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Abstract
In the algebraic-geometry-based theory of automated proving and discovery, it is often
required that the user includes, as complementary hypotheses, some intuitively obvious
non-degeneracy conditions. Traditionally there are two main procedures to introduce such
conditions into the hypotheses set. The aim of this paper is to present these two approaches,
namely Rabinowitsch’s trick and the ideal saturation computation, and to discuss in detail the
close relationships and subtle differences that exist between them, highlighting the advan-
tages and drawbacks of each one. We also present a carefully developed example which
illustrates the previous discussion. Moreover, the paper will analyze the impact of each of
these two methods in the formulation of statements with negative theses, yielding rather
unexpected results if Rabinowitsch’s trick is applied. All the calculations have been carried
out using the software Singular in the FinisTerrae 2 supercomputer.
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Introduction

The framework of this paper is the automated theorem proving and discovery theory initiated,
forty years ago, by Wu on his seminal paper [17, “On the decision problem and the mech-
anization of theorem-proving in elementary geometry”], based in computational (complex)
algebraic geometry. This theory has evolved, along the years, yielding a variety of methods
that have been recognized to be a quite successful approach to automated reasoning in ele-
mentary geometry, as already shown, long ago, by the quantity and quality of the performing
examples in [6]. In this paper, we will follow the protocol and notation described in [7,
Chapter 6, Section 4], quite similar to that of [8], [15] or [18]. Its recent implementation (see
[1]) in a free mathematics software, with millions of users worldwide, brings again to the
frontline some pending issues.

The point we will address in this paper deals with the most convenient way(s) of handling
hypotheses and theses that describe negative assertions, such as “consider two different
points” (i.e., two points that are not equal), or “let A, B, C be the vertices of a non-degenerate
triangle” (i.e., three points that A, B, C neither coincide nor lie on a line), etc. The relevance
of clarifying this issue is not just restricted to extending the mechanical proving method
to handle a larger kind of statements. In fact, as we will show in the next Sect. 1 of this
paper, non-degeneracy conditions arise in a natural way along with the traditional protocol
for theorem proving of purely affirmative statements.

It happens that, in order to introduce, as input for the standard algebraic geometry
algorithms, the requirement to avoid such degeneracies, the given polynomial inequalities
p1(x1, . . . , xn) �= 0 must be expressed by means of equations. In the tradition1 of automated
theorem proving this conversion has been achieved through two possible approaches, that
we will describe in detail in Sect. 2: Rabinowitsch’s trick and ideal saturation.

Rabinowitsch’s trick is an old companion to automated proving in geometry [10], where
it has been used to formulate negations of equalities, the so-called “disequality” relations.
Despite its antiquity, the current validity and interest of this approach can be confirmed,
for example, by considering the recent research of Kapur et al. [11] on a generalization of
the “trick”. See also [3, Example 6.1] for a sound, abstract, description of this trick, i.e.,
the replacement of a locally closed set A\B, where A, B are algebraic subsets of an affine
space K n , by an algebraic set in K n+1, the so-called “Rabinowitsch cover”, such that the
set-theoretic projection of the cover is exactly the locally closed set and, thus, the closure—in
the Zariski topology—of the projection of the cover can be computed through elimination.

On the other hand, ideal saturation is a direct algebraic way to compute A\B without
requiring to replace the locally closed set A\B by an algebraic set on a higher dimensional
affine space and then projecting it down to K n . Its relation to Rabinowitsch’s trick is well
known in Commutative Algebra, and the potential impact of using saturation as an alternative
to Rabinowitsch’s trick for theorem proving has been already highlighted in [8, Section 5],
but it seems a detailed and general analysis of the pros and cons of both approaches, regarding
their faithfulness as translations of negative statements, has never been thoroughly addressed.

Thus, the main contribution of this paper is to study, in detail, the different implications of
adopting each of these formulations for describing negative theses and hypotheses. Section 3
focuses on the consequences of both methods for stating negative theses, suggesting that sat-
uration could be considered as more reliable in this context (see Proposition 5), while Sect. 4

1 We plan to deal in the future with some recent methods for introducing negative hypotheses, such as the
ones based on comprehensive Gröbner systems (see [13]), or those in the ZariskiFrames package https://
github.com/homalg-project/ZariskiFrames (see [3]), using ideal membership and syzygies, as they are not yet
implemented in most popular dynamic geometry programs, such as GeoGebra, see [2].
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deals with the introduction of negative hypotheses, clarifying—see Theorems 1 and 2— the
different, albeit close, results in each of the two alternate proposals. Section 5 discusses in
detail an example, showing the computational pros and cons of both approaches. Finally,
Sect. 6 establishes some conclusions for the future consideration of automatic theorem prov-
ing software developers.

For simplicity of notation, in this paper, we will denote by H (resp. T ) the collection of
polynomials involved in the hypotheses (resp. theses) and the ideal generated by them.

1 A short digest on automatic proving and discovery by algebraic
geometry methods

Roughly speaking, the computational algebraic geometry theorem proving method proceeds
by assigning coordinates and equations to the elements (points, lines, circles, etc.) and con-
ditions (perpendicularity, incidence, etc.) of the involved geometric hypotheses H and theses
T . In this way the geometric statement, which we will symbolize as H �⇒ T , is translated
as an inclusion V (H) ⊆ V (T ) between the solution set, V (H), of the system of equations
{H = 0} and that, V (T ), of the set of equations {T = 0}. Finally, this inclusion needs to be
tested by some computational algebraic geometry methods.

Over an algebraically closed field K—an assumption we will keep along the paper—, one
practical protocol to perform this test is the refutational approach introduced by Kapur [10],
in which testing the inclusion V (H) ⊆ V (T ) turns to deciding if V (H)\V (T ) is empty or
not. This is, obviously, equivalent to showing that its Zariski-closure V (H)\V (T ) is empty or
not. But this fact can be checked by testing the emptiness of the corresponding Rabinowitsch
cover (i.e., by determining the membership of 1 in the defining ideal of the cover) since the
projection of an algebraic set is empty if and only if the set is empty. In fact, when T is a
single thesis—we will assume this fact in what follows, as it is straightforward to adapt all
the obtained results to the general case—verifying that H ∧¬T is empty is equivalent, by the
Weak Nullstellensatz, to simply checking if 1 ∈ He + (T · t − 1), where He is the extension
of H to the polynomial ring with an extra variable t .

As it is well known, the reduction from the Strong to the Weak Nullstellensatz, by intro-
ducing T · t − 1 = 0 as the algebraic, affirmative formulation for ¬{T = 0} is, precisely, the
role of the so-called Rabinowitsch’s trick, see [14]. In summary, there is a special, and since
long, relation between automatic proving in geometry and this particular trick.

Going a little bit further, let us remark that, in the algebraic geometry approach to auto-
mated theoremproving, it happens that inmost caseswe are not actually dealingwith proving,
but with discovering! Indeed, many statements that seem obviously true to human intu-
ition, turn out to be false in the algebraic formulation, in the sense of not fully verifying
V (H) ⊆ V (T ). Thus, the main task for the automatic reasoning theory turns out to be devis-
ing algorithms to find out extra hypotheses that will constrain the set V (H) in order to fit
inside V (T ): i.e., to discover how to modify a given statement so that it becomes true! See
[16] for a thorough reflection and bibliographic references on this involved issue.

A key ingredient in this framework is the concept of set of independent variables modulo
the hypotheses ideal, i.e., a set of variables such that no polynomial, in these variables alone,
belongs to the ideal H . Examples of sets of free variables are the collection of three times
two coordinates describing the vertices of an arbitrary triangle, or only one of the coordinates
of a point constrained to be in a circle, etc.
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Among the many different sets of independent variables for a particular hypotheses ideal,
we will consider sets of maximum cardinality: in this way, the remaining variables will verify
some algebraic dependence over the independent ones and thus—except at some special
cases—they are finitely determined for each setting of the independent variables. Therefore,
it is exclusively in terms of the independent variables that we will consider reasonable to
formulate the extra hypotheses needed to modify some given geometric statement, to turn it
strictly true.

Obviously, it is crucial to automatically find such conditions: this can be done, roughly
speaking, by elimination of the extra variable t and the non-independent variables (say,
xs+1, . . . , xn) in the ideal He + (T · t − 1). Indeed, the zero set of He + (T · t − 1) exactly
corresponds to the “failure cases” where H and ¬ T simultaneously hold.

Thus, by adding to the given hypotheses H the negation of any of the polynomials in the
elimination ideal of He + (T · t −1), we will get a true statement. These additional, negative
hypotheses (such as these two given points must be truly different, the given triangle should
not collapse to a line, etc.) expressed in terms of the independent variables, are known as
non-degeneracy conditions.

Of course, it can happen that the elimination of t and the dependent variables in the ideal
He +(T ·t −1) is just the zero ideal and, in this case, the only non-degeneracy condition turns
out to be 0 �= 0, so that it does not hold over any instance of the geometric hypotheses. Notice
that this zero-ideal case is the only possibility for getting an empty hypotheses statement
when adding the negation of an equation h′ = 0, where h′ arises from the elimination of
He + (T · t −1) in terms of independent variables. Thus, the name generally true is reserved
to statements where this elimination ideal

(
He + (T · t − 1)

) ∩ K [x1, . . . , xs] is not zero;
logically, the name non generally true is applied to those statements in which the former ideal
is zero (that is, generally true is false). Note that we are employing the terminology of [6]
and some recent papers as [1,8,15], but recall that in some classic references as [7] or [12]
these statements are called generically true and non generically true, respectively.

When the elimination ideal is zero, it is advisable to consider, instead, the elimination of
the same dependent variables, but now in the ideal of hypotheses and thesis H + T . If this
elimination is not zero, the given statement is labeled as generally false (and non generally
false if it is zero).

Obviously, when the elimination of the dependent variables in H + T is not zero, adding
as complementary, affirmative hypotheses the equations of a basis of this elimination ideal
we are led to a new statement, and we should restart again our protocol.

Notice that the new hypotheses variety could be empty if and only if H + T = (1),
i.e., if the elimination ideal turns out to be (1), and from there we can conclude the truth of
whatever statement. It is the extremely false case, in which the hypothesis variety has nothing
in common with the thesis variety. Our approach does not disregard this option; but routinely
checking that the analyzed statements have a non empty hypotheses set should be included
in any theorem proving algorithm, in order to detect trivialities.

On the other hand, if the elimination in H + T yields zero, we are in the non generally
false and non generally true case. See [7, Chapter 6, Section 4] or [8], [15] for further details
on the whole algorithm.

Thus, the general automatic proving procedure ends, either with a generally true statement
(after discovering some new, affirmative and/or negative conditions), or arriving at a neither
generally false nor generally true situation, a quite challenging context, yielding as well to
the discovery of new statements, but in a more involved way. See [5,18] for some recent
advances concerning this last issue.
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2 Introducing negative conditions: different ways…

Summarizing, negative conditions appear naturally in classical automated theorem proving
in two different circumstances:

– to refute the thesis T , in order to establish if the given statement is generally true or not;
– if generally true, to add, as complementary, negative hypotheses, some newly discovered

non-degeneracy conditions.

On the other hand, the high complexity of the polynomial Gröbner basis algorithms
involved in the method explained before [7] compels the user to manually introduce, before
starting to run the proving algorithm, some easy-to-guess non-degeneracy conditions, to
attempt to simplify the computation.

Bearing this in mind, we think that the second item above should be extended and refor-
mulated as follows:

– to add, at different stages of the proving protocol, as complementary hypotheses, human
or automatically guessed non-degeneracy conditions.

Thus, an important task is to find ways to introduce both the refutation of a thesis and
non-degeneracy conditions, so that it reflects (as closely as possible) the geometric meaning
of the added condition (i.e., to avoid some degenerate cases, to negate some theses) and
expresses it by means of equations.

As mentioned above, traditionally (at least since [10]) the negation of a given geometric
property described by the equation f = 0, is handled as an equation by adding some auxiliary
variable t and considering the equation f · t − 1 = 0 as representing ¬{ f = 0}, emulating
Rabinowitsch’s trick. It is easy to generalize this approach to refutation for the case of having
to negate the conjunction or the disjunction of several conditions, see [8, Appendix].

However, the avoidance of some condition f = 0 can be expressed considering the
Zariski closure of the difference V (H)\V ( f ), i.e., by considering as new hypotheses the
polynomial equations expressing the smallest set that verifies the given hypotheses and not
the condition f = 0. In general, if I , J are ideals of a polynomial ring K [x1, . . . , xn], the
saturation of I by J is defined as Sat(I , J ) = I : J∞ = ∪n(I : J n) (see [7,8]), where
I : J = {g ∈ K [x1, . . . , xn] : g J ⊆ I }, and it satisfies V (Sat(I , J )) = V (I )\V (J ). When
the ideal J is principal, J = ( j), we merely denote Sat(I , j).

In summary, the other option we are considering here to include non-degeneracy condi-
tions ¬{ f = 0} is to saturate the ideal of hypotheses by the ideal J = ( f ). Again, it is
straightforward the generalization of this idea of saturation to the case of several conditions
(see [8, Appendix]). As mentioned in the previous section, we could say that saturation is
a direct way to compute V (H)\V ( f ) without requiring adding one extra variable and then
eliminating it.

This second option could seem, at first glance, more sophisticated than the first one—
the implementation of Rabinowitsch’s trick. But there is not a big difference. In fact, [8,
Proposition 6 and Corollary 2 of Appendix] shows that the saturation of the ideal I by
another ideal J = ∏r

i=1 Ji , where Ji = ( fi1, . . . , fili ), satisfies:

Sat(I , J ) =
(

I e + (
( f11 · t1 − 1) · · · ( f1l1 · t1 − 1), . . . , ( fr1 · tr − 1) · · · ( frlr · tr − 1)

))

∩K [x1, . . . , xn];
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in particular, it holds2 that

Sat(I , f ) = (
I e + ( f · t − 1)

) ∩ K [x1, . . . , xn], (1)

as it is stated in [7, Theorem 14 of Chapter 4, Section 4].
Thus, the actual dilemma is: do we want to add non-degeneracy conditions as in Rabi-

nowitsch’s trick, by carrying around within H an extra, alien variable, which should be
eliminated at the end of the theorem proving or discovery process—i.e., when considering
the ideal He + (T · t − 1); or should we deal, from the beginning, with the non degeneracy
conditions expressed in terms of the “given” variables of our statement, by saturation? And,
actually, does it imply any difference concerning theorem proving?

This dilemma does not seem to appear concerning the use of Rabinowitsch’s trick or
saturation in order to determine if a theorem is generally true by refuting the thesis. It is easy
to prove that both approaches yield the same result: it follows from (1) and the fact that

(
He + (T · t − 1)

)
∩ K [x1, . . . , xs ] =

(
He + (T · t − 1)

)
∩ K [x1, . . . , xn] ∩ K [x1, . . . , xs ].

3 …different consequences: introducing negative theses

In this section, we will analyze the different behavior of both approaches (Rabinowitsch,
saturation) regarding the introduction of negative theses. Note that this task is not as important
as the introduction of negative hypotheses (which will be tackled in the following section),
because the former just enlarges the realm of classical automated theorem proving, while the
latter appears naturally on it.

Example 1 Let us consider the following quite artificial statement: given a general triangle,
with free vertices A(0, 0), B(1, 0), C(c1, c2), we assert that c2 �= 0, i.e., that C does not lie
in the AB line. Intuitively this statement seems generally true.We consider the ideal H = (0)
as the zero ideal, since there are no hypotheses; moreover, both variables, c1, c2 are free.

Then, we apply the protocol and start computing H + (T · t − 1), with T := {c2 �= 0}.
Using Rabinowitsch’s trick we should consider T := {c2 · z − 1 = 0}, with an auxiliary
variable z, and then proceed to compute the elimination of the variables z and t in the ideal
H + (

(c2 · z − 1) · t − 1
) = (0) + (

(c2 · z − 1) · t − 1
) = (

(c2 · z − 1) · t − 1
)
. The obvious

result is (0), so the statement is non generally true and we should proceed by considering the
ideal H + T , i.e., (0) + (c2 · z − 1) and eliminating the variable z here. The result is, again,
zero. So we are stuck in the non generally true and non generally false case!

On the other hand, if we model the thesis T as the saturation of H = (0) by c2 we get
Sat((0), (c2)) = (0), so the thesis should be considered to be T = 0 and, then, we start
checking if this thesis is generally true, but computing the ideal H + (T · t − 1), i.e., ideal
(0) + (1) = (1). We get that the statement is not only generally but always true, since the
only non-degeneracy condition is 1 �= 0 !

As we can see in the above example, we can obtain quite different results following both
methods. But this is not just a particular behavior in some cases. In general, we can state the
following unexpected facts:

Proposition 1 The introduction of a negative thesis T1 := {p �= 0} by using Rabinowitsch’s
trick, always yields a non generally true statement H �⇒ T1.

2 Although formula (1) relates saturation and elimination theoretically, it does not implies that, computation-
ally speaking, saturation requires elimination, see, for instance, [4].
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Proof Let us assume that {x1, . . . , xs} are the independent variables for H . Then let us prove
that the closure of the projection over this affine space, of the varietyV (H)∩V ((p·z−1)·t−1)
lying in the space of the variables {x1, . . . , xs, xs+1, . . . , xn, z, t}, is the whole {x1, . . . , xs}-
space. In fact, take any point (x1, . . . , xs) in the projection of V (H), which is, by definition
of independent variables, dense in the affine space, and we will prove that it is also in the
projection of V (H) ∩ V

(
(p · z − 1) · t − 1

)
.

First we notice that, because (x1, . . . , xs) lies in the projection of V (H), there are values
of xs+1, . . . , xn such that (x1, . . . , xs, xs+1, . . . , xn) is in V (H). If, for one of these points
in V (H), it happens that p(x1, . . . , xn) = 0, then by taking t = −1 and an arbitrary value
of z, we will have that the point (x1, . . . , xn, z,−1) is in V (H) ∩ V

(
(p · z − 1) · t − 1

)
.

On the other hand, if p(x1, . . . , xn) �= 0, we consider a value of z �= 1/p(x1, . . . , xn), so
that p · z − 1 �= 0. Finally, by taking t = 1/(p · z − 1), we will have, again, that the point(
x1, . . . , xn, z, 1/(p · z − 1)

)
is in V (H) ∩ V

(
(p · z − 1) · t − 1

)
.

This surprising result could suggest the idea that this method fails to model geometric
problems with negative thesis. Indeed, an intuitive approximation might consider that the
two successive negations involved here (one, for the negative thesis; two, for the refutational
approach required for checking generally true statements), would be equivalent to simply
verifying the thesis in an affirmative way. That is, common sense is prone to conclude that
verifying if a negative thesis (introduced through Rabinowitsch’s trick) is generally true
would be equivalent to verifying if the corresponding affirmative thesis is generally false,
but see some of the examples and propositions below. In fact, postponing the elimination
of z until the end of the process, which is the essence of Rabinowitsch’s trick, forces us
to consider the formulation of the negative thesis p · z − 1 just as a simple statement in
K [x1, . . . , xn, z], rather than the negation of something, yet with subtle relations with the
corresponding affirmative statement.

Notice that, in general, we have [5, Proposition 2.3]:

Proposition 2 A statement H �⇒ T cannot be simultaneously generally true and generally
false, that is, it cannot happen that both H + T and He + (T · t − 1) have, at the same time,
some non-zero polynomials in the independent variables alone.

On the other hand, it is easy to notice that, by applying directly the definitions, we have:

Proposition 3 If a statement with an affirmative thesis T2 := {p = 0} is generally true, then
the same statement but with the negative thesis (formulated through Rabinowitsch’s trick)
T1 := {p �= 0} will be generally false, and conversely.

Putting together the two precedent propositions, it follows immediately the following
result:

Proposition 4 If a statement with an affirmative thesis T2 := {p = 0} is generally false,
then the same statement, but with the corresponding negative thesis (formulated through
Rabinowitsch’s trick) T1 := {p �= 0} will be non generally false.

Proof If a statement with an affirmative thesis T2 := {p = 0} is generally false, then Propo-
sition 2 says that it cannot be generally true and thus, by Proposition 3, the corresponding
negative thesis (formulated through Rabinowitsch’s trick) T1 := {p �= 0} will be non gener-
ally false. �
Corollary 1 In summary: if H �⇒ T2 is generally false, then necessarily
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– H �⇒ T2 is non generally true;
– H �⇒ T1 is non generally false and non generally true.

On the other hand, if H �⇒ T2 is non generally false, then, there are two options: if
H �⇒ T2 is also generally true, we will have that H �⇒ T1 is generally false as well,
and non generally true; and if H �⇒ T2 is non generally false and non generally true, then
H �⇒ T1 is also non generally false and non generally true.

Example 2 If we consider H := {(y −1) ·(y −2) = 0} in the variables {x, y}, with x the only
independent variable, and T2 := {y − 1 = 0}, T1 := {(y − 1) · z − 1 = 0} it is easy to check
that H �⇒ T2 is both non generally true and non generally false, and the same happens for
H �⇒ T1. On the other hand, if we take T2 := {y − 3 = 0}, T1 := {(y − 3) · z − 1 = 0},
we obtain that H �⇒ T2 is non generally true, but generally false, while H �⇒ T1 is both
non generally true and non generally false. Finally, if we take H := {(y − 1) = 0} in the
variables {x, y}, and T2 := {y − 1 = 0}, T1 := {(y − 1) · z − 1 = 0} it is easy to check that
H �⇒ T2 is generally true, but non generally false, while H �⇒ T1 will be no generally
true, but generally false. This covers all possibilities.

Similarly to Proposition 3, for the formulation of negative thesis using saturation, we have
the following:

Proposition 5 If the statement H �⇒ T2 is generally true then the statement H �⇒ T1,
formulated by introducing the negative thesis T1 := {p �= 0} by using saturation, is generally
false. Analogously, if H �⇒ T2 is generally false then the statement H �⇒ T1, formulated
by introducing the negative thesis T1 := {p �= 0} by using saturation, is a generally true
statement.

Proof If H �⇒ T2 is generally true, it means that the elimination of dependent variables
modulo H in He + (p · t − 1) is not zero. Let J be this elimination ideal. Now, H �⇒
T1 := {Sat(H , p)}, expressed by saturation, is generally false because if we eliminate
the dependent variables in H + T1 we get (H + Sat(H , p)) ∩ K [x1, . . . , xs] = (H +
((He + (p · t − 1)) ∩ K [x1, . . . , xn])) ∩ K [x1, . . . , xs], where the inner intersection just
means the elimination of t . Obviously, this intersection contains J , which is already an ideal
in the independent variables, so this inclusion is not affected by adding H or by the outer
intersection, hence (H + Sat(H , p)) ∩ K [x1, . . . , xs] = (H + ((He + (p · t − 1)) ∩
K [x1, . . . , xn])) ∩ K [x1, . . . , xs] ⊇ J �= (0).

Concerning the second statement in this proposition, let us assume that Sat(H , p) is
principal, for simplicity; say, generated by q . Then there is a power of p, such as pr , verifying
that q · pr ∈ H . Next, notice that if H +(p) has some polynomial in the independent variables
(i.e., if H �⇒ T2 is generally false), then the same happens for H +(pn), for whatever power
of p; thus, the elimination of the independent variables in H + (pr ) will also be not zero.
On the other hand, we observe that pr is in He + (

Sat(H , p) · t − 1
)
, since equality (1)

tells us that the elimination of t in this ideal is Sat
(
H ,Sat(H , p)

)
, and pr · q ∈ H . Thus,

He + (
Sat(H , p) · t − 1

) ⊇ H + (pr ) and it follows the corresponding elimination is not
zero. �
Example 3 If we consider H := {(y −1) ·(y −2) = 0} in the variables {x, y}, with x the only
independent variable, and T2 := {y−1 = 0}, T1 := Sat(((y−1)·(y−2)), (y−1))={y−2 =
0} it is easy to check that H �⇒ T2 is both non generally true and non generally false, and
the same happens for H �⇒ T1. On the other hand, if we take T2 := {y − 3 = 0},
T1 := Sat(((y − 1) · (y − 2)), (y − 3))={(y − 1) · (y − 2) = 0}, we obtain that H �⇒ T2 is
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non generally true, but generally false, while H �⇒ T1 is generally true and non generally
false. Finally, if we take H := {(y − 1) = 0} in the variables {x, y}, and T2 := {y − 1 = 0},
T1 := Sat((y − 1), (y − 1)) = (1) it is easy to check that H �⇒ T2 is generally true,
but non generally false, while H �⇒ T1 will be non generally true, but generally false. We
see, comparing with Example 2, that when H �⇒ T2 is generally false, the behavior with
saturation is diverse from the one with Rabinowitsch.

4 …different consequences: introducing negative hypotheses

In [8, Example 6 of Section 5] it is presented one specific example showing how both meth-
ods (Rabinowitsch, saturation) differ in a common context, yielding, if a non-degeneracy
hypothesis is introduced using Rabinowitsch’s trick, an interesting theorem discovering the
conditions for the orthic triangle of a given triangle with non-collinear vertices to be equi-
lateral. On the other hand, if the non-collinearity of the vertices is introduced by saturation,
there is no discovery at all. Although the concept of theorem discovery in [8] and the one from
[15] we have just recalled here in the introduction (which has been recently implemented in
some popular mathematical software [1,2]) are practically the same, the framework is a little
bit different: in [8] the approach is slightly more sophisticated.

In order to analyze the behavior of both approaches to non-degeneracy hypotheses, let us
denote:

H1 := He + ( f · t − 1),

H2 := Sat(H , f ).

Thus, H1, H2 are the enlarged ideals of hypotheses, corresponding to the two possibilities
of introducing non-degeneracy conditions such as f �= 0 over an ideal of hypotheses H of a
given statement.

Remark 1 With the above notation, it holds that He
2 ⊆ H1, since the saturation is equal to the

elimination of the variable t in the ideal on the right side (i.e., the contraction into the ring
K [x1, . . . , xn]), and the contraction and, then, extension of an ideal, is always contained in
the given ideal.

Example 4 The following trivial example H = (0), f = x , shows that, in general, the
inclusion He

2 ⊂ H1 is strict. We find that H2 = Sat(H , f ) = (0), its extension is, again, (0)
and H1 = He + ( f · t − 1) = (x · t − 1). In this case, the saturation does not assimilate the
information contained in x �= 0: the zero set of Sat(H , f ) includes the points where x = 0,
although we wanted to avoid such instances. This situation is due to the early consideration
of the closure in the saturation method.

Taking Remark 1 into account, we are ready to present the following basic result.

Proposition 6 Notation as above. The set of hypotheses H1 provides, in general, more addi-
tional conditions for discovery that the set H2; that is:

(H2 + T ) ∩ K [x1, . . . , xs] ⊆ (H1 + T ) ∩ K [x1, . . . , xs]. (2)

Proof Using the properties of extension and contraction of ideals, it is clear that H2 + T ⊆
(H2 + T )ec = (He

2 + T )c, where (−)c symbolizes the contraction of the ideals to the ring
K [x1, . . . , xn]. By Remark 1, we can state that (He

2 + T )c ⊆ (H1 + T )c. Thus, intersecting
both H2 + T and (H1 + T )c with K [x1, . . . , xs], the inclusion (2) holds. �
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Corollary 2 It follows that if the statement H2 �⇒ T is generally false, H1 �⇒ T will also
be generally false. Replacing in the proposition above the polynomial T with T · t ′ − 1, we
obtain the same inclusion and, thus H2 �⇒ T generally true implies that H1 �⇒ T is, as
well, generally true.

Example 5 Again, we present a simple example to illustrate that the inclusion in (2) is, in
general, strict. Let us retake the previous Example 4, with thesis T = (x) (essentially, the
same example which appears at the beginning of [8, Section 5]). Clearly, the variable x is
independent. Recall that H1 = (x ·t−1) and H2 = (0). If we add T to our ideals and eliminate
all variables except x (i.e., the variable t), we obtain, respectively, the sets (1) and (x). It
is clear that adding the condition 1 = 0 to the hypotheses set makes the hypotheses variety
empty, from which we could conclude whatever we wanted. So, this is not an interesting
option. But neither is the set obtained from saturation, because it leads to a contradiction
with x �= 0.

So, the previous example ends up in a discovery, but not in a proper one.
In order to gain a better understanding of discovery from each one of the approaches,

we will now precise the difference between the two sets of derived additional conditions
(a result which is similar to [8, Proposition 3]). Remark that we just consider the case in
which the non-degeneracy condition introduced by the user is formulated in terms of the
independent variables; a reasonable restriction, since these variables are the only ones we
can freely manipulate.

Lemma 1 Notation as above. Assume that f ∈ K [x1, . . . , xs]. Then it holds that:

(H2 + T ) ∩ K [x1, . . . , xs] = (H1 + T ) ∩ K [x1, . . . , xs]
⇐⇒ (H2 + T ) ∩ K [x1, . . . , xs]
= Sat

(
(H2 + T ) ∩ K [x1, . . . , xs], f

)
.

Proof The statement immediately follows if we prove the equality
(
He +( f ·t −1)+T

)∩K [x1, . . . , xs] = Sat
((
Sat(H , f )+T

)∩K [x1, . . . , xs], f
)
, (3)

stating that the additional conditions for discovery found employing Rabinowitsch’s trick are
the saturation of those provided by the saturation method.

First of all, we recall that, by equality (1), it holds that
(
He + ( f · t − 1) + T

) ∩
K [x1, . . . , xn] = Sat(H + T , f ). Let us continue proving that the right side of this equality
can be regarded as follows

Sat(H + T , f ) = Sat
(
Sat(H , f ) + T , f

)
. (4)

It is clear that Sat(H + T , f ) ⊆ Sat
(
Sat(H , f )+ T , f

)
, since always H ⊆ Sat(H , f ).

Conversely, if g ∈ Sat(Sat(H , f ) + T , f ), there exists n ∈ N>0 such that g · f n = a + b,
with a ∈ Sat(H , f ) and b ∈ T . Again, there exists m ∈ N>0 such that a · f m ∈ H ; so,
g · f n+m = a · f m +b · f m ∈ H +T . Thus, it follows by definition that g ∈ Sat(H +T , f ).

Now, in order to end proving the initial equality (3) it remains to exhibit that

Sat
(
Sat(H , f ) + T , f

) ∩ K [x1, . . . , xs]
= Sat

((
Sat(H , f ) + T

) ∩ K [x1, . . . , xs], f
)
.

Let g ∈ Sat
(
Sat(H , f ) + T , f

) ∩ K [x1, . . . , xs]. It is clear that g · f n ∈ Sat(H , f ) + T
for some n ∈ N>0. Both g and f n belong to K [x1, . . . , xs], whence g · f n belongs to
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the same ring, too. So, g ∈ Sat
((
Sat(H , f ) + T

) ∩ K [x1, . . . , xs], f
)
. The converse

follows trivially from the fact that both
(
Sat(H , f ) + T

) ∩ K [x1, . . . , xs] and ( f ) lie on
K [x1, . . . , xs]. �

The previous lemma allows us to conclude the following result.

Theorem 1 The statement H1 �⇒ T is generally false if and only if the statement H2 �⇒ T
is also generally false; analogously, H1 �⇒ T generally true is equivalent to H2 �⇒ T
generally true.

Proof The first assertion follows from Lemma 1 and the fact that an ideal is zero if and only
if its saturation by another, non-zero, arbitrary ideal, is zero. For the second one, it suffices
to replace the ideal T in Lemma 1 with T · t ′ − 1 and to reason as above. �

Theorem 1 says that the method employed for introducing the non-degeneracy conditions
does not affect whether the theorem is generally true or generally false, but it can provide
different sets of additional hypotheses for discovery (see Example 5). Henceforth, we will
denote them by:

H1 := (H1 + T ) ∩ K [x1, . . . , xs],
H2 := (H2 + T ) ∩ K [x1, . . . , xs].

Recall (see Eq. (3)) thatH1 = Sat(H2, f ). Following the traditional protocol for discovery,
the next step would be to consider the statements:

StA : H1 + He
1 �⇒ T ,

StB : H2 + He
2 �⇒ T ,

and continue to check out whether the new theorems are generally true or not. But we have
already seen in Example 5 thatH2 may be generated by elements contradicting the negation
¬{ f = 0}. Therefore, it might be interesting to saturate again H2 + He

2 by f and to change
StB by

StB′ : Sat(H2 + He
2, f ) �⇒ T ,

where Sat(H2 +He
2, f ) = Sat(H +He

2, f ) (it follows from repeating the proof of equal-
ity (4)). Note that, also, H1 + He

1 = He + He
1 + ( f · t − 1). Finally, and with the goal of

generalizing as well as making easier the proof of the following results, we will consider

St1 : He + He
1 + ( f · t − 1) �⇒ T ,

St2 : He + He
2 + ( f · t − 1) �⇒ T ,

St3 : Sat(H + He
1, f ) �⇒ T ,

St4 : Sat(H + He
2, f ) �⇒ T ,

being St1 = StA and St4 = StB′ .
Recall that, by enlarging the set of hypotheses H withHe

1 orHe
2, some of the independent

variables {x1, . . . , xs} ruling the initial theorem H �⇒ T , could become dependent. In that
case we would have to deal with two new sets of independent variables:Λ1 := {x1, . . . , xs1},
the independent variables in H +He

1, as well as Λ2 := {x1, . . . , xs2} for H +He
2. Since the

inclusion He
2 ⊆ H1 holds, it follows that Λ1 ⊆ Λ2.
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Nevertheless, we will avoid such subtleties by restricting, in what follows, to the case in
which f is formulated just in terms of the variables in Λ1: f “as independent as possible”.

Aiming to establish the relationships among the statements St1, St2, St3 and St4, we
present the following useful lemma.

Lemma 2 With the above notation, it holds that

Sat
(

H + He
1, f

)
= Sat

(
H + He

2, f
)
. (5)

In addition,
(

He + He
1 + ( f · t − 1) + (T · t ′ − 1)

)
∩ K [x1, . . . , xn, t ′]

=
(

He + He
2 + ( f · t − 1) + (T · t ′ − 1)

)
∩ K [x1, . . . , xn, t ′]. (6)

Proof We infer from Lemma 1 that

Sat
(

H + He
1, f

)
= Sat

(
H + Sat(H2, f )e, f

)
,

being the term in the right side equal to Sat
(
H +Sat(He

2, f ), f
)
(see [8, Appendix]). From

here, it suffices to essentially repeat the proof of equality (4) to have equation (5) proved:
the two sets of additional hypotheses H1 and H2 yield the same ideal when added to H and
saturated by f .

As for (6), employing equality (1) we see that both
(
He + He

1 + ( f · t − 1) + (T · t ′ −
1)

) ∩ K [x1, . . . , xn, t ′] = Sat
(
He + He

1 + (T · t ′ − 1), f
)
and

(
He + He

2 + ( f · t − 1) +
(T · t ′ − 1)

) ∩ K [x1, . . . , xn, t ′] = Sat
(
He +He

2 + (T · t ′ − 1), f
)
hold. Again, Lemma 1

and the idea lying under equality (4) enable us to state:

Sat
(
He + He

1 + (T · t ′ − 1), f
)

= Sat
(
He + Sat(H2, f )e + (T · t ′ − 1), f

)

= Sat
(
He + Sat(He

2, f ) + (T · t ′ − 1), f
)

= Sat
(
He + He

2 + (T · t ′ − 1), f
)
,

and we are done. �
Remark 2 Note that the only requirement for Lemma 2 to hold is that f ∈ K [x1, . . . , xs],
since this is an essential hypotheses in Lemma 1.

Now, we are ready to state our main results.

Theorem 2 Notation as above. The statements St1, St2, St3 and St4 are generally true if
and only if one of them is generally true. Furthermore, St3 and St4 have exactly the same
hypotheses, and the non-degeneracy conditions of St1 are equal to those of St2 provided that
Λ1 = Λ2.

Proof Firstly, we observe that, with the assumption that f ∈ K [x1, . . . , xs1 ], by Theorem 1,
St1 generally true is equivalent to St3 generally true; the same happens with St2 and St4. If
we prove that St3 is generally true if and only if so is St4, we are done. Indeed, this follows
trivially from Lemma 2, since St3 = St4.

In addition, equality (6) of Lemma 2 and the inclusion Λ1 ⊆ Λ2 tell us that
(

He + He
1 + ( f · t − 1) + (T · t ′ − 1)

)
∩ K [x1, . . . , xs1 ]
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⊆
(

He + He
2 + ( f · t − 1) + (T · t ′ − 1)

)
∩ K [x1, . . . , xs2 ].

The previous inclusion trivially switches to an equality if Λ1 = Λ2. �
Corollary 3 With the above notation, StA is generally true if and only if StB is generally true
as well.

Proof Since StA and St1 are the same statement, Theorem 2 enables us to state that StA

generally true is equivalent to St2 generally true; i.e.,
(
He + He

2 + ( f · t − 1)e + (T · t ′ −
1)

) ∩ K [x1, . . . , xs2 ] �= (0). Let us prove that
(

He + He
2 + ( f · t − 1) + (T · t ′ − 1)

)
∩ K [x1, . . . , xs2 ]

= Sat
((

He
2 + He

2 + (T · t ′ − 1)
)

∩ K [x1, . . . , xs2 ], f
)
. (7)

Indeed, by equality (1), the reasoning in (4) and f ∈ K [x1, . . . , xs1 ], we have that
Sat

(
(He

2 + He
2 + (T · t ′ − 1)

) ∩ K [x1, . . . , xs2 ], f )

= Sat
(
Sat(He, f ) + He

2 + (T · t ′ − 1), f
) ∩ K [x1, . . . , xs2 ]

= Sat
(
He + He

2 + (T · t ′ − 1), f
) ∩ K [x1, . . . , xs2 ]

= (
He + He

2 + (T · t ′ − 1) + ( f · t − 1)
) ∩ K [x1, . . . , xn, t ′] ∩ K [x1, . . . , xs2 ]

= (
He + He

2 + ( f · t − 1) + (T · t ′ − 1)
) ∩ K [x1, . . . , xs2 ].

Therefore, (7) is proved and then
(
He+He

2+( f ·t−1)+(T ·t ′−1)
)∩K [x1, . . . , xs2 ] �= (0)

if and only if
(
He
2 + He

2 + (T · t ′ − 1)
) ∩ K [x1, . . . , xs2 ] �= (0); i.e., St2 is generally true if

and only if StB is generally true.
In conclusion, StA generally true is equivalent to StB generally true. �

5 Our experiences

In this section, we would like to present a particular example in order to show in some
detail the described situation, having the calculations been carried out using the software
Singular [9] in the FinisTerrae 2 supercomputer. Our example is based on the already
cited theorem about the orthic triangle taken from [8, Example 6 of Section 5]. We wish to
show that the orthic triangle associated with an equilateral triangle is also equilateral (see
Fig. 1). Since we want to address the theorem from the point of view of discovery, we decide
to ignore the hypothesis about the original triangle being equilateral and take a completely
arbitrary one, with the purpose of obtaining, automatically, a necessary condition on this
general triangle for the corresponding orthic triangle to be equilateral.

So, we take A(0, 0), B(x1, 0) and C(x2, x3) as the vertices of the main triangle, and set
D(x2, 0), E(x4, x5) and F(x6, x7) the vertices of the orthic one. The independent variables
are {x1, x2, x3}. We force the segments AE and BC to be perpendicular, as well as E to be
collinear with B and C ; analogously, B F and AC must be perpendicular, and F must be
aligned with A and C . By construction, it is obvious that the point D is collinear with A and
B, and that C D is perpendicular to AC . As for our desired conclusion, we state it using two
polynomials, each one forcing two sides of the orthic triangle to have the same length; i.e.,
one for DE = DF , and another for DE = E F .We deal with them separately, distinguishing
between theses T and T ′, respectively, and theorems H �⇒ T and H �⇒ T ′.
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Fig. 1 Orthic triangle

A B

C

D

E

F

Besides the main hypotheses, we choose to add (based on human intuition and hoping
to help to simplify the computations) as non-degeneracy conditions those which force the
triangle ABC not to collapse to a line, i.e., x1 �= 0 and x3 �= 0. These two conditions can
be summarized in just one: f = x1x3 �= 0. We introduce this new hypothesis f �= 0, both
employing Rabinowitsch’s trick and by saturation, in each of the two theorems H �⇒ T and
H �⇒ T ′. It is easy to check that any of the statements H1 �⇒ T , H2 �⇒ T , H1 �⇒ T ′
and H2 �⇒ T ′ is generally false. However, different formulations of the introduced non-
degeneracy hypothesis can lead to different sets of additional affirmative hypotheses for the
discovery of a true statement. More precisely, for the theorem H �⇒ T , we get (notation as
in the previous section):

HT
2 = x1 · HT

1 =
(

x1 (x1 − 2x2)
(

x1x2 − x22 + x23

) (
− x1x2 + x22 + x23

))
.

Nevertheless, for the theorem H �⇒ T ′, we obtain

HT ′
1 = HT ′

2 =
(

x2
(

− x21 + x22 + x23

) (
− x21 x2 + 2x1x22 + 2x1x23 − x32 − x2x23

))
.

We appreciate that the factor x1, which was forced to be different from zero by introducing
the non-degeneracy hypothesis, appears—as a zero condition—inHT

2 , due to the early closure
of the saturation, similarly to what happens in Example 5. Informally speaking, we can say
that adding the negation x1x3 �= 0 is not so conclusive when we deal with saturation as it is
when employing Rabinowitsch’s trick.

It is also trivial to check that, if the triangle ABC is equilateral, the additional conditions in
HT

1 ,HT
2 ,HT ′

1 orHT ′
2 all vanish. That is, equilateral triangles yield equilateral orthic triangles.

Nevertheless, we also see that there are other possible configurations for the given triangle
which make these additional, necessary conditions to vanish: configurations that should be
carefully analyzed, since, if also sufficient, they would bring some unexpected statements
regarding the regularity of the orthic triangle.

Now, a direct computation shows that the statement StB (according to the previous section
notation) is generally true for both T and T ′, but by brute force we are not able to decide
if StA is, as well, generally true. Yet, applying our precedent results, we can conclude that
not only is StA = St1 generally true, but the same applies to St2 and St3 = St4, too.
Moreover, the calculations for St4 reveal that, in addition to being generally true, we do
not need to consider non-degeneracy conditions both for T and for T ′; again, and since
ΛT

1 = ΛT
2 = ΛT ′

1 = ΛT ′
2 = {x1, x3}, Theorem 2 allows us to state that StA = St1 and St2

do not need additional non-degeneracy conditions as well.
What is interesting to emphasize here is that the computer is not able to arrive at these

conclusions by directly following the Rabinowitsch approach in StA and confirming that the
theses T and T ′ are generally true, while it encounters no difficulties with the saturation

123



Dealing with negative conditions in automated proving… Page 15 of 16 162

approach of StB or St4. So, we think that this example clearly illustrates the practical advan-
tages, in some cases, of using saturation instead of Rabinowitsch’s trick. Also, the example
highlights the applicability of the results in the previous section.

Yet, we should make clear here that we do not know the reason for the failure of the Fin-
isTerrae 2 supercomputer concerning the computation, via Singular, of the Rabinowitsch
approach for this particular example. We like to note that the saturation-based computation
uses Singular’s implementation of saturation which does not involve elimination3. We
want to thank the referees for pointing out this, as well as for bringing up our attention to
reference [4], for a detailed account of the complex, reciprocal relation between saturation
and elimination (saturation via elimination, elimination via saturation).

6 Conclusions

At this point, the reader could wonder: which one of the presented methods is better? The
answer is not totally objective. We encourage to implement the saturation method in the
automated proving and discovery software, due to the scarce effectiveness of Rabinowitsch’s
trick when dealing with negative theses and to the practical objections exposed in Sect. 5.
But there is a counterpart: by considering the early closure of the saturation Sat(H , f ),
we can lose essential information about the negation ¬{ f = 0}, and f may appear further
as a zero equation in the additional hypotheses yielded by saturation, transgressing, in a
certain sense, the restrictions imposed by the introduced non-degeneracy conditions. This
fact is precisely what differentiates both methods, and what could persuade us to employ
sometimes Rabinowitsch’s trick, if we want to preserve the negation of f until the end of the
procedure, in order to remain faithful to some a priori stated non-degeneracy condition. In
our opinion, in this case, it should be decided by the user, through the corresponding dialogue
with the involved automatic theorem proving software.

Finally, we must recall here the existence of some new algorithmic tools to deal with
constructible sets (as detailed in the footnote1) that deserve future consideration and imple-
mentation in some dynamic geometry program provided with automated reasoning modules.

Acknowledgements We thank the referees for the helpful comments and suggestions that contributed to the
improvement of this paper. The two first authors were supported by Agencia Estatal de Investigación (Spain),
grant MTM2016-79661-P (European FEDER support included, UE), and by Xunta de Galicia, grant ED431C
2019/10 (European FEDER support included, UE). Also, the second authorwas supported by FPU scholarship,
Ministerio de Educación, Cultura y Deporte (Spain). The third author was partially supported by the Spanish
Research Project grant MTM2017-88796-P (European FEDER support included). We also gratefully thank
CESGA (Centro de Supercomputación de Galicia, Santiago de Compostela, Spain) for providing access to
the FinisTerrae 2 supercomputer.

References

1. Abánades, M., Botana, F., Kovács, Z., Recio, T., Sólyom-Gecse, C.: Development of automatic reasoning
tools in GeoGebra. ACM Commun. Comput. Algebra 50(3), 85–88 (2016)

2. Abánades, M., Botana, F., Kovács, Z., Recio, T., Sólyom-Gecse, C.: Towards the automatic discovery of
theorems in GeoGebra. In: Greuel, G., Koch, T., Paule, P., Sommese, A. (eds.) International Congress on
Mathematical Software, pp. 37–42. Springer, New York (2016)

3. Barakat, M., Lange-Hegermann, M.: An algorithmic approach to Chevalley’s theorem on images of
rational morphisms between affine varieties (2019). arXiv:1911.10411v2

3 See: https://github.com/Singular/Sources/blob/Release-4-1-2/Singular/LIB/elim.lib#L739.

123

http://arxiv.org/abs/1911.10411v2
https://github.com/Singular/Sources/blob/Release-4-1-2/Singular/LIB/elim.lib#L739


162 Page 16 of 16 M. Ladra et al.

4. Barakat, M., Lange-Hegermann, M., Posur, S.: Elimination via saturation (2017). arXiv:1707.00925
5. Botana, F., Recio, T.: On the unavoidable uncertainty of truth in dynamic geometry proving. Math.

Comput. Sci. 10(1), 5–25 (2016)
6. Chou, S.C.: Mechanical geometry theorem proving. Mathematics and its applications, vol. 41. D. Reidel

Publishing Co., Dordrecht (1988) (With a foreword by Larry Wos)
7. Cox, D.A., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. An introduction to computational

algebraic geometry and commutative algebra. Undergraduate Texts in Mathematics, 4th edn. Springer,
Cham (2015)

8. Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in elementary geometry.
J. Automat. Reason. 43(2), 203–236 (2009)

9. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-1-2—A computer algebra system
for polynomial computations (2019). http://www.singular.uni-kl.de

10. Kapur, D.: A refutational approach to geometry theorem proving. Artif. Intell. 37(1–3), 61–93 (1988)
11. Kapur, D., Sun, Y., Wang, D., Zhou, J.: The generalized Rabinowitsch trick. In: Applications of computer

algebra, Springer Proc. Math. Stat., vol. 198, pp. 219–229. Springer, Cham (2017)
12. Mishra, B.: Algorithmic Algebra. Texts and Monographs in Computer Science. Springer, New York

(1993)
13. Montes, A., Recio, T.: Generalizing the Steiner–Lehmus theorem using the Gröbner cover.Math. Comput.

Simul. 104, 67–81 (2014)
14. Rabinowitsch, J.L.: Zum Hilbertschen Nullstellensatz. Math. Ann. 102(1), 520 (1930)
15. Recio, T., Vélez, M.P.: Automatic discovery of theorems in elementary geometry. J. Automat. Reason.

23(1), 63–82 (1999)
16. Recio, T., Vélez, M.P.: An introduction to automated discovery in geometry through symbolic computa-

tion. In: Numerical and symbolic scientific computing, Texts Monogr. Symbol. Comput., pp. 257–271.
Springer, New York (2012)

17. Wu, W.T.: On the decision problem and the mechanization of theorem-proving in elementary geometry.
Sci. Sinica 21(2), 159–172 (1978)

18. Zhou, J., Wang, D., Sun, Y.: Automated reducible geometric theorem proving and discovery by Gröbner
basis method. J. Automat. Reason. 59(3), 331–344 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1707.00925
http://www.singular.uni-kl.de

	Dealing with negative conditions in automated proving: tools and challenges. The unexpected consequences  of Rabinowitsch's trick
	Abstract
	Introduction
	1 A short digest on automatic proving and discovery by algebraic geometry methods
	2 Introducing negative conditions: different ways…
	3 …different consequences: introducing negative theses
	4 …different consequences: introducing negative hypotheses
	5 Our experiences
	6 Conclusions
	Acknowledgements
	References




