

− s Ie
T

(
DM2

2

2

)

, (6)

T VC22(T ) = A

T
+ DThρ

2
+ cD + cIk

T

(
D(T − M2)

2

2

)

− s Ie
T

(
DM2

2

2

)

(7)

and

T VC23(T ) = A

T
+ DThρ

2
+ cD − s Ie

T

(
DT 2

2
+ DT (M2 − T )

)

. (8)

Combining Cases 1 and 2, the annual total relevant cost can be expressed as follows:

T VC(T ) =
{
T VC1(T ) if the retailer adopts Policy I (9a)
T VC2(T ) if the retailer adopts Policy II. (9b)

3 The Convexity of TVCij(T) (i = 1, 2; j = 1, 2, 3)

For convenience, we treat all T VCi j (T ) (i = 1, 2; j = 1, 2, 3) are defined on T > 0.
Equations (2), (3), (6), (7), (8) and (10) yield

T VC ′
11(T ) = −

(
2A − M2

1 [cIk (1 − r)Pρ + s IeD]
2T 2

)

+ Dρ[h + cIk (1 − r)]
2

, (10)

T VC ′′
11(T ) = 2A − M2

1 [cIk (1 − r)Pρ + s IeD]
T 3

2A − cM2
1 P Ik (1 − r) + DM2

1 [cIk (1 − r) − s Ie]
T 3 ,

(11)

T VC ′
12(T ) = −

(
2A + DM2

1 [cIk (1 − r) − s Ie]
2T 2

)

+ D[hρ + cIk (1 − r)]
2

; (12)
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and

T VC ′′
12(T ) = 2A + DM2

1 [cIk(1 − r) − s Ie]
T 3 , (13)

T VC ′
13(T ) = − A

T 2 + D(hρ + s Ie)

2
, (14)

T VC ′′
13(T ) = 2A

T 3 > 0, (15)

T VC ′
21(T ) = −

(
2A − M2

2 (cIk Pρ + s IeD)

2T 2

)

+ Dρ(h + cIk)

2
, (16)

T VC ′′
21(T ) = 2A − M2

2 (cIkρP + s IeD)

T 3 = 2A − cM2
2 P Ik + DM2

2 (cIk − s Ie)

T 3 ,

(17)

T VC ′
22(T ) = −

(
2A + DM2

2 [cIk − s Ie]
2T 2

)

+ D(hρ + cIk)

2
, (18)

T VC ′′
22(T ) = 2A + DM2

2 (cIk − s Ie)

T 3 , (19)

T VC ′
23(T ) = − A

T 2 + D(hρ + s Ie)

2
(20)

and

T VC ′′
23(T ) = 2A

T 3 > 0. (21)

Let

G1 = 2A − cM2
1 P Ik(1 − r) + DM2

1 [cIk(1 − r) − s Ie], (22)

H1 = 2A + DM2
1 [cIk(1 − r) − s Ie], (23)

G2 = 2A − cM2
2 P Ik + DM2

2 (cIk − s Ie) (24)

and

H2 = 2A + DM2
2 (cIk − s Ie) (25)

Remark 1 Equations (22)–(25) imply that H1 > G1, H2 > G2 and G1 > G2. Equations
(11), (13), (15), (17), (19) and (21) imply the results asserted by Theorem 1 below.

Theorem 1 Each of the following assertions hold true:
(i) T VC11(T ) is convex on T > 0 if G1 > 0 and concave on T > 0 if G1 � 0.

Furthermore, T VC ′
11(T ) > 0 and T VC11(T ) is increasing on T > 0 if G1 � 0.

(ii) T VC12(T ) is convex on T > 0 if H1 > 0 and concave on T > 0 if H1 � 0.
Furthermore, T VC ′

12(T ) > 0 and T VC12(T ) is increasing on T > 0 if H1 � 0.
(iii) T VC13(T ) is convex on T > 0.
(iv) T VC21(T ) is convex on T > 0 if G2 > 0 and concave on T > 0 if G2 � 0.

Furthermore, T VC ′
21(T ) > 0 and T VC21(T ) is increasing on T > 0 if G2 � 0.
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(v) T VC22(T ) is convex on T > 0 if H2 > 0 and concave on T > 0 if H2 � 0.
Furthermore, T VC ′

22(T ) > 0 and T VC22(T ) is increasing on T > 0 if H2 � 0.
(vi) T VC23(T ) is convex on T > 0.

Letting

T VC ′
i j (T ) = 0 (i = 1, 2; j = 1, 2, 3) (26)

and solving Eq. (26), we obtain

T ∗
11 =

√

2A − cM2
1 P Ik(1 − r) + DM2

1 [cIk(1 − r) − s Ie]
Dρ[h + cIk(1 − r)] , if G1 > 0 (27)

T ∗
12 =

√

2A + DM2
1 [cIk(1 − r) − s Ie]

D[hρ + cIk(1 − r)] if H1 > 0, (28)

T ∗
13 =

√
2A

D(hρ + s Ie)
, (29)

T ∗
21 =

√

2A + DM2
2 (cIk − s Ie) − cM2

2 P Ik
Dρ(h + cIk)

if G2 > 0 (30)

T ∗
22 =

√

2A + DM2
2 (cIk − s Ie)

D(hρ + cIk)
if H2 > 0, (31)

T ∗
23 =

√
2A

D(hρ + s Ie)
, (32)

which provide the respective solution of Eq. (26). We also have

T VC ′
i3(T )

⎧
⎨

⎩

< 0 if 0 < T < T ∗
i3 (33a)

= 0 if T = T ∗
i3 (33b)

> 0 if T > T ∗
i3 (33c)

for i = 1 and 2. Furthermore, we also have

T VC ′
1 j (T )

⎧
⎨

⎩

< 0 if 0 < T < T ∗
1 j (34a)

= 0 if T = T ∗
1 j (34b)

> 0 if T > T ∗
1 j (34c)

if G1 > 0 for j = 1 and H1 > 0 for j = 2, and

T VC ′
2 j (T )

⎧
⎨

⎩

< 0 if 0 < T < T ∗
2 j (35a)

= 0 if T = T ∗
2 j (35b)

> 0 if T > T ∗
2 j (35c)

if G2 > 0 for j = 1 and H2 > 0 for j = 2.
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4 Mathemsatical Analytic Solution Procedure Used by Huang and Hsu
[10]

Let T ∗
i denote the optimal solution of T VCi (T ) for i = 1 and i = 2. Huang and Hsu [10]

recorded their conclusions as follows:

Conclusion (A): T ∗
1 = T ∗

11 if T ∗
11 � PM1

D
.

Conclusion (B): T ∗
1 = T ∗

12 if M1 � T ∗
12 � PM1

D
.

Conclusion (C): T ∗
1 = T ∗

13 if 0 < T ∗
13 � M1.

Conclusion (D): T ∗
2 = T ∗

21 if T ∗
21 � PM2

D
.

Conclusion (E): T ∗
2 = T ∗

22 if M2 � T ∗
22 � PM2

D
.

Conclusion (F): T ∗
2 = T ∗

23 if 0 < T ∗
23 � M2.

We just need to discuss Conclusion (A). The same arguments in Conclusion (A) can be
applied to Conclusions (B) to (F). About Conclusion (A), the following inequality:

T ∗
11 � PM1

D

only means that the optimal solution T ∗
11 of T VC11(T ) lies in the interval

[
PM1

D
,∞

)

.

Basically, the equations 1(a, b, c) reveal the fact that the graph of T VC1(T ) consists of those
of T VC11(T ), T VC12(T ) and T VC13(T ) on the respective domain of T VC1(T ).

In fact, if

T ∗
11 � PM1

D
,

we can only conclude that T ∗
11 is the optimal solution of T VC1(T ) on the interval

[
PM1

D
,∞

)

, but T ∗
11 is not necessarily the optimal solution T ∗

1 of T VC1(T ) on the whole

domain T > 0. The function T VC11(T ) can not solely determine the optimal solution of
T VC1(T ), since the graphs of T VC11(T ) and T VC1(T ) are different. It should explore the
functional behaviors of T VC11(T ), T VC12(T ) and T VC13(T ) on the following intervals:

[
PM1

D
,∞

)

,

[

M1,
PM1

D

]

and (0, M1],

respectively, to jointly decide whether T ∗
11 is the optimal solution T ∗

1 of T VC1(T ) on the
whole domain T > 0.

In spite of the above observation, Huang and Hsu [10] ignores the explorations of the
interrelations of the functional behaviors of T VC11(T ), T VC12(T ) and T VC13(T ) on the
respective domain of T VC1(T ) so much so that their arguments about the solution procedure
are not reliable. So, their processes of proof of Conclusion (A) are questionable. The above
arguments about Conclusion (A) can be applied to Conclusions (B) to (F). Thus, clearly, the
processes of proof of Theorem 1 in the work of Huang and Hsu [10] are not complete.

5 Theorems for the Optimal Cycle Time T∗ of TVC(T)

Case 1. The retailer adopts Policy I.
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In this case, we recall from the equations 1(a,b,c) that

T VC1(T ) =
⎧
⎨

⎩

T VC11(T ) if PM1
D � T (1a)

T VC12(T ) if M1 � T � PM1
D (1b)

T VC13(T ) if 0 < T � M1. (1c)

We then find that

T VC11(PM1/D) = T VC12

(
PM1

D

)

and T VC12(M1) = T VC13(M1),

Hence the function T VC1(T ) is continuous and well-defined. All of the functions
T VC11(T ), T VC12(T ), T VC13(T ) and T VC1(T ) are defined on T > 0. Furthermore,
we have

T VC ′
11(

PM1

D
) = T VC ′

12

(
PM1

D

)

= −2A + M2
1

D [cIk(1 − r)(P2 − D2) + s IeD2 + hP(P − D)]
2

(
PM1
D

)2 (36)

and

T VC ′
12(M1) = T VC ′

13(M1) = −2A + DM2
1 (hρ + s Ie)

2M2
1

(37)

Case 2. The retailer adopts Policy II.
In this case, we recall from the equations 5(a,b,c) that

T VC2(T ) =
⎧
⎨

⎩

T VC21(T ) if PM2
D � T (5a)

T VC22(T ) if M2 � T � PM2
D (5b)

T VC23(T ) if 0 � T � M2 (5c)

We then find that

T VC21

(
PM2

D

)

= T VC22

(
PM2

D

)

and T VC22(M2) = T VC23(M2).

Hence the function T VC2(T ) is continuous and well-defined. All of the functions
T VC21(T ), T VC22(T ), T VC23(T ) and T VC2(T ) are defined on T > 0. Furthermore,
we have

T VC ′
21

(
PM2

D

)

= T VC ′
22

(
PM2

D

)

= −2A + M2
2

D [cIk(P2 − D2) + s IeD2 + hP(P − D)]
2

(
PM2
D

)2

(38)

and

T VC ′
22(M2) = T VC ′

23(M2) = −2A + DM2
2 (hρ + s Ie)

2M2
2

(39)
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Let

�1 = −2A + M2
1

D
[cIk(1 − r)(P2 − D2) + s IeD

2 + hP(P − D)] (40)

�2 = −2A + DM2
1 (hρ + s Ie) (41)

�3 = −2A + M2
2

D
[cIk(P2 − D2) + s IeD

2 + hP(P − D)] (42)

and

�4 = −2A + DM2
2 (hρ + s Ie) (43)

Equations(40)–(43) reveal that

�3 > �1 > �2 (44)

and

�3 > �4 > �2 (45)

We then have the following results.

Theorem 2 If H1 � 0, then

T VC(T ∗) = min{T VC1(T
∗
13), T VC2(T

∗
23)}

and T ∗ = T ∗
13 or T ∗

23 are associated with the least cost. Furthermore, there are three cases
to occur:
(A) If s Ie(M1 − M2) + cr > 0, then T ∗ = T ∗

13 and Policy I is better.
(B) T VC12(T ) is convex on T > 0 if H1 > 0 and concave on T > 0 if H1 � 0.

Furthermore, T VC ′
12(T ) > 0 and the function T VC12(T ) is increasing on T > 0 if

H1 � 0.
(C) If s Ie(M1 − M2) + cr < 0, then T ∗ = T ∗

23 and Policy II is better.

Proof If H1 � 0, then�2 > 0. Equations (44) and (45) reveal that�1 > 0,�2 > 0,�3 > 0
and �4 > 0. Thus, together with Theorem 1, we can arrive at the following observations:

(i) T VC13(T ) is decreasing on (0, T ∗
13] and increasing on [T ∗

13, M1].
(ii) T VC12(T ) is increasing on

[

M1,
PM1

D

]

.

(iii) T VC11(T ) is increasing on

[
PM1

D
,∞

)

.

(iv) T VC23(T ) is decreasing on (0, T ∗
23] and increasing on [T ∗

23, M2].
(v) T VC22(T ) is increasing on

[

M2,
PM2

D

]

.

(vi) T VC21(T ) is increasing on

[
PM2

D
,∞

)

.

Now, by combining the equations 1(a, b, c), 5(a, b, c) and (i) to (vi), we conclude that
T ∗
1 = T ∗

13 and T ∗
2 = T ∗

23. Equations 9(a, b) imply that

T VC(T ∗) = min{T VC1(T
∗
1 ), T VC2(T

∗
2 )}.

123
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So, T ∗ = T ∗
13 or T

∗
23 is associated with the least cost.

Equations (30) and (32) reveal that T ∗
13 = T ∗

23. On the other hand, the equations (1c) and
(5c) imply that

T VC23(T ) − T VC13(T ) = D[s Ie(M1 − M2) + cr ],
so that

T VC23(T
∗
23) − T VC13(T

∗
13) = D[s Ie(M1 − M2) + cr ].

There are the following three cases to occur:
(A) If s Ie(M1 − M2) + cr > 0, then

T VC2(T
∗
2 ) = T VC23(T

∗
23) > T VC13(T

∗
13) = T VC1(T

∗
1 ),

so T ∗ = T ∗
13 and Policy I is better.

(B) If s Ie(M1 − M2) + cr = 0, then

T VC2(T
∗
2 ) = T VC23(T

∗
23) = T VC13(T

∗
13) = T VC1(T

∗
1 ),

so T ∗ = T ∗
13 = T ∗

23 and Policy I and Policy II are not different.
(C) If s Ie(M1 − M2) + cr < 0, then

T VC2(T
∗
2 ) = T VC23(T

∗
23) < T VC13(T

∗
13) = T VC1(T

∗
1 ),

so T ∗ = T ∗
23 and Policy II is better.

Incorporating the above arguments, we have completed the proof of Theorem 1. ��
Remark 2 If H1 � 0, then 0 > G1 > G2. Equations (28), (29), (31) and (31) reveal that
T ∗
11, T

∗
12 and T

∗
21 do not exist. Therefore, the assertions of Theorem 1(B, C, D, E, F) in Huang

and Hsu [10] do not hold true.

Theorem 3 Suppose that H1 > 0, G1 � 0 and H2 � 0. The following assertions hold true:
(A) If �2 > 0, then

T VC(T ∗) = min{T VC1(T
∗
13), T VC2(T

∗
23)}

and T ∗ = T ∗
13 or T ∗

23 is associated with the least cost. Furthermore, there are the
following three cases to occur:
(i) If s Ie(M1 − M2) + cr > 0, then T ∗ = T ∗

13 and Policy I is better.
(ii) If s Ie(M1 − M2) + cr = 0, then T ∗ = T ∗

13 = T ∗
23 and Policy I and Policy II are

not different.
(iii) If s Ie(M1 − M2) + cr < 0, then T ∗ = T ∗

23 and Policy II is better.

(B) If �2 � 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
23)}

and T ∗ = T ∗
12 or T

∗
23 is associated with the least cost.

Proof If G1 � 0 and H2 � 0, then T VC ′
11(T ) > 0, T VC ′

21(T ) > 0 and T VC ′
22(T ) > 0.

Equations (40), (42) and (43) reveal that �1 > 0, �3 > 0 and �4 > 0. Therefore, in view
of Theorem 1, we can get
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(A) If �2 > 0, the proof of (A) is the same as that of Theorem 2.
(B) If �2 � 0, we have

(i) T VC13(T ) is decreasing on (0, M1].
(ii) T VC12(T ) is decreasing on [M1, T ∗

12] and increasing on

[

T ∗
12,

PM1

D

]

.

(iii) T VC11(T ) is increasing on

[
PM1

D
,∞

)

.

(iv) T VC23(T ) is decreasing on (0, T ∗
23] and increasing on [T ∗

23, M2].
(v) T VC22(T ) is increasing on

[

M2,
PM2

D

]

.

(vi) T VC21(T ) is increasing on

[
PM2

D
,∞

)

.

By combining the equations 1(a,b,c), 5(a,b,c) and (i) to (vi), we conclude that T ∗
1 = T ∗

12
and T ∗

2 = T ∗
23. Equations 9(a,b) imply that

T VC(T ∗) = min{T VC1(T
∗
1 ), T VC2(T

∗
2 )},

so T ∗ = T ∗
12 or T

∗
23 is associated with the least cost.

Incorporating the above arguments, we have completed the proof of Theorem 3. ��
Remark 3 If H2 � 0 and G1 � 0, then G2 � 0. Equations (27), (30) and (31) reveal that
T ∗
11, T

∗
21 and T ∗

22 do not exist. Therefore, the assertions of Theorem 1(C, D, E, F) in Huang
and Hsu [10] are not valid.

Theorem 4 Suppose that H1 > 0, G1 � 0, H2 > 0 and G2 � 0. The following assertions
hold true:
(A) If �2 > 0, then

T VC(T ∗) = min{T VC1(T
∗
13), T VC2(T

∗
23)}

and T ∗ = T ∗
13 or T ∗

23 is associated with the least cost. Furthermore, there are the
following three cases to occur:
(i) If s Ie(M1 − M2) + cr > 0, then T ∗ = T ∗

13 and Policy I is better.
(ii) If s Ie(M1 − M2) + cr = 0, then T ∗ = T ∗

13 = T ∗
23 and Policy I and Policy II are

not different.
(iii) If s Ie(M1 − M2) + cr < 0, then T ∗ = T ∗

23 and Policy II is better.

(B) If �4 > 0 and �2 � 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
23)}

and T ∗ = T ∗
12 or T

∗
23 is associated with the least cost.

(C) If �4 � 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
22)}

and T ∗ = T ∗
12 or T ∗

22 is associated with the least cost.

Proof If G1 � 0 and G2 � 0, then T VC ′
11(T ) > 0 and T VC ′

21(T ) > 0. Equations (40) and
(42) reveal that �1 > 0 and �3 > 0. Thus, in light of Theorem 1, we can get
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(A) If �2 > 0, then �4 > 0. So, the proof of is the same as that of Theorem 2.
(B) If �4 > 0, then �2 � 0, then the proof of (B) is the same as that of Theorem 3(B).
(C) If �4 � 0, then �2 < 0. We have the following cases:

(i) T VC13(T ) is decreasing on (0, M1].
(ii) T VC12(T ) is decreasing on [M1, T ∗

12] and increasing on

[

T ∗
12,

PM1

D

]

.

(iii) T VC11(T ) is increasing on

[
PM1

D
,∞

)

.

(iv) T VC23(T ) is decreasing on (0, M2].
(v) T VC22(T ) is decreasing on [M2, T ∗

22] and increasing on

[

T ∗
22,

PM2

D

]

.

(vi) T VC23(T ) is increasing on

[
PM2

D
,∞

)

.

Thus, if we combine the equations 1(a,b,c), 5(a,b,c) and (i) to (vi), we conclude that
T ∗
1 = T ∗

12 and T ∗
2 = T ∗

22. Equations 9(a, b) imply that

T VC(T ∗) = min{T VC1(T
∗
1 ), T VC2(T

∗
2 )},

so T ∗ = T ∗
12 or T

∗
22 is associated with the least cost.

Incorporating the above arguments, we have completed the proof of Theorem 4. ��
Remark 4 If G1 � 0 and G2 � 0, then T VC ′

11(T ) > 0 and T VC ′
21(T ) > 0. Equations (27)

and (30) reveal that T ∗
11 and T ∗

21 do not exist. Therefore, the assertions of Theorem 1(D, E,
F) in Huang and Hsu [10] do not hold true.

Theorem 5 Suppose that G1 > 0 and H2 � 0. The following assertions hold true:
(A) If �2 > 0, then

T VC(T ∗) = min{T VC1(T
∗
13), T VC2(T

∗
23)}

and T ∗ = T ∗
13 or T ∗

23 is associated with the least cost. Furthermore, there are the
following three cases to occur:
(i) If s Ie(M1 − M2) + cr > 0, then T ∗ = T ∗

13 and Policy I is better.
(ii) If s Ie(M1 − M2) + cr = 0, then T ∗ = T ∗

13 = T ∗
23 and Policy I and Policy II are

not different.
(iii) If s Ie(M1 − M2) + cr < 0, then T ∗ = T ∗

23 and Policy II is better.

(B) If �1 > 0 and �2 � 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
23)}

and T ∗ = T ∗
12 or T

∗
23 is associated with the least cost.

(C) If �1 � 0, then

T VC(T ∗) = min{T VC1(T
∗
11), T VC2(T

∗
23)}

and T ∗ = T ∗
11 or T

∗
23 is associated with the least cost.

Proof If H2 � 0 and G2 � 0, we have T VC ′
21(T ) > 0 and T VC ′

22(T ) > 0. Equations (42)
and (43) reveal that �3 > 0 and �4 > 0. Together with Theorem 1, we can get

(A) If �2 > 0, then �1 > 0. So, the proof of (A) is the same as that of Theorem 2.
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(B) If �1 > 0, then �2 � 0, then the proof of (B) is the same as that of Theorem 3(B).
(C) If �1 � 0, then �2 < 0. We have

(i) T VC13(T ) is decreasing on (0, M1].
(ii) T VC12(T ) is decreasing on

[

M1,
PM1

D

]

.

(iii) T VC11(T ) is decreasing on

[
PM1

D
, T ∗

11

]

and increasing on [T ∗
11,∞).

(iv) T VC23(T ) is decreasing on (0, T ∗
23] and increasing on [T ∗

23, M2].
(v) T VC22(T ) is increasing on

[

M2,
PM2

D

]

.

(vi) T VC21(T ) is increasing on

[
PM2

D
,∞

)

.

Upon combining the equations 1(a,b,c), 5(a,b,c) and (i) to (vi), we conclude that T ∗
1 = T ∗

11
and T ∗

2 = T ∗
23. Equations 9(a,b) imply that

T VC(T ∗) = min{T VC1(T
∗
1 ), T VC2(T

∗
2 )}

so T ∗ = T ∗
11 or T

∗
23 is associated with the least cost.

Incorporating the above arguments, we have completed the proof of Theorem 5. ��

Remark 5 If H2 � 0 and G2 � 0, then Eqs. (30) and (31) reveal that T ∗
21 and T ∗

22 do not
exist. Therefore, the assertions of Theorem 1(C, E, F) in Huang and Hsu [10] is not true.

Theorem 6 Suppose that G1 > 0, H2 > 0 and G2 � 0. The following assertions hold true:
(A) If �2 > 0, then

T VC(T ∗) = min{T VC1(T
∗
13), T VC2(T

∗
23)}

and T ∗ = T ∗
13 or T ∗

23 is associated with the least cost. Furthermore, there are the
following three cases to occur:
(i) If s Ie(M1 − M2) + cr > 0, then T ∗ = T ∗

13 and Policy I is better.
(ii) If s Ie(M1 − M2) + cr = 0, then T ∗ = T ∗

13 = T ∗
23 and Policy I and Policy II are

not different.
(iii) If s Ie(M1 − M2) + cr < 0, then T ∗ = T ∗

23 and Policy II is better.

(B) If �4 > 0, �1 > 0 and �2 � 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
23)}

and T ∗ = T ∗
12 or T

∗
23 is associated with the least cost.

(C) If �4 � 0 and �1 > 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
22)}

and T ∗ = T ∗
12 or T

∗
22 is associated with the least cost.

(D) If �4 > 0 and �1 � 0, then

T VC(T ∗) = min{T VC1(T
∗
11), T VC2(T

∗
23)}

and T ∗ = T ∗
11 or T

∗
23 is associated with the least cost.
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(E) If �4 � 0 and �1 � 0, then

T VC(T ∗) = min{T VC1(T
∗
11), T VC2(T

∗
22)}

and T ∗ = T ∗
11 or T

∗
22 is associated with the least cost.

Proof If G2 � 0, then T VC ′
21(T ) > 0. Equation (42) reveals that �3 > 0.

So, together with Theorem 1, we can get

(A) If �2 > 0, then �1 > 0 and �4 > 0. The proof of (A) is the same as that of Theorem
2.

(B) If �4 > 0, �1 > 0 and �2 � 0, then the proof of (B) is the same as that of Theorem
3(B).

(C) If �4 � 0 and �1 > 0, then �2 < 0. The proof of (C) is the same as that of Theorem
4(C).

(D) If �4 > 0 and �1 � 0, then �2 < 0. The proof of (D) is the same as that of Theorem
5(C).

(E) If �4 � 0 and �1 � 0, then �2 < 0. We have the following cases:

(i) T VC13(T ) is decreasing on (0, M1].
(ii) T VC12(T ) is decreasing on

[

M1,
PM1

D

]

.

(iii) T VC11(T ) is decreasing on

[
PM1

D
, T ∗

11

]

and increasing on [T ∗
11,∞).

(iv) T VC23(T ) is decreasing on (0, M2].
(iv T VC22(T ) is decreasing on [M2, T ∗

22] and increasing on

[

T ∗
22,

PM2

D

]

.

(vi) T VC21(T ) is increasing on

[
PM2

D
,∞

)

.

Combining the equations 1(a,b,c), 5(a,b,c) and (i) to (vi), we conclude that T ∗
1 = T ∗

11 and
T ∗
2 = T ∗

22. Equations 9(a, b) imply that

T VC(T ∗) = min{T VC1(T
∗
1 ), T VC2(T

∗
2 )},

so T ∗ = T ∗
11 or T

∗
22 is associated with the least cost.

Incorporating the above arguments, we have completed the proof of Theorem 6. ��
Remark 6 If G2 � 0, Eq. (30) reveals that T ∗

21 does not exist. Therefore, the assertions of
Theorem 1(F) in Huang and Hsu [10] are not true.

Theorem 7 Suppose that G2 > 0. The following assertions hold true:
(A) If �2 > 0, then

T VC(T ∗) = min{T VC1(T
∗
13), T VC2(T

∗
23)},

so T ∗ = T ∗
13 or T ∗

23 is associated with the least cost. Furthermore, there are the
following three cases to occur:
(i) If s Ie(M1 − M2) + cr > 0, then T ∗ = T ∗

13 and Policy I is better.
(ii) If s Ie(M1 − M2) + cr = 0, then T ∗ = T ∗

13 = T ∗
23 and Policy I and Policy II are

not different.
(iii) If s Ie(M1 − M2) + cr < 0, then T ∗ = T ∗

23 and Policy II is better.
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(B) If �1 > 0, �2 � 0 and �4 > 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
23)},

so T ∗ = T ∗
12 or T

∗
23 is associated with the least cost.

(C) If �1 > 0 and �4 � 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
22)},

so T ∗ = T ∗
12 or T ∗

22 is associated with the least cost.
(D) If �1 � 0 and �4 > 0, then

T VC(T ∗) = min{T VC1(T
∗
11), T VC2(T

∗
23)}

so T ∗ = T ∗
11 or T

∗
23 is associated with the least cost.

(E) If �1 � 0, �3 > 0 and �4 � 0, then

T VC(T ∗) = min{T VC1(T
∗
11), T VC2(T

∗
22)},

so T ∗ = T ∗
11 or T

∗
22 is associated with the least cost.

(F) If �3 � 0, then

T VC(T ∗) = min{T VC1(T
∗
11), T VC2(T

∗
21)},

so T ∗ = T ∗
11 or T

∗
21 is associated with the least cost.

Proof We consider the following situations:

(A) If �2 > 0, then �1 > 0, �3 > 0 and �4 > 0. The proof of (A) is the same as that of
Theorem 2.

(B) If �1 > 0, �2 � 0 and �4 > 0, then �3 > 0. The proof of (B) is the same as that of
Theorem 3(B).

(C) If �1 > 0 and �4 � 0, then �3 > 0 and �2 < 0. The proof of (C) is the same as that
of Theorem 4(C).

(D) If �1 � 0 and �4 > 0, then �2 < 0 and �3 > 0. The proof of (D) is the same as that
of Theorem 5(C).

(E) If �1 � 0, �3 > 0 and �4 � 0, then �2 < 0. The proof of (E) is the same as that of
Theorem 6(E).

(F) If �3 � 0, then �1 < 0, �2 < 0 and �4 < 0. Thus, together with Theorem 1, we
can get

(i) T VC13(T ) is decreasing on (0, M1].
(ii) T VC12(T ) is decreasing on

[

M1,
PM1

D

]

.

(iii) T VC11(T ) is decreasing on

[
PM1

D
, T ∗

11

]

and increasing on [T ∗
11,∞).

(iv) T VC23(T ) is decreasing on (0, M2].
(v) T VC22(T ) is decreasing on

[

M2,
PM2

D

]

.

(vi) T VC21(T ) is decreasing on

[
PM2

D
, T ∗

21

]

and increasing on [T ∗
21,∞).
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Combining the equations 1(a,b,c), 5(a,b,c) and the items (i) to (vi), we conclude that
T ∗
1 = T ∗

11 and T ∗
2 = T ∗

21. Equations 9(a,b) imply that

T VC(T ∗) = min{T VC1(T
∗
1 ), T VC2(T

∗
2 )}.

Consequently, T ∗ = T ∗
11 or T ∗

21 is associated with the least cost. Incorporating the above
arguments, we have completed the proof of Theorem 7. ��
Remark 7 By combining all of the arguments of Theorems 2–7, we are led to the complete
proof of Theorem 1 in Huang and Hsu [10]. We thus obtain the following result.

Theorem 8 Each of the following assertions hold true:
(A) If �2 > 0, then

T VC(T ∗) = min{T VC1(T
∗
13), T VC2(T

∗
23)}

and T ∗ = T ∗
13 or T

∗
23 is associated with the least cost. There are three cases to occur

in this case.

(i) If s Ie(M1 − M2) + cr > 0, then T ∗ = T ∗
13 and Policy I is better.

(ii) If s Ie(M1 − M2) + cr = 0, then T ∗ = T ∗
13 = T ∗

23 and Policy I and Policy II are
not different.

(iii) If s Ie(M1 − M2) + cr < 0, then T ∗ = T ∗
23 and Policy II is better.

(B) If �1 > 0, �2 � 0 and �4 > 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
23)}

and T ∗ = T ∗
12 or T

∗
23 is associated with the least cost.

(C) If �1 > 0 and �4 � 0, then

T VC(T ∗) = min{T VC1(T
∗
12), T VC2(T

∗
22)}

and T ∗ = T ∗
12 or T

∗
22 is associated with the least cost.

(D) If �1 � 0 and �4 > 0, then

T VC(T ∗) = min{T VC1(T
∗
11), T VC2(T

∗
23)}

and T ∗ = T ∗
11 or T

∗
23 is associated with the least cost.

(E) If �1 � 0, �3 > 0 and �4 � 0, then

T VC(T ∗) = min{T VC1(T
∗
11), T VC2(T

∗
22)}

and T ∗ = T ∗
11 or T

∗
22 is associated with the least cost.

(F) If �3 � 0, then

T VC(T ∗) = min{T VC1(T
∗
11), T VC2(T

∗
21)}

and T ∗ = T ∗
11 or T

∗
21 is associated with the least cost.

Remark 8 Basically, Theorem 8 is consistent with Theorem 1 in the work of Huang and Hsu
[10]. Furthermore, Theorem 8(A) above simplifies Theorem 1(A) in this paper by Huang and
Hsu [10].
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6 Numerical Examples

Forty-two numerical examples are used here to explain and illustrate all of the results in the
paper. The necessary parameters and the optimal solutions of the forty-two examples are
presented in Tables 1 and 2. All dimensions of the parameters involved in this paper are the
same as those in Huang and Hsu [10]. The optimal policies adopted by all examples in Huang
and Hsu [10] are included in Policy I. However, the optimal policies adopted by all examples
in this paper consist of Policy I as well as Policy II. Therefore, all of results presented in
Table 2 are more informative and more meaningful than those in Huang and Hsu [10].
In Table 2 above, the following abbreviations and conventions have been used:
Theorem: Which Theorem is applied? N: No, it does not exist. Y: Yes, it exists.
(*): The optimal solution. (α): Which policy is adopted: Policy I or Policy II.?

7 Concluding remarks and further observations

According to the facts that H1 > H2, H2 > G2 and G1 > G2, Theorem 1 characterizes
the familiar convexity and concavity properties of T VCi j (T ) (i = 1, 2; j = 1, 2, 3) into
six situations (see, for details, [25]). These six situations represent six different types of
graphs of T VCi j (T ) (i = 1, 2; j = 1, 2, 3). Although Theorem 1 in the investigation by
Huang and Hsu [10] is correct, Huang and Hsu [10] ignored explorations of interrelations of
the functional behaviors of T VCi j (T ) (i = 1, 2; j = 1, 2, 3) on the respective domain of
T VCi j (T ) (i = 1, 2; j = 1, 2, 3) such that the accuracy and reliability of the process of the
proof of Theorem 1 in Huang and Hsu [10] to specify the optimal solution are questionable.
This paper removes all of these drawbacks and presents a complete mathematical analytic
proof for Theorem 1 in Huang and Hsu [10]. Numerical examples illustrate all of the results
which are presented in this paper.
Finally, with a view to providing incentive and motivation for making further advances along
the lines of the supply chain management and associated inventory problems which we have
discussed in our present investigation,we choose to cite several related recentworks including
(for example) those by Cárdenas-Barrón et al. [2], Chung et al. (see [4,7]), Khan et al. [11],
Liao et al. (see [13], [16,17]), Modak et al. [18], Tiwari et al. [23], Udayakumar and Geetha
[24], and Wójtowicz [26].
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Table 1 Given values of the involved parameters

Example No. A D c P r h Ie Ik M1 M2 s

1 50 500 50 800 0.9 20 0.15 0.2 0.1 0.15 200

2 50 500 50 800 0.1 20 0.15 0.2 0.1 0.2 400

3 50 500 50 800 0.4 20 0.15 0.2 0.3 0.4 60

4 7 500 150 800 0.05 20 0.15 0.2 0.14 0.4 200

5 40 500 50 800 0.1 20 0.15 0.2 0.1 0.4 80

6 40 500 50 800 0.1 20 0.15 0.2 0.1 0.4 120

7 85 500 50 1200 0.1 20 0.15 0.2 0.1 0.4 147

8 300 500 50 1200 0.1 20 0.15 0.2 0.2 0.4 120

9 85 500 50 1200 0.1 20 0.15 0.2 0.12 0.2 100

10 85 500 50 1200 0.02 20 0.15 0.2 0.12 0.2 100

11 85 500 50 1200 0.02 20 0.15 0.2 0.11 0.2 100

12 300 500 50 1200 0.1 20 0.15 0.2 0.2 0.3 120

13 300 500 70 1200 0.02 20 0.15 0.2 0.18 0.2 120

14 350 500 70 2500 0.01 20 0.15 0.2 0.15 0.2 120

15 150 500 50 800 0.1 20 0.15 0.2 0.12 0.16 240

16 155 500 50 800 0.02 20 0.15 0.2 0.12 0.16 240

17 150 500 50 800 0.1 20 0.15 0.2 0.1 0.15 250

18 150 500 50 800 0.02 20 0.15 0.2 0.1 0.15 250

19 200 500 50 800 0.1 20 0.15 0.2 0.1 0.2 250

20 200 500 50 800 0.02 20 0.15 0.2 0.1 0.2 200

21 150 500 50 800 0.1 20 0.15 0.2 0.12 0.15 240

22 153 500 50 800 0.02 20 0.15 0.2 0.12 0.15 240

23 160 500 50 800 0.1 20 0.15 0.2 0.1 0.15 250

24 160 500 50 800 0.02 20 0.15 0.2 0.1 0.15 250

25 160 500 50 1300 0.1 20 0.15 0.2 0.1 0.11 250

26 160 500 50 1300 0.005 20 0.15 0.2 0.1 0.11 250

27 150 500 50 800 0.1 20 0.15 0.2 0.05 0.15 140

28 150 500 50 800 0.01 20 0.15 0.2 0.05 0.15 140

29 150 500 50 800 0.1 10 0.15 0.2 0.1 0.17 100

30 150 500 50 800 0.01 10 0.15 0.2 0.1 0.17 100

31 120 500 10 800 0.1 20 0.15 0.2 0.15 0.16 100

32 120 500 10 800 0.01 20 0.15 0.2 0.15 0.16 100

33 160 500 50 800 0.1 20 0.15 0.2 0.1 0.12 250

34 160 500 50 800 0.02 20 0.15 0.2 0.1 0.12 250

35 160 500 50 800 0.1 20 0.15 0.2 0.1 0.11 250

36 160 500 50 800 0.003 20 0.15 0.2 0.1 0.11 250

37 160 500 50 800 0.1 20 0.15 0.2 0.1 0.15 140

38 160 500 50 800 0.01 20 0.15 0.2 0.1 0.15 140

39 160 500 50 800 0.1 10 0.15 0.2 0.1 0.17 100

40 160 500 50 800 0.01 10 0.15 0.2 0.1 0.17 100

41 150 500 50 800 0.1 20 0.15 0.2 0.05 0.1 100

42 150 500 50 800 0.003 20 0.15 0.2 0.05 0.1 100
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