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Abstract
In this article, using a hybrid extragradient method, we introduce a new iterative process for
approximating a common element of the set of solutions of an equilibrium problem and a
common zero of a finite family of monotone operators in Hadamard spaces. We also give
a numerical example to solve a nonconvex optimization problem in an Hadamard space to
support our main result.
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1 Preliminaries

Let (X , d) be a metric space. A geodesic path joining x to y in X is a mapping c from a
closed interval [0, l] ⊆ R to X such that c(0) = x, c(l) = y and d(c(s), c(t)) = |s − t |
for all s, t ∈ [0, l]. The image of c is called geodesic segment joining x and y and is
denoted by [x, y]. We denote the unique point z ∈ [x, y] such that d(x, z) = td(x, y) and
d(y, z) = (1− t)d(x, y) by (1− t)x ⊕ t y, where 0 ≤ t ≤ 1. The metric space (X, d) is called
a geodesic space if any two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic segment joining x and y for each x, y ∈ X . A subset
K of a uniquely geodesic space X is said to be convex when for any two points x, y ∈ K ,

the geodesic joining x and y is contained in K . A geodesic space (X , d) is a CAT(0) space
if it satisfies the (CN) inequality:

d2((1 − t)x ⊕ t y, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x, y), (1)
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for all x, y, z ∈ X and t ∈ [0, 1]. In particular, if x, y, z, w are points in X and t ∈ [0, 1],
then we have

d((1 − t)x ⊕ t y, z) ≤ (1 − t)d(x, z) + td(y, z), (2)

d((1 − t)x ⊕ t y, (1 − t)z ⊕ tw) ≤ (1 − t)d(x, z) + td(y, w). (3)

It is well known that a CAT(0) space is a uniquely geodesic space. A complete CAT(0)
space is called an Hadamard space. The class of Hadamard spaces comprises Hilbert spaces,
complete simply connected Riemannian manifolds of nonpositive sectional curvature (for
instance classic hyperbolic spaces and the manifold of positive definite matrices), Euclidean
buildings, CAT(0) complexes, nonlinear Lebesgue spaces, the Hilbert ball and many other
spaces (see[1,4,18]).

Let K be a nonempty closed convex subset of an Hadamard space X . It is known [8,
Proposition 2.4] that for any x ∈ X there exists a unique point x0 ∈ K such that d(x, x0) =
miny∈K d(x, y). The mapping PK : X → K defined by PK x = x0 is called the metric
projection from X onto K . The following theorem summarizes the basic properties of the
projection.

Theorem 1 [1] Let X be an Hadamard space and K ⊂ X be a closed convex set. Then:
(i) For every x ∈ X, there exists a unique point PK (x) ∈ K such that

d(x, PK (x)) = d(x, K ).

(ii) If x ∈ X and y ∈ K, then

d2(x, PK x) + d2(PK x, y) ≤ d2(x, y).

(iii) The mapping PK is a nonexpansive mapping from X onto K , that is, we have

d(PK x, PK y) ≤ d(x, y),

for all x, y ∈ X.

Definition 1 A function f : X → (−∞,+∞] is called
(1) convex iff

f ((1 − t)x ⊕ t y) ≤ (1 − t) f (x) + t f (y), ∀x, y ∈ X and t ∈ (0, 1),

(2) strictly convex iff

f ((1 − t)x ⊕ t y) < (1 − t) f (x) + t f (y), ∀x, y ∈ X , x 
= y and t ∈ (0, 1).

It is easy to see that each strictly convex function has at most one minimizer on X .
Let {xn} be a bounded sequence in an Hadamard space X . For x ∈ X , we set

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius r(xn) of {xn} is defined by:
r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set
A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
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It is known that in an Hadamard space, A({xn}) consists of exactly one point [12]. A
sequence {xn} in an Hadamard space X is said to be�-convergent to x ∈ X if x is the unique

asymptotic center of every subsequence of {xn}. We denote �-convergence in X by
�−→ and

the metric convergence by→. It is well known that every bounded sequence in an Hadamard
space X has a �-convergent subsequence (see[23]).

Lemma 1 [13] Let K be a closed and convex subset of anHadamard space X, T : K → K be
anonexpansivemappingand {xn}beabounded sequence in K such that lim

n→∞ d(xn, T xn) = 0

and xn
�−→ x. Then x = T x.

The following lemma is a generalization of Opial Lemma in Hadamard spaces (See [33]).

Lemma 2 Let (X , d) be an Hadamard space and {xn} be a sequence in X. If there exists a
nonemty subset F of X satisfying:
(i) For every z ∈ F, lim

n→∞ d(xn, z) exists.

(ii) If a subsequence {xn j } of {xn} �-converges to x ∈ X, then x ∈ F .

Then, there exists p ∈ F such that {xn} �-converges to p in X .

Berg andNikolaev in [2] introduced the concept of quasilinearization in ametric space X . Let

us formally denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector. Then quasilinearization

is a map 〈·, ·〉 : (X × X) × (X × X) → R defined by:

〈−→ab,−→cd〉 = 1

2

[
d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)

]
, (4)

for all a, b, c, d ∈ X . It is easily seen that 〈−→ab,−→cd〉 = 〈−→cd ,
−→
ab〉, 〈−→ab,−→cd〉 = −〈−→ba,

−→
cd〉 and

〈−→ax,−→cd〉+〈−→xb,−→cd〉 = 〈−→ab,−→cd〉, for all a, b, c, d, x ∈ X .We say that X satisfies the Cauchy–
Schwarz inequality if

〈−→ab, −→cd〉 ≤ d(a, b)d(c, d),

for all a, b, c, d ∈ X . It is known [2] that a geodesically connected metric space is a CAT(0)
space if and only if it satisfies the Cauchy–Schwarz inequality.

Lemma 3 [11] Let C be a nonempty closed convex subset of a CAT(0) space X, x ∈ X and
u ∈ C. Then u = PCx if and only if 〈−→xu,

−→uy〉 ≥ 0 for all y ∈ C .

Kakavandi and Amini [19] have introduced the concept of dual space of an Hadamard
space X , based on a work of Berg and Nikolaev [2], as follows.
Consider the map � : R ×X × X → C(X ,R) defined by:

�(t, a, b)(x) = t〈−→ab,−→ax〉, (a, b, x ∈ X , t ∈ R),

where C(X ,R) is the space of all continuous real-valued functions on R ×X × X . Then
the Cauchy–Schwarz inequality implies that �(t, a, b) is a Lipschitz function with Lip-
schitz semi-norm L(�(t, a, b)) = |t |d(a, b), for all t ∈ R and a, b ∈ X , where
L(ϕ) = sup{ϕ(x)−ϕ(y)

d(x,y) ; x, y ∈ X , x 
= y} is the Lipschitz semi-norm for any function
ϕ : X → R. A pseudometric D on R ×X × X is defined by

D((t, a, b), (s, c, d)) = L(�(t, a, b) − �(s, c, d)), (a, b, c, d ∈ X , t, s ∈ R).

For an Hadamard space (X , d), the pseudometric space (R×X × X , D) can be considered as
a subspace of the pseudometric space of all real-valued Lipschitz functions (Lip(X , R), L).

By [19, Lemma 2.1], D((t, a, b), (s, c, d)) = 0 if and only if t〈−→ab,−→xy〉 = s〈−→cd ,
−→xy〉 for all
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x, y ∈ X . Thus, D induces an equivalence relation on R × X × X where the equivalence
class of (t, a, b) is

[t−→ab] = {s−→cd; t〈−→ab,−→xy〉 = s〈−→cd ,
−→xy〉, ∀x, y ∈ X}.

The set X∗ := {[t−→ab]; (t, a, b) ∈ R×X×X} is ametric spacewithmetric D([tab], [scd]) :=
D((t, a, b), (s, c, d)), which is called the dual space of (X , d). It is clear that [−→aa] = [−→bb]
for all a, b ∈ X . Fix o ∈ X , we write 0 = [−→oo] as the zero of the dual space. Note that X∗
acts on X × X by:

〈x∗,−→xy〉 = t〈−→ab,−→xy〉, (x∗ = [t−→ab] ∈ X∗, x, y ∈ X).

Let X be an Hadamard space with dual X∗ and let A : X ⇒ X∗ be a multivalued operator
with domain D(A) := {x ∈ X , Ax 
= ∅}, range R(A) := ⋃

x∈X Ax, A−1(x∗) = {x ∈
X , x∗ ∈ Ax} and graph gra(A) := {(x, x∗) ∈ X × X∗, x ∈ D(A), x∗ ∈ Ax} .
Definition 2 [22] Let X be an Hadamard space with dual X∗. The multivalued operator
A : X ⇒ X∗ is said to be monotone if the inequality 〈x∗ − y∗,−→yx〉 ≥ 0 holds for every
(x, x∗), (y, y∗) ∈ gra(A).

A monotone operator A : X ⇒ X∗ is maximal if there exists no monotone operator B :
X ⇒ X∗ such that gra(B) properly contains gra(A) (that is, for any (y, y∗) ∈ X × X∗, the
inequality 〈x∗ − y∗,−→yx〉 ≥ 0 for all (x, x∗) ∈ gra(A) implies that y∗ ∈ Ay ).

Definition 3 [22] Let X be an Hadamard space with dual X∗, λ > 0 and let A : X ⇒ X∗ be a
multivalued operator. The resolvent of A of orderλ, is themultivaluedmapping J A

λ : X ⇒ X ,

defined by J A
λ (x) := {z ∈ X , [ 1

λ
−→zx ] ∈ Az}. Indeed
J A
λ = (

−→
oI + λA)−1 ◦ −→

oI ,

where o is an arbitrary member of X and
−→
oI (x) := [−→ox ]. It is obvious that this definition is

independent of the choice of o.

Let K be a nonempty subset of an Hadamard space X and T : K → K be a mapping. The
fixed point set of T is denoted by F(T ), that is, F(T ) = {x ∈ K : x = T x}.
Theorem 2 [22]. Let X be aCAT(0) spacewith dual X∗ and let A : X ⇒ X∗ be amultivalued
mapping. Then
(i) For any λ > 0, R(J A

λ ) ⊂ D(A), F(J A
λ ) = A−1(0),

(ii) If A is monotone, then J A
λ is a single-valued on its domain and

d2(J A
λ x, J A

λ y) ≤ 〈−−−−−→
J A
λ x J A

λ y,−→xy〉, ∀x, y ∈ D(J A
λ ),

in particular J A
λ is a nonexpansive mapping.

(iii) If A is monotone and 0 < λ ≤ μ, then d2(J A
λ x, J A

μ x) ≤ μ−λ
μ+λ

d2(x, J A
μ x),which implies

that d(x, J A
λ x) ≤ 2d(x, J A

μ x).

It is well known that if T is a nonexpansive mapping on a subset K of a CAT(0) space X ,
then F(T ) is closed and convex. Thus, if A is a monotone operator on a CAT(0) space X ,
then, by parts (i) and (i i) of Theorem 2, A−1(0) is closed and convex. Also by using part
(i i) of this theorem for all u ∈ F(J A

λ ) and x ∈ D(J A
λ ), we have

d2(J A
λ x, x) ≤ d2(u, x) − d2(u, J A

λ x). (5)

123



An extragradient algorithm for solving equilibrium Page 5 of 18 152

We say that A : X ⇒ X∗ satisfies the range condition if, for every λ > 0, D(J A
λ ) = X . It is

known that if A is a maximal monotone operator on a Hilbert space H , then R(I +λA) = H
for all λ > 0. Thus, every maximal monotone operator A on a Hilbert space satisfies the
range condition. Also as it has been shown in [25] if A is a maximal monotone operator on
an Hadamard manifold, then A satisfies the range condition. Some examples of monotone
operators in Hadamard spaces satisfying the range condition are presented in [22].

Definition 4 A bifunction f : X × X → R is said to be:

(1) Monotone if
f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ X .

(2) Pesudo-monotone if for every x, y ∈ X , f (x, y) ≥ 0 implies f (y, x) ≤ 0.

The following conditions on the bifunction f are essential and we will need them in the next
section:
B1 : f (x, .) : X → R is convex and lower semicontinuous for all x ∈ X .

B2 : f (., y) is �-upper semicontinuous for all y ∈ X .

B3 : f is Lipschitz-type continuous, i.e. there exist two positive constants c1 and c2 such that

f (x, y) + f (y, z) ≥ f (x, z) − c1d
2(x, y) − c2d

2(y, z), ∀x, y, z ∈ X .

B4 : f is pesudo-monotone.
Let (X , d) be an Hadamard space. Equilibrium problems were originally studied in [3] as a
unifying class of variational problems. Let K be a nonempty closed convex subset of X and
f : K × K → R be a bifunction. An equilibrium problem is to find x ∈ K such that

f (x, y) ≥ 0, f or all y ∈ K . (6)

Denote the set of solutions of problem (6) by EP(f,K). Associated with the primal form
EP(f, K), its dual form is defined as follows :

Find x∗ ∈ K such that f (x, x∗) ≤ 0, ∀x ∈ K . (7)

Let us denote by DEP(f, K) the solutions set of problem (7).

Lemma 4 If a bifunction f satisfying conditions B1, B2 and B4, then EP(f, K) is closed and
convex.

Proof Take x∗ ∈ DEP( f , K ). Let

yn = 1

n
y ⊕

(
1 − 1

n

)
x∗, ∀y ∈ K , n ∈ N.

Using (2), we have

d(yn, x
∗) = d

(
1

n
y ⊕

(
1 − 1

n

)
x∗, x∗

)

≤ 1

n
d(y, x∗) +

(
1 − 1

n

)
d(x∗, x∗)

≤ 1

n
d(y, x∗). (8)

Applying (8),we get yn → x∗.Using B3,we get f (yn, yn) ≥ 0. Since f is pesudo-monotone,
we have f (yn, yn) = 0. Therefore, we have

0 = f (yn, yn) = f

(
yn,

1

n
y ⊕

(
1 − 1

n

)
x∗

)
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≤ 1

n
f (yn, y) +

(
1 − 1

n

)
f (yn, x

∗)

≤ 1

n
f (yn, y), (9)

because f (yn, x∗) ≤ 0 (x∗ ∈ DEP( f , K )). Therefore f (yn, y) ≥ 0. Then letting n tend to
infinity and using B2, we get x∗ ∈ EP( f , K ). Thus DEP( f , K ) ⊆ EP( f , K ). Using B4,

we get EP( f , K ) = DEP( f , K ). Since f (x, .) is convex on K , it implies that DEP( f , K )

is convex and hence EP( f , K ) is convex. The closedness of EP( f , K ) follows from B2.

Equilibrium problems and their generalizations have been important tools for solving
problems arising in the fields of linear or nonlinear programming, variational inequalities,
complementary problems, optimization problems, fixed point problems and have beenwidely
applied to physics, structural analysis, management sciences and economics, etc. (see, for
example, [7,15,29,30]). An extragradient method for equilibrium problems in a Hilbert space
has been studied in [31]. It has the following form:

yn ∈ Argminy∈K
{
f (xn, y) + 1

2λn
‖ y − xn ‖2

}
,

xn+1 ∈ Argminy∈K
{
f (yn, y) + 1

2λn
‖ y − xn ‖2

}
.

Under certain assumptions, the weak convergence of the sequence {xn} to a solution of
the equilibrium problem has been established. In recent years some algorithms defined
to solve equilibrium problems, variational inequalities and minimization problems, have
been extended from the Hilbert space framework to the more general setting of Rieman-
nian manifolds, especially Hadamard manifolds and the Hilbert unit ball (see, for example,
[5,9,10,16,25,28,31,32]). This popularization is due to the fact that several nonconvex prob-
lems may be viewed as a convex problem under such perspective. Equilibrium problems in
Hadamard spaces were recently investigated in [18,20,21,24]. In [20] the authors studied �-
convergence and strong convergence of the sequence generated by the extragradient method
for pseudo-monotone equilibrium problems in Hadamard spaces.

Kumam and Chaipunya [24] established the existence of an equilibrium point of a
bifunction satisfying some convexity, continuity, and coercivity assumptions, and they also
established some fundamental properties of the resolvent of the bifunction. Furthermore, they
proved that the proximal point algorithm�-converges to an equilibrium point of a monotone
bifunction in an Hadamard space.

Very recently Iusem and Mohebbi [18] proposed Extragradient Method with Linesearch
(EML) for solving equilibriumproblems of pseudo-monotone type inHadamard spaces. They
proved �-convergence of the generated sequence to a solution of the equilibrium problem
under standard assumptions on the bifunction. Also, they performed a minor modification
on the EML algorithm which ensures strong convergence of the generated sequence to a
solution of EP( f , K ). Khatibzadeh and Mohebbi [21] studied the existence of solutions
of equilibrium problems associated with pseudo-monotone bifunctions with suitable condi-
tions on the bifunctions in Hadamard spaces and introduced the resolvent of a bifunction
in Hadamard spaces. They also proved �-convergence of the sequence generated by the
proximal point algorithm to an equilibrium point of the pseudo-monotone bifunction and the
strong convergence under additional assumptions on the bifunction in Hadamard spaces.
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One of the most important problems in monotone operator theory is approximating a
zero of a monotone operator. Martinet [27] introduced one of the most popular methods for
approximating a zero of amonotone operator inHilbert spaces that is called the proximal point
algorithm. Very recently, Khatibzadeh and Ranjbar [22] generalized monotone operators and
their resolvents to Hadamard spaces by using the duality theory (see also [17,34]).

Reich and Salinas [36] established metric convergence theorems for infinite products of
possibly discontinuous operators defined on Hadamard spaces.

In this article, motivated and inspired by the above results (see also [35]), we propose an
iterative algorithm for finding a common element of the set of solutions of an equilibrium
problemand a common zero of a finite family ofmonotone operators inHadamard spaces. The
�-convergence and strongly convergence theorems are established under suitable assump-
tions. We also give a numerical example to solve a nonconvex optimization problem in an
Hadamard space to support our main result.

2 1-convergence

In this section for approximating a common zero of a finite family of monotone operators
and a point of EP( f , K) in an Hadamard space X , we introduce algorithm (10). Let K be a
nonempty closed convex subset of X and let f be a bifunction satisfies B1, B2, B3, B4 and let
Ai : X ⇒ X∗(1 ≤ i ≤ N ) be N multi-valued monotone operators. Let {xn} be a sequence
generated by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

zn = J AN
γ N
n

◦ J AN−1

γ N−1
n

◦ ... ◦ J A1
γ 1
n
xn,

yn = argminy∈K { f (zn, y) + 1

2λn
d2(zn, y)},

xn+1 = argminy∈K { f (yn, y) + 1

2λn
d2(zn, y)},

(10)

where x0 ∈ K , 0 < α ≤ λk ≤ β < min{ 1

2c1
,

1

2c2
}, {γ i

n } ⊂ (0,∞), lim inf
n→∞ γ i

n > 0. The

proof of the following lemma is similar to that of [20, Lemma 2.1] and thus omitted.

Lemma 5 Let {xn}, {yn} and {zn} be sequences generated by Algorithm (10) and x∗ ∈
EP( f , K ) ∩ ⋂N

i=1 A
−1
i (0) , then

d2(xn+1, x
∗) ≤ d2(zn, x

∗) − (1 − 2c1λn)d
2(zn, yn) − (1 − 2c2λn)d

2(yn, xn+1).

Remark 1 Similar to the proof of [20, Lemma 2.1], using Lemma 5, we get

f (yn, xn+1) ≤ 1

2λn
{d2(zn, x∗) − d2(zn, xn+1) − d2(xn+1, x

∗)}, (11)

and
(

1

2λn
− c1

)
d2(zn, yn) +

(
1

2λn
− c2

)
d2(yn, xn+1) − 1

2λn
d2(zn, xn+1) ≤ f (yn, xn+1).

(12)

Theorem 3 Let f be a bifunction satisfying Bi (1 ≤ i ≤ 4) and let A1, A2, . . . , AN :
X ⇒ X∗ be N multi-valuid monotone operators that satisfy the range condition. In addition,
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if 	 =: EP( f , K ) ∩ ⋂N
i=1 A

−1
i (0) 
= ∅, then the sequence {xn} produced by (10) �-

converges to a point of 	.

Proof Let x∗ ∈ 	. Since J A
λ is a nonexpansive mapping, we have

d(zn, x
∗) = d(J AN

γ N
n

◦ J AN−1

γ N−1
n

◦ ... ◦ J A1
γ 1
n
xn, x

∗)

≤ d(J AN−1

γ N−1
n

◦ ... ◦ J A1
γ 1
n
xn, x

∗)

...

≤ d(J A1
γ 1
n
xn, x

∗)

≤ d(xn, x
∗). (13)

By Lemma 5, we have d(xn+1, x∗) ≤ d(zn, x∗). So

d(xn+1, x
∗) ≤ d(zn, x

∗) ≤ d(xn, x
∗).

Therefore limn→∞ d(xn, x∗) exists and as a result {xn} is bounded. We define for all 1 ≤
i ≤ N ,

Sin =: J Ai
γ i
n

◦ ... ◦ J A1
γ 1
n

.

So zn = SNn xn and assume that S0 = I where I is the Identity operator. Therefore

lim sup
n→∞

(d2(Sinxn, x
∗) − d2(xn, x

∗)) ≤ 0, (14)

for all 1 ≤ i ≤ N . It follows from d2(xn+1, x∗) ≤ d2(zn, x∗) that

d2(xn+1, x
∗) − d2(xn, x

∗) ≤ d2(Sinxn, x
∗) − d2(xn, x

∗).

This implies

0 ≤ lim inf
n→∞ (d2(Sinxn, x

∗) − d2(xn, x
∗)). (15)

Using the inequalities (14) and (15), for all 1 ≤ i ≤ N , we have

lim
n→∞(d2(Sinxn, x

∗) − d2(xn, x
∗) ) = 0. (16)

Using the inequality (5), we have

d2(J Ai
γ i
n
(Si−1

n xn), S
i−1
n xn) ≤ d2(x∗, Si−1

n xn) − d2(x∗, Sinxn),

so
d2(Sinxn, S

i−1
n xn) ≤ d2(x∗, xn) − d2(x∗, Sinxn),

using (16), we have
lim
n→∞ d2(Sinxn, S

i−1
n xn) = 0.

Now for every i = 1, 2, . . . , N , we have

d(xn, S
i
nxn) ≤ d(xn, S

1
n xn) + · · · + d(Si−1

n xn, S
i
nxn) → 0.

Since lim infn→∞ γ i
n > 0, there exists γ ∈ R such that for all n ∈ N and 1 ≤ i ≤ N ,

γ i
n ≥ γ > 0.
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Now using the inequality (5) and Theorem 2, we have

d(J Ai
γ (Si−1

n xn), S
i
nxn) ≤ d(J Ai

γ (Si−1
n xn), S

i−1
n xn) + d(Si−1

n xn, S
i
nxn)

≤ 2d(J Ai
γ i
n
(Si−1

n xn), S
i−1
n xn) + d(Si−1

n xn, S
i
nxn)

= 3d(Sinxn, S
i−1
n xn).

Therefore
d(J Ai

γ (Si−1
n xn), S

i
nxn) → 0.

Now for every 1 ≤ i ≤ N , we have

d(xn, J
Ai
γ xn) ≤ d(J Ai

γ xn, J
Ai
γ (Si−1

n xn)) + d(J Ai
γ (Si−1

n xn), S
i
nxn) + d(Sinxn, xn)

≤ d(xn, S
i−1
n xn) + d(J Ai

γ (Si−1
n xn), S

i
nxn) + d(Sinxn, xn).

So

d(xn, J
Ai
γ xn) → 0. (17)

Let {xn j } be a subsequence of {xn} such that xn j

�−→ p ∈ K . Using Lemma 1 and (17), we

get p ∈ A−1
i (0) for any i = 1, 2, ..., N . So p ∈ ⋂N

i=1 A
−1
i (0).

Nowwe prove that p ∈ EP( f , K ).We assume that u = εxn+1⊕(1−ε)ywhere ε ∈ [0, 1)
and y ∈ K . So we have

f (yn, xn+1) + 1

2λn
d2(zn, xn+1) ≤ f (yn, u) + 1

2λn
d2(zn, u)

= f (yn, εxn+1 ⊕ (1 − ε)y) + 1

2λn
d2(zn, εxn+1 ⊕ (1 − ε)y)

≤ ε f (yn, xn+1) + (1 − ε) f (yn, y)

+ 1

2λn
{εd2(zn, xn+1) + (1 − ε)d2(zn, y)

− ε(1 − ε)d2(xn+1, y)}.
So

f (yn, xn+1) − f (yn, y) ≤ 1

2λn
{d2(zn, y) − d2(zn, xn+1) − εd2(xn+1, y)}.

Now, if ε → 1−, we have
1

2λn
{d2(zn, xn+1) + d2(xn+1, y) − d2(zn, y)} ≤ f (yn, y) − f (yn, xn+1).

It is easy to see that

−1

2λn
d(zn, xn+1){d(xn+1, y) + d(zn, y)} ≤ f (yn, y) − f (yn, xn+1). (18)

Since lim infn→∞(1−2ciλn) > 0 for i = 1, 2, using Lemma 5 and inequality (13), we have

lim
n→∞ d(zn, yn) = lim

n→∞ d(xn+1, yn) = lim
n→∞ d(xn+1, zn) = 0. (19)

It follows from (19) that yn j

�−→ p.Using (11), (12) and (19),we have limn→∞ f (yn, xn+1) =
0. Replacing n with n j in (18), taking lim sup and using (19), we have

0 ≤ lim sup
j→∞

f (yn j , y) ≤ f (p, y), ∀y ∈ K .
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Therefore, p ∈ E( f , K ) and so p ∈ 	. Finally using Lemma 2, the sequence {xn} is
�-convergent to a point of 	 and this completes the proof.

Definition 5 Let X be an Hadamard space with dual X∗ and let f : X → (−∞,+∞] be a
proper function with effective domain D( f ) := {x : f (x) < +∞}. Then, the subdifferential
of f is the multivalued mapping ∂ f : X ⇒ X∗ defined by:

∂ f (x) = {x∗ ∈ X∗ : f (z) − f (x) ≥ 〈x∗,−→xz〉 (z ∈ X)},
when x ∈ D( f ) and ∂ f (x) = ∅, otherwise.

It has been proved in [19] that ∂ f (x) of a convex, proper and lower semicontinuous function
f satisfies the range condition. So using Theorem 3 , we can obtain the following corollary:

Corollary 1 Let K be a convex and closed subset of an Hadamard space X and let f
be a bifunction satisfying B1, B2, B3 and B4, and let gi : K → (−∞,+∞](i =
1, . . . , N ) be N proper convex and lower semicontinuous functions, with 	 =: EP( f , K )∩⋂N

i=1 argminy∈K gi (y) 
= ∅. For x0 ∈ K , let {xn} be a sequence produced by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J ∂gN
γ N
n

◦ J ∂gN−1

γ N−1
n

◦ ... ◦ J ∂g1
γ 1
n
xn,

yn = argminy∈K { f (zn, y) + 1

2λn
d2(zn, y)},

xn+1 = argminy∈K { f (yn, y) + 1

2λn
d2(zn, y)}.

(20)

where 0 < α ≤ λk ≤ β < min

{
1

2c1
,

1

2c2

}
, {γ i

n } ⊂ (0,∞) and lim infn→∞ γ i
n > 0.

Then {xn} is �-convergent to a point of 	.

3 Strong convergence

In this section, using the Halpern regularization method, we study the strong convergence of
the sequence generated by u, x0 ∈ K and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J AN
γ N
n

◦ J AN−1

γ N−1
n

◦ ... ◦ J A1
γ 1
n
xn,

yn = argminy∈K { f (zn, y) + 1

2λn
d2(zn, y)},

tn = argminy∈K { f (yn, y) + 1

2λn
d2(zn, y)},

xn+1 = αnu ⊕ (1 − αn)tn,

(21)

to a common zero of a finite family of monotone operators A1, A2, . . . , AN and an element
of EP( f , K ) in an Hadamard space X , where

0 < α ≤ λk ≤ β < min

{
1

2c1
,

1

2c2

}
, αk ∈ (0, 1), limk→∞ αk = 0,

∑∞
k=0 αk = ∞,

{γ i
n } ⊂ (0,∞) and lim infn→∞ γ i

n > 0.

The proof of the following lemma is similar to that of [20, Lemma 3.1] and thus omitted.
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Lemma 6 Let {xn}, {yn}, {tn}, and {zn} be sequences generated by Algorithm (21) and x∗ ∈
EP( f , K ) ∩ ⋂N

i=1 A
−1
i (0), then

d2(tn, x
∗) ≤ d2(zn, x

∗) − (1 − 2c1λn)d
2(zn, yn) − (1 − 2c2λn)d

2(yn, tn).

Remark 2 Similar to the proof of [20, Lemma 3.1], using Lemma 6, we get

f (yn, tn) ≤ 1

2λn
{d2(zn, x∗) − d2(zn, tn) − d2(tn, x

∗)}, (22)

and
(

1

2λn
− c1

)
d2(zn, yn) +

(
1

2λn
− c2

)
d2(yn, tn) − 1

2λn
d2(zn, tn) ≤ f (yn, tn). (23)

To establish strong convergence of the sequence {xn} produced by Algorithm (21), we
need an intermediate result which establishes an elementary property of real sequences.

Lemma 7 [37] Let {sn} be a sequence of nonnegative real numbers,{αn} be a sequence of
real numbers in (0, 1) with

∑∞
n=0 αn = ∞ and {tn} be a sequence of real numbers. Suppose

that
sn+1 ≤ (1 − αn)sn + αntn, ∀n ≥ 0.

If lim supk→∞ tnk ≤ 0, then, for every subsequence {snk } of {sn} satisfying lim infk→∞ (snk+1

− snk ) ≥ 0, it holds limn→∞ sn = 0.

Theorem 4 Let K be a convex and closed subset of X and let f be a bifunction satisfying
B1, B2, B3 and B4. Let A1, A2, . . . , AN : X ⇒ X∗ be N multi-valued monotone operators
that satisfy the range condition. If 	 = EP( f , K ) ∩ ⋂N

i=1 A
−1
i (0) 
= ∅, then the sequence

{xn} produced by Algorithm (21) converges strongly to x∗ = P	u.

Proof First we show that the sequence {xn} is bounded. Let x∗ = P	u. From nonexpansivity
of J Ai

γ i
n
, we have

d(zn, x
∗) = d(J AN

γ N
n

◦ J AN−1

γ N−1
n

◦ ... ◦ J A1
γ 1
n
xn, x

∗)

≤ d(J AN−1

γ N−1
n

◦ ... ◦ J A1
γ 1
n
xn, x

∗)

...

≤ d(J A1
γ 1
n
xn, x

∗) ≤ d(xn, x
∗).

Using Lemma 6, we have

d(tn, x
∗) ≤ d(zn, x

∗) ≤ d(xn, x
∗). (24)

So

d(xn+1, x
∗) = d(αnu ⊕ (1 − αn)tn, x

∗)
≤ αnd(u, x∗) + (1 − αn)d(tn, x

∗)
≤ αnd(u, x∗) + (1 − αn)d(xn, x

∗)
≤ max{d(u, x∗), d(xn, x

∗)}.
Using induction, we have

d(xn, x
∗) ≤ max{d(u, x∗), d(x1, x

∗)}.
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So the sequence {xn} is bounded. Consequently, we conclude that {zn} and {tn} are bounded.
On the other hand, using (24), we have

d2(xn+1, x
∗) = d2(αnu ⊕ (1 − αn)tn, x

∗)
≤ αnd

2(u, x∗) + (1 − αn )d
2(tn, x

∗) − αn(1 − αn)d
2(u, tn)

≤ (1 − αn)d
2(xn, x

∗) + αn[d2(u, x∗) − (1 − αn )d
2(u, tn)].

Now we show that d2(xn, x∗) → 0. To do this using Lemma 7, it is sufficient to show that:

lim sup
k→∞

((d2(u, x∗) − (1 − αnk )d
2(u, tnk )) ≤ 0,

for every subsequence {d2(xnk , x∗)} of {d2(xn, x∗)} that satisfies,
lim inf
k→∞ (d2(xnk+1, x

∗) − d2(xnk , x
∗)) ≥ 0. (25)

Since {tnk } is bounded, we have
0 ≤ lim inf

k→∞ (d2(xnk+1, x
∗) − d2(xnk , x

∗))

≤ lim inf
k→∞ (αnk d

2(u, x∗) + (1 − αnk )d
2(tnk , x

∗) − αnk (1 − αnk )d
2(u, tnk ) − d2(xnk , x

∗))

≤ lim inf
k→∞ (αnk d

2(u, x∗) + (1 − αnk )d
2(tnk , x

∗) − d2(xnk , x
∗))

≤ lim inf
k→∞ (αnk (d

2(u, x∗) − d2(tnk , x
∗))) + d2(tnk , x

∗) − d2(xnk , x
∗))

≤ lim sup
k→∞

(αnk (d
2(u, x∗) − d2(tnk , x

∗)) + lim inf
k→∞ (d2(tnk , x

∗) − d2(xnk , x
∗))

= lim inf
k→∞ (d2(tnk , x

∗) − d2(xnk , x
∗))

≤ lim sup
k→∞

(d2(tnk , x
∗) − d2(xnk , x

∗)) ≤ 0.

In conclusion, limk→∞(d2(tnk , x
∗) − d2(xnk , x

∗)) = 0. There exists subsequence {tnkε } of
{tnk } such that tnkε

�−→ p ∈ K , therefore we have

lim sup
k→∞

(d2(u, x∗) − (1 − αnk )d
2(u, tnk )) = lim

ε→∞(d2(u, x∗) − (1 − αnkε )d
2(u, tnkε )).

Since d2(u, .) is �-lower semicontinuous, we have

lim sup
k→∞

(d2(u, x∗) − (1 − αnk )d
2(u, tnk )) = lim

ε→∞(d2(u, x∗) − (1 − αnkε )d
2(u, tnkε ))

≤ d2(u, x∗) − d2(u, p). (26)

It remains to prove that
d(u, x∗) ≤ d(u, p).

Let Sin = J Ai
γ i
n

◦ ... ◦ J A1
γ 1
n
, for 1 ≤ i ≤ N and n ∈ N. Thus zn = SNn xn, and assume that

S0n = I , where I is the Identity operator. Therefore

d2(Sinxn, x
∗) − d2(xn, x

∗) ≤ 0,

hence

lim sup
n→∞

(d2(Sinxn, x
∗) − d2(xn, x

∗)) ≤ 0. (27)

123



An extragradient algorithm for solving equilibrium Page 13 of 18 152

We can write

d2(xn+1, x
∗) ≤ d2(αnu ⊕ (1 − αn)tn, x

∗)
≤ αnd

2(u, x∗) + (1 − αn)d
2(tn, x

∗) − αn(1 − αn)d
2(tn, u)

≤ αnd
2(u, x∗) − αnd

2(tn, x
∗) − αn(1 − αn)d

2(tn, u) + d2(tn, x
∗).

So

d2(xn+1, x
∗) − d2(xn, x

∗) ≤ αn(d
2(u, x∗) − d2(tn, x

∗)
− (1 − αn)d

2(tn, u)) + d2(zn, x
∗) − d2(xn, x

∗). (28)

Since limn→∞ αn = 0, using (25) and (28), for 1 ≤ i ≤ N , we have

0 ≤ lim inf
k→∞ (d2(Sink xnk , x

∗) − d2(xnk , x
∗)). (29)

Using (27) and (29), we get

lim
k→∞(d2(Sink xnk , x

∗) − d2(xnk , x
∗)) = 0. (30)

Applying (5), we obtain

d2(J Ai
γ i
nk

(Si−1
nk xnk ), S

i−1
nk xnk ) ≤ d2(x∗, Si−1

nk xnk ) − d2(x∗, Sink xnk )

≤ d2(x∗, xnk ) − d2(x∗, Sink xnk ).

Using (30), we have
lim
k→∞ d2(Sink xnk , S

i−1
nk xnk ) = 0.

We have
d(xnk , S

i
nk xnk ) ≤ d(xnk , S

1
nk xnk ) + · · · + d(Si−1

nk xnk , S
i
nk xnk ),

hence
lim
k→∞ d(xnk , S

i
nk xnk ) = 0.

Since lim infn→∞ γ i
n > 0, there exists γ ∈ R such that γ i

n ≥ γ > 0 for all n ∈ N and
1 ≤ i ≤ N . Now using inequality (5) and Theorem 2, we have

d(J Ai
γ (Si−1

nk xnk ), S
i
nk xnk ) ≤ d(J Ai

γ (Si−1
nk xnk ), S

i−1
nk xnk ) + d(Si−1

nk xnk , S
i
nk xnk ),

≤ 2d(J Ai
γ i
nk

(Si−1
nk xnk ), S

i−1
nk xnk ) + d(Si−1

nk xnk , S
i
nk xnk ),

= 3d(Sink xnk , S
i−1
nk xnk ).

Therefore
d(J Ai

γ (Si−1
nk xnk ), S

i
nk xnk ) → 0.

Now for every 1 ≤ i ≤ N , we have

d(xnk , J
Ai
γ xnk ) ≤ d(J Ai

γ xnk , J
Ai
γ (Si−1

nk xnk )) + d(J Ai
γ (Si−1

nk xnk ), S
i
nk xnk ) + d(Sink xnk , xnk )

≤ d(xnk , S
i−1
nk xnk ) + d(J Ai

γ (Si−1
nk xnk ), S

i
nk xnk ) + d(Sink xnk , xnk ).

So

d(xnk , J
Ai
γ xnk ) → 0. (31)
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Let {xnkε } be a subsequence of {xnk } such that xnkε
�−→ p ∈ K . By Lemma 1 and (31), we get

p ∈ A−1
i (0). So p ∈ ⋂N

i=1 A
−1
i (0). Since lim infn→∞(1 − 2ciλn) > 0, for i = 1, 2, using

Lemma 6, we have

lim
k→∞ d2(znk , ynk ) = lim

k→∞ d2(ynk , tnk ) = lim
k→∞ d2(znk , tnk ) = 0. (32)

Using (22), (23) and (32), we have

lim
k→∞ f (ynk , tnk ) = 0. (33)

Now assume that z = εtn ⊕ (1 − ε)y, where 0 < ε < 1 and y ∈ K . we have

f (yn, tn) + 1

2λn
d2(zn, tn) ≤ f (yn, z) + 1

2λn
d2(zn, z)

= f (yn, εtn ⊕ (1 − ε)y) + 1

2λn
d2(zn, εtn ⊕ (1 − ε)y)

≤ ε f (yn, tn) + (1 − ε) f (yn, y)

+ 1

2λn
{εd2(zn, tn) + (1 − ε)d2(zn, y) − ε(1 − ε)d2(tn, y)}.

Therefore

(1 − ε) f (yn, tn) − (1 − ε) f (yn, y) ≤ 1

2λn
{(1 − ε)d2(zn, y)

− (1 − ε)d2(zn, tn) − ε(1 − ε)d2(tn, y)}.
So

f (yn, tn) − f (yn, y) ≤ 1

2λn
{d2(zn, y) − d2(zn, tn) − εd2(tn, y)}.

Now, if ε → 1−, we obtain

1

2λn
{d2(zn, tn) + d2(tn, y) − d2(zn, y)} ≤ f (yn, y) − f (yn, tn).

It is easy to see that

−1

2λn
d(zn, tn){d(tn, y) + d(zn, y)} ≤ f (yn, y) − f (yn, tn). (34)

Now replacing n with nkε in (34), taking lim sup and using (32) and (33), since ynkε
�−→ p,

we have
0 ≤ lim sup

ε→0
f (ynkε , y) ≤ f (p, y), ∀y ∈ K .

Therefore p ∈ EP( f , K ) and as a result, p ∈ 	. Since x∗ = P	u, we have

d(u, x∗) ≤ d(u, p).

Using (26), we get

lim sup
k→∞

(d2(u, x∗) − (1 − αnk )d
2(u, tnk )) ≤ 0.

Now using Lemma 7, we get xn → x∗.
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Using Theorem 4, we can obtain the following corollary:

Corollary 2 Let K be a convex and closed subset of an Hadamara space X and let
f be a bifunction satisfying B1, B2, B3 and B4. Let gi : K → (−∞,+∞](i =
1, . . . , N ) be N proper convex and lower semicontinuous functions, and 	 = EP( f , K ) ∩⋂N

i=1 argminy∈K gi (y) 
= ∅. For u, x0 ∈ K, let {xn} be a sequence produced by:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zn = J ∂gN
γ N
n

◦ J ∂gN−1

γ N−1
n

◦ ... ◦ J ∂g1
γ 1
n
xn,

yn = argminy∈K { f (zn, y) + 1

2λn
d2(zn, y)},

tn = argminy∈K { f (yn, y) + 1

2λn
d2(zn, y)},

xn+1 = αnu ⊕ (1 − αn)tn .

(35)

where 0 < α ≤ λk ≤ β < min

{
1

2c1
,

1

2c2

}
,αk ∈ (0, 1), limk→∞ αk = 0,

∑∞
k=0 αk = ∞,

{γ i
n } ⊂ (0,∞) and lim infn→∞ γ i

n > 0. Then {xn} converges strongly to x∗ = P	u.

4 Numerical example

In this section, we provide a numerical experiment to validate our obtained results in an
Hadamard space.

Example 1 Let f1 : R2 → R and f2 : R2 → R be two functions defined by:

f1(x1, x2) = 100((x2 + 1) − (x1 + 1))2 + x21 , f2(x1, x2) = 100x21 ,

and X = R
2 be endowed with a metric defined by:

dH (x, y) =
√

(x1 − y1)2 + (x21 − x2 − y21 + y2)2,

where x = (x1, x2) and y = (y1, y2). So (R2, dH ) is an Hadamard space (see [14, Example
5.2]) with the geodesic joining x to y given by:

γx,y(t) = ((1 − t)x1 + t y1, ((1 − t)x1 + t y1)
2 − (1 − t)(x21 − x2) − t(y21 − y2)).

Table 1 Numerical results of Example 1

n xn dH (xn , 0)

1 (0.30000000, 0.20000000) 0.31953090

2 (0.23337450,0.15747732) 0.25509895

3 (0.17501406,0.10567355) 0.19042444

4 (0.14000578,0.07551821) 0.15075903

5 (0.11666954, 0.05784286) 0.12477247

.

.

.
.
.
.

.

.

.

98 (0.00707070, 0.00220001) 0.00739036

99 (0.00700000, 0.00217723) 0.00731637

100 (0.00693069, 0.00215492) 0.00724385
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It follows from [14, Example 5.2] that f1 is a proper convex and lower semicontinuous
function in (R2, dH ) but not convex in the classical sense. Let f : X × X → R be a function
defined by:

f (x, y) = d2H (y, 0) − d2H (x, 0).

It is obvious that f satisfies B1, B2, B3 and B4. Letting N = 2, A1 = ∂ f1 and A2 = ∂ f2,
Algorithm (21) takes the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = argminy∈R2{ f1(y) + 1

2γ 1
n
d2H (y, xn)},

zn = argminy∈R2{ f2(y) + 1

2γ 2
n
d2H (y, wn)},

yn = argminy∈R2{ f (zn, y) + 1

2λn
d2H (zn, y)},

tn = argminy∈R2{ f (yn, y) + 1

2λn
d2H (zn, y)},

xn+1 = αnu ⊕ (1 − αn)tn .

(36)

Now, take αn = 1

n + 2
, γ 1

n = γ 2
n = 2n, u = (u1, u2) = (0.7, 0.7) and λn = 1

n + 2
+ 1

2
for

every n ∈ N, and the initial point x1 = (0.3, 0.2). It can be observed that all the assumptions
of Theorem 4 are true and 	 = EP( f ,R2) ∩ (

⋂2
i=1 argmini∈X fi (x)) = {0}. Now using

Algorithm (36), we have numerical results in Table 1 and Fig. 1.

Fig. 1 Plotting of dH (xn , 0) in Table 1
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1. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter Series in Nonlinear
Analysis and Applications, vol. 22. De Gruyter, Berlin (2014)

2. Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Alexandrov spaces. Geom. Dedi-cata. 133,
195–218 (2008)

3. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud.
63, 123–145 (1994)

4. Bridson, M., Haefliger, A.: Metric Spaces of Nonpositive Curvature. Springer, Berlin (1999)
5. Chang, S., Wang, L., Wang, X.R.: Common solution for a finite family of minimization problem and fixed

point problem for a pair of demicontractive mappings in Hadamard spaces. RACSAM 114(2), 12 (2020)
6. Chaoha, P., Phon-on, A.: A note on fixed point sets in CAT(0) spaces. J. Math. Anal. Appl. 320, 983–987

(2006)
7. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal.

6, 117–136 (2005)
8. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H.,

Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for
Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)

9. Da Cruz Neto, J.X., Ferreira, O.P, Lucambio Pérez, L.R.: Contributions to the study of monotone vector
fields. Acta Math. Hungar. 94, 307–320 (2002)

10. Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balkan J.
Geom. Appl. 5, 69–79 (2000)

11. Dehghan, H., Rooin, J.: A characterization of metric projection in CAT(0) spaces. In: International Con-
ference on Functional Equation. Geometric Functions and Applications (ICFGA 2012) 11–12 th May
2012, pp. 41–43. Payame University, Tabriz (2012)

12. Dhompongsa, S., Kirk,W.A., Sims, B.: Fixed points of uniformly Lipschitzianmappings. Nonlinear Anal.
65, 762–772 (2006)

13. Dhompongsa, S., Panyanak, B.: On �-convergence theorems in CAT(0) spaces. Comput. Math. Appl.
56, 2572–2579 (2008)

14. Eskandani, G.Z., Raeisi, M.: On the zero point problem of monotone operators in Hadamard spaces.
Numer. Algorithm 80, 1155–1179 (2019)

15. Eskandani, G.Z., Raeisi, M., Rassias, T.M.: A hybrid extragradient method for solving pseudomonotone
equilibrium problems using Bregman distance. J. Fixed Point Theory Appl. 20, 132 (2018)

16. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization. 51,
257–270 (2002)

17. Heydari, M.T., Khadem, A., Ranjbar, S.: Approximating a common zero of finite family of monotone
operators in Hadamard spaces. Optimization. 66, 2233–2244 (2017)

18. Iusem, A.N., Mohebbi, V.: Convergence analysis of the extragradient method for equilibrium problems
in Hadamard spaces. Comput. Appl. Math. 39, 44 (2020)

19. Kakavandi, B.A., Amini, A.: Duality and subdifferential for convex functions on complete CAT(0) metric
spaces. Nonlinear Anal. 73, 3450–3455 (2010)

20. Khatibzadeh, H., Mohebbi, V.: Approximating solutions of equilibrium problems in Hadamard spaces.
Miskolc Math. Notes. 20, 281–297 (2019)

21. Khatibzadeh, H., Mohebbi, V.: Monotone and pseudo-monotone equilibrium problems in Hadamard
spaces. J. Aust. Math. Soc. (2019). https://doi.org/10.1017/S1446788719000041

22. Khatibzadeh, H., Ranjbar, S.: Monotone operators and the proximal point algorithm in complete CAT(0)
metric spaces. J. Aust. Math. Soc. 103, 70–90 (2017)

23. Kirk, W.A., Panyanak, B.: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689–3696
(2008)

24. Kumam, P., Chaipunya, P.: Equilibrium problems and proximal algorithms in Hadamard spaces. Opti-
mization. 8, 155–172 (2017)

25. Li, G., López, C., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on
Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)

26. Maingé, P.E.: Strong convergence of projected pubgradientmethods for nonsmooth and nonstrictly convex
minimization. Set Valued Anal. 16, 899–912 (2008)

27. Martinet, B.: Régularisation dinéquations variationelles par approximations successives. Revue Fr.
Inform. Rech. Oper. 4, 154–159 (1970)

28. Németh, S.Z.: Monotone vector fields. Publ. Math. Debrecen 54, 437–449 (1999)
29. Qin, X., Cho, Y.J., Kang, S.M.: Convergence theorems of common elements for equilibrium problems

and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225, 20–30 (2009)

123

https://doi.org/10.1017/S1446788719000041


152 Page 18 of 18 R. Moharami, G. Z. Eskandani

30. Qin, X., Kang, S.M., Cho, Y.J.: Convergence theorems on generalized equilibrium problems and fixed
point problems with applications. Proc. Estonian Acad. Sci. 58, 170–318 (2009)

31. Quoc, T.D., Muu, L.D., Nguyen, V.H.: Extragradient methods extended to equilibrium problems. Opti-
mization. 57, 749–776 (2008)

32. Rahimi, R., Farajzadeh, A.P., Vaezpour, S.M.: Study of equilibrium problem in Hadamard manifolds by
extending some concepts of nonlinear analysis. RACSAM 112(4), 1521–1537 (2018)

33. Ranjbar, S., Khatibzadeh, H.: �-convergence and W -convergence of the modified Mann iteration for a
family of asymptotically nonexpansive tipy mappings in complete CAT(0) spaces. Fixed Point Theory.
17, 151–158 (2016)

34. Ranjbar, S., Khatibzadeh, H.: Strong and �-convergence to a zero of a monotone operator in CAT(0)
Spaces. Mediterr. J. Math. 14(2), 15 (2017)

35. Reich, S., Salinas, Z.: Infinite products of discontinuous operators in Banach and metric spaces. Linear
Nonlinear Anal. 1, 169–200 (2015)

36. Reich, S., Salinas, Z.: Metric convergence of infinite products of operators in Hadamard spaces. J. Non-
linear Convex Anal. 18, 331–345 (2017)

37. Xu, H.K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Aust. Math.
Soc. 65, 109–113 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	An extragradient algorithm for solving equilibrium problem and zero point problem in Hadamard spaces
	Abstract
	1 Preliminaries 
	2 Δ-convergence
	3 Strong convergence
	4 Numerical example
	Acknowledgements
	References




