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Abstract
In this paper we prove that the classical Brunn–Minkowski inequality holds for product mea-
sures on the Euclidean space with quasi-convex densities when considering certain classes
of sets that contain, among others, the complements (within a centered box) of unconditional
sets. As a consequence, we derive an isoperimetric type inequality.
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1 Introduction

As usual, we write Rn to represent the n-dimensional Euclidean space, and we denote by ei
the i-th canonical unit vector. For i = 1, . . . , n, we represent by Hi = {

x = (x1, . . . , xn) ∈
R
n : xi = 0

}
the i-th coordinate hyperplane. The n-dimensional volume of a measurable set

M ⊂ R
n , i.e., its n-dimensional Lebesgue measure, is denoted by vol(M) (when integrating,

as usual, dx will stand for dvol(x)). We write M(t) = {x ∈ R
n−1 : (x, t) ∈ M} for the

(n − 1)-dimensional section at height t ∈ R (in the direction of en), whereas the orthogonal
projection of M onto an i-dimensional linear subspace H is denoted by M |H . Moreover,
H⊥ represents the orthogonal complement of H and, for any x ∈ M |Hi , we set Mi (x) =
{t ∈ R : x + tei ∈ M} to denote the one-dimensional section of M through the point x in
the direction of ei . Finally, given r > 0, rM stands for the set {rm : m ∈ M}.

The Minkowski sum of two non-empty sets A, B ⊂ R
n is the classical vector addition

of them: A + B = {a + b : a ∈ A, b ∈ B}. It is natural to wonder about the possibility
of bounding the volume of the Minkowski sum of two sets in terms of their volumes; this
is the statement of the Brunn–Minkowski inequality (for extensive and beautiful surveys on
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this inequality we refer the reader to [1,7]). One form of it asserts that if λ ∈ (0, 1) and A
and B are non-empty measurable subsets of Rn such that (1− λ)A + λB is also measurable
then

vol
(
(1 − λ)A + λB

)1/n ≥ (1 − λ)vol(A)1/n + λvol(B)1/n . (1.1)

The Brunn–Minkowski inequality was generalized to different types of measures, includ-
ing the cases of log-concave measures [10,15] and of p-concave measures (see e.g. [3,4]). It
is interesting to note that it was proved by Borell [2,3] that such generalizations would require
a p-concavity assumption on the density of the underlying measure (see (2.1) below for the
precise definition). As a consequence of this approach (see also [21]), when dealingwith arbi-
trary measurable sets and a Radon measure on Rn , the (1/n)-form of the Brunn–Minkowski
inequality (1.1) is only true, in general, for the volume (up to a constant). However, when
considering some special families of sets (e.g. that of unconditional sets), the (1/n)-Brunn–
Minkowski inequality holds for some types of measures, such as the standard Gaussian
measure, which is given by

dγn(x) = 1

(2π)n/2 e
−|x |2
2 dx

(see e.g. [8,11,12,14,16]). Furthermore, for the family of C-coconvex sets (complements of
closed convex sets, of positive and finite volume, within a pointed closed convex cone with
non-empty interior C), a “complemented” version of the Brunn–Minkowski inequality (1.1)
holds for the volume (see [9,19]), namely

vol
(
C\((1 − λ)K + λL)

)1/n ≤ (1 − λ)vol(C\K )1/n + λvol(C\L)1/n

for all λ ∈ (0, 1). And again, this (complemented) Brunn–Minkowski inequality can be also
generalized for certain general measures (see [13]).

To complete the picture, onemay ask about possible p-convexity conditions on the density
of the underlyingmeasure. Among others, what can be said about the measure νn onRn given
by

dνn(x) = e|x |2dx,

whose density is log-convex? In [13], when dealing with measures involving certain log-
convex functions as part of their densities, the authors showed another type of complemented
Brunn–Minkowski inequality. Nevertheless, not much more seems to be known regarding
Brunn–Minkowski inequalities for log-convex densities or, more generally, quasi-convex
densities (see (2.2) below for the precise definition).

To this regard, and inspired by the above-mentioned (complemented) Brunn–Minkowski
inequalities, it is natural to wonder whether one may find certain classes of sets for which a
measure onRn of the kind of νn satisfies the (1/n)-form of the Brunn–Minkowski inequality.
Here we give a positive answer to this question, by showing that it is enough to consider
congruous sets (see Definition 2.1): a family that contains, among others, the complements
of unconditional sets within a centered box (cf. Example 2.1). This is the content of the
following result, in the more general setting of product measures with quasi-convex densities
(with minimum at the origin).

Theorem 1.1 Let μ = μ1 ⊗ · · · ⊗ μn be a product measure on R
n such that μi is the

measure given by dμi (x) = φi (x) dx, where φi : R −→ [0,∞) is quasi-convex with
φi (0) = minx∈R φi (x), for all i = 1, . . . , n.
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Let λ ∈ (0, 1) and let A, B ⊂ R
n be non-empty measurable congruous sets such that

(1 − λ)A + λB is also measurable. Then

μ
(
(1 − λ)A + λB

)1/n ≥ (1 − λ)μ(A)1/n + λμ(B)1/n . (1.2)

Section 2 is mainly devoted to showing this result. Finally, in Sect. 3, we derive an
isoperimetric type inequality as a consequence of (1.2).

2 Proof of themain result

2.1 Background

We recall that a function φ : Rn −→ [0,∞) is p-concave, for p ∈ R ∪ {±∞}, if
φ
(
(1 − λ)x + λy

) ≥ Mp
(
φ(x), φ(y), λ

)
(2.1)

for all x, y ∈ R
n such that φ(x)φ(y) > 0 and any λ ∈ (0, 1). Here Mp denotes the p-mean

of two non-negative numbers a, b:

Mp(a, b, λ) =

⎧
⎪⎪⎨

⎪⎪⎩

(
(1 − λ)a p + λbp

)1/p
, if p �= 0,±∞,

a1−λbλ if p = 0,
max{a, b} if p = ∞,

min{a, b} if p = −∞.

A 0-concave function is usually called log-concave whereas a (−∞)-concave function is
called quasi-concave. Quasi-concavity is equivalent to the fact that the superlevel sets {x ∈
R
n : φ(x) ≥ t} are convex for all t ∈ [0, 1].
On the other side of the coin, one is led to p-convex functions, where p ∈ R ∪ {±∞},

i.e., those functions satisfying

φ
(
(1 − λ)x + λy

) ≤ Mp
(
φ(x), φ(y), λ

)
(2.2)

for all x, y ∈ R
n and all λ ∈ (0, 1). Again, 0-convex functions are referred to as log-convex

whereas ∞-convex functions are called quasi-convex.
Now we define a new class of (pairs of) sets that will play a relevant role throughout this

paper.

Definition 2.1 Let A, B ⊂ R
n be non-empty bounded sets. For n = 1, we say that A and B

are congruous if one of the following assertions holds.

(i) A ∩ (−∞, 0), B ∩ (−∞, 0) = ∅ and max(A) = max(B).
(ii) A ∩ (0,∞), B ∩ (0,∞) = ∅ and min(A) = min(B).
(iii) A ∩ (0,∞), B ∩ (0,∞), A ∩ (−∞, 0), B ∩ (−∞, 0) �= ∅, min(A) = min(B) and

max(A) = max(B).

For n ≥ 2, we say that A and B are congruous if, for any i = 1, . . . , n, the sets Ai (x) and
Bi (y) are congruous for all x ∈ A|Hi and all y ∈ B|Hi .

s
We notice that the fact that, for any i = 1, . . . , n, the sets Ai (x) and Bi (y) are congruous

(for all x ∈ A|Hi and all y ∈ B|Hi ) does not mean that the same condition in Definition 2.1
holds for all i (see Fig. 1; there A2(x), B2(x ′) satisfy condition (iii) of Definition 2.1, for all
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Fig. 1 The congruous sets A (in
gray) and B (the box), with the
sections A2(x), A1(y) for given
x ∈ A|H2, y ∈ A|H1

Fig. 2 A set A (in gray)
contained in a centered box P
such that P\A is unconditional

x ∈ A|H2 and all x ′ ∈ B|H2, whereas A1(y), B1(y′) fulfil condition (i), for any y ∈ A|H1

and any y′ ∈ B|H1).
Unconditional convex sets are of particular interest in convexity, also regarding Brunn–

Minkowski type inequalities (see e.g. [11,18]). A subset A ⊂ R
n is said to be unconditional

(not necessarily convex) if for every (x1, . . . , xn) ∈ A and every (ε1, . . . , εn) ∈ [−1, 1]n
one has (ε1x1, . . . , εnxn) ∈ A. As announced before, the family of congruous sets contains
certain complements of unconditional sets:

Example 2.1 Let P = ∏n
i=1[−αi , αi ], αi > 0 for i = 1, . . . , n, be a centered orthogonal

compact box and let A, B ⊂ P be non-empty compact sets such that P\A, P\B are uncon-
ditional. Then A and B are congruous. Indeed, from the unconditionality of P\A and P\B,
we have that max

(
Ai (x)

) = max
(
Bi (y)

) = αi and min
(
Ai (x)

) = min
(
Bi (y)

) = −αi , for
all x ∈ A|Hi and all y ∈ B|Hi ; thus Ai (x) and Bi (y) are congruous for any i = 1, . . . , n
since they satisfy condition (iii) in Definition 2.1 (see Fig. 2).

The following result is well-known in the literature (see e.g. the one-dimensional case
of [6, Theorem 4.1] and the references therein. Regarding its statement, and following the
notation used in [6], we notice that for a quasi-concave function φ : R −→ [0,∞) we have
(1 − λ)φχA
−∞λφχB = φχ

(1−λ)A+λB , where χM denotes the characteristic function of the
set M ⊂ R).

Lemma 2.1 Let μ be the measure on R given by dμ(x) = φ(x)dx, where φ : R −→ [0,∞)

is quasi-concave with φ(0) = maxx∈R φ(x). Let λ ∈ (0, 1) and let A, B ⊂ R be measurable
sets with 0 ∈ A ∩ B. Then

μ(C) ≥ (1 − λ)μ(A) + λμ(B)

for any measurable set C such that C ⊃ (1 − λ)A + λB.
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Asa consequence of such aBrunn–Minkowski inequality for quasi-concavedensities onR,
we will obtain the one-dimensional Brunn–Minkowski inequality for measures associated to
quasi-convex functions when working with congruous sets. This is the content of Lemma 2.2.

2.2 Proof

Westart this subsection by showing the one-dimensional case of ourmain result, Theorem1.1.

Lemma 2.2 Let μ be the measure on R given by dμ(x) = φ(x)dx, where φ : R −→ [0,∞)

is quasi-convex with φ(0) = minx∈R φ(x). Let λ ∈ (0, 1) and let A, B ⊂ R be non-empty
measurable congruous sets. Then

μ(C) ≥ (1 − λ)μ(A) + λμ(B)

for any non-empty measurable set C such that C ⊃ (1 − λ)A + λB.

Proof Let A and B satisfy condition (iii) in Definition 2.1. Assuming that the result is true if
either (i) or (ii) (of Definition 2.1) holds, it is enough to consider A+, A−, B+, B−,C+,C−
where, for any M ⊂ R, the sets M+ and M− stand for M+ = M ∩ (0,∞) and M− = M ∩
(−∞, 0). Indeed, applying the result to the sets A+, B+,C+ and A−, B−,C−, respectively,
we have

(1 − λ)μ(A) + λμ(B) = (1 − λ)μ(A+) + λμ(B+) + (1 − λ)μ(A−) + λμ(B−)

≤ μ(C+) + μ(C−) = μ(C).

Moreover, we note that the function φ̄ : R −→ [0,∞) given by φ̄(x) = φ(−x) is quasi-
convex (and, clearly, φ̄(0) = minx∈R φ̄(x)). Thus, considering if necessary Ā = −A, B̄ =
−B, C̄ = −C , and themeasure μ̄with density φ̄, it is enough to prove the result for congruous
sets satisfying (i). Now, the quasi-convexity of φ implies that φ(x) ≤ max{φ(0), φ(y)} =
φ(y) for any 0 < x < y. This shows that φ is increasing on (0,∞) and then φ · χ

(0,∞)

is quasi-concave. Thus, setting x0 = max(A) = max(B), the result follows from applying
Lemma 2.1 to the function ψ : R −→ [0,∞) given by ψ(x) = φ(x + x0) · χ

(−∞,0](x) and
the sets A − x0, B − x0,C − x0. ��

As stated in Theorem1.1, the above result extends to dimension n. The approachwe follow
here is based on the underlying idea of [16, Theorem 1.3], and it goes back to some classical
proofs of functional versions of the Brunn–Minkowski inequality (such as the Prékopa-
Leindler inequality) and other related results.

Proof of Theorem 1.1 For the sake of brevity we write C = (1 − λ)A + λB and, given
t1, t2 ∈ R, tλ = (1− λ)t1 + λt2. We also set μ̄ = μ1 ⊗ μ2 ⊗ · · · ⊗ μn−1 (i.e., μ = μ̄ ⊗ μn).

Since μ is inner regular (i.e., μ(A) = sup{μ(K ) : K ⊂ A, K compact} for any measur-
able set A), we may assume, without loss of generality, that A and B are compact. Indeed,
given sequences of compact sets (Kn)n∈N, (Ln)n∈N that approximate from inside the con-
gruous sets A and B, respectively, one may clearly consider certain sequences of congruous
compact sets (K ′

n)n∈N, (L ′
n)n∈N such that μ(K ′

n) = μ(Kn) and μ(L ′
n) = μ(Ln), for all

n ∈ N. In fact, it is enough to add to Kn and Ln , respectively, the projections
(
A|Hi

)
and(

B|Hi
)
, located at the appropriate height(s) in the direction of ei , for i = 1, . . . , n.

Moreover, we observe that we may assume thatμ(A)μ(B) > 0. Indeed, the case in which
one of the sets, say B, has measure zero whereas the other one, A, has positive measure can
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be obtained (cf. [16, Proposition 2.7]) by applying the positive measures case to A and the
following set: let P be an orthogonal compact box congruous with B (and so, with A) and let
Cm be a decreasing sequence of (unions of) boxes, which are congruous with B, that shrinks
(as m → ∞) to the subset of vertices of P that belong to B; then we take Bm = B ∪ Cm ,
which is also congruous with A for all m ∈ N. We note that this congruence ensures that the
points in the limit case belong to B, and hence

⋂
m∈N

(
(1− λ)A + λBm

) = (1− λ)A + λB.
Taking into account that

μ

(
⋂

m∈N

(
(1 − λ)A + λBm

)
)

= lim
m

μ
(
(1 − λ)A + λBm

)
,

we get (1.2).
We then show the result by (finite) induction on the dimension n. The case n = 1 is just

Lemma 2.2. So, we suppose that n ≥ 2 and that the inequality is true for dimension n−1. The
sets A(t1), B(t2), for t1, t2 ∈ R such that t1en ∈ A|H⊥

n , t2en ∈ B|H⊥
n , are clearly congruous

and thus, applying the induction hypothesis (i.e., (1.2) in R
n−1 for μ̄) together with the fact

that C(tλ) ⊃ (1 − λ)A(t1) + λB(t2), we have

μ̄
(
C(tλ)

) ≥
(
(1 − λ)μ̄

(
A(t1)

)1/(n−1) + λμ̄
(
B(t2)

)1/(n−1)
)n−1

. (2.3)

Now, we take the non-negative functions f , g, h : R −→ [0,∞) given by

f (t) = μ̄(A(t))

|μ̄(A(·))|∞
, g(t) = μ̄(B(t))

|μ̄(B(·))|∞
, h(t) = μ̄(C(t))

c
,

where

c =
(
(1 − λ) |μ̄(A(·))|1/(n−1)∞ + λ |μ̄(B(·))|1/(n−1)∞

)n−1
.

We notice that the above functions are well-defined: denominators are positive since
μ(A)μ(B) > 0, and they are finite because A|Hn−1 and B|Hn−1 are compact sets and
μ̄ is locally finite. Furthermore, supt∈R f (t) = supt∈R g(t) = 1.

Using (2.3), and setting θ = λ |μ̄(B(·))|1/(n−1)∞
c1/(n−1)

∈ (0, 1), we get

μ̄
(
C(tλ)

) ≥
(
(1 − λ)μ̄

(
A(t1)

)1/(n−1) + λμ̄
(
B(t2)

)1/(n−1)
)n−1

= c
(
(1 − θ) f (t1)

1/(n−1) + θg(t2)
1/(n−1)

)n−1

≥ c min
{
f (t1), g(t2)

}
.

This shows that h((1 − λ)t1 + λt2) ≥ min{ f (t1), g(t2)} for any t1, t2 ∈ R, which clearly
implies that

{t ∈ R : h(t) ≥ s} ⊃ (1 − λ){t ∈ R : f (t) ≥ s} + λ{t ∈ R : g(t) ≥ s} (2.4)

for all s ∈ [0, 1). Moreover, since An(x) and Bn(y) are congruous for all x ∈ A|Hn and
all y ∈ B|Hn then the superlevel sets {t ∈ R : f (t) ≥ s} and {t ∈ R : g(t) ≥ s} are also
congruous for any s ∈ [0, 1). Indeed, assuming without loss of generality that An(x), Bn(y)
satisfy condition (i) of Definition 2.1, for all x ∈ A|Hn and all y ∈ B|Hn , then there exists
s0 > 0 such that

(
A|Hn

)+s0en ⊂ A,
(
B|Hn

)+s0en ⊂ B and A, B ⊂ [0, s0en]+Hn . Hence,
both f and g attain their maximum at s0 and vanish on (−∞, 0) ∪ (s0,∞), which implies
that their superlevel sets satisfy condition (i) of Definition 2.1 and thus are congruous.
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Therefore, we may apply Lemma 2.2 to get

μn
({t ∈ R : h(t) ≥ s}) ≥ (1 − λ)μn

({t ∈ R : f (t) ≥ s}) + λμn
({t ∈ R : g(t) ≥ s})

for any s ∈ [0, 1). This, together with Fubini’s theorem and the Cavalieri Principle

∫

R

ψ(x) dμn(x) =
∫ |ψ |∞

0
μn

({t ∈ R : ψ(t) ≥ s}) ds

for ψ = f , g, h, jointly with the fact that |h|∞ ≥ 1 = | f |∞ = |g|∞ (cf. (2.4)), allows us to
obtain

μ
(
(1 − λ)A + λB

) = c
∫

R

h(x) dμn(x)

≥ c

(
(1 − λ)

∫

R

f (x) dμn(x) + λ

∫

R

g(x) dμn(x)

)

= c

(
(1 − λ)

μ(A)

|μ̄(A(·))|∞
+ λ

μ(B)

|μ̄(B(·))|∞

)
.

And then, applying the (reverse) Hölder inequality (see e.g. [5, Theorem 1, page 178]),

a1b1 + a2b2 ≥ (
a p
1 + a p

2

)1/p (
bq1 + bq2

)1/q
,

with parameters p = 1/n and q = −1/(n − 1), and taking a1 = (1 − λ)1/pμ(A), a2 =
λ1/pμ(B), b1 = (1 − λ)1/q |μ̄(A(·))|−1∞ and b2 = λ1/q |μ̄(B(·))|−1∞ , we conclude that

μ
(
(1 − λ)A + λB

) ≥ (
(1 − λ)μ(A)1/n + λμ(B)1/n

)n
,

as desired. ��

3 A remark on an isoperimetric inequality

Given a set M ⊂ R
n , let posM and int M denote, respectively, the positive hull and

interior of M . Moreover, let ε1, . . . , ε2n denote the elements of {−1, 1}n . Then, setting
ε j = (ε

j
1 , . . . , ε

j
n ) for any j = 1, . . . , 2n , we write

Oj = pos{ε j
1e1, . . . , ε

j
nen}

for the corresponding orthant of Rn .
Along this section, we deal with certain sets contained in an orthogonal compact

box (which, for the sake of simplicity, will be assumed to be centered): fixing a box
P = ∏n

i=1[−αi , αi ], with αi > 0 for all i , we consider unions of orthants of uncondi-
tional compact convex sets ‘embedded’ in the corners of P . More precisely, such a set A
satisfies that, for all j = 1, . . . , 2n ,

A ∩ Oj = x j + (K j ∩ (−Oj )) (3.1)

for some unconditional compact convex set K j ⊂ int P (cf. Fig. 3), where x j =
(ε

j
1α1, . . . , ε

j
nαn) is the corresponding vertex of P . In the following, for the sake of brevity,

we will write A j = A ∩ Oj .
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Fig. 3 Union of orthants A j of unconditional compact convex sets (left) and the corresponding orthants of
balls x j + r j (Bn ∩ (−O j )) of the same measure (right)

As in the Euclidean setting, we will obtain an isoperimetric type inequality as a conse-
quence of (1.2). To this aim, we introduce some notation. Let

Wμ
1 (A; B) = 1

n
lim inf
t→0+

μ(A + t B) − μ(A)

t

be the first quermassintegral of A with respect to the set B associated to the measureμ. Here
we assume that A and B are measurable sets such that A + t B is also measurable for all
t ≥ 0.

In a similar way, and denoting by Bn the n-dimensional Euclidean (closed) unit ball, we
may define

μ+(A) = lim inf
t→0+

μ(A + t Bn) − μ(A)

t
,

the surface area measure associated to μ, i.e., its (lower) Minkowski content. Clearly,
μ+(A) = nWμ

1 (A; Bn). The relative Minkowski content of a set A ⊂ R
n with respect

to a second set � ⊂ R
n is defined by

μ+(A,�) = lim inf
t→0+

μ
(
(A + t Bn) ∩ �

) − μ(A ∩ �)

t
.

Moreover, given x ∈ R
n , we set

Mμ(x, A) = nμ(x + A) − d

dt

−∣∣∣∣
t=1

μ(x + t A),

provided that ((x, A), μ) is so that the above (left) derivative exists. When dealing with a
set A ⊂ R

n satisfying (3.1) for all j = 1, . . . , 2n , we also write Mμ(A) = ∑2n
j=1 M

μ
j (A j ),

where Mμ
j (A j ) = Mμ(x j , K j ∩ (−Oj )). We notice that, from the convexity of K j ∩ (−Oj )

and using Theorem 1.1, the function t �→ μ(x j + t(K j ∩ (−Oj )))
1/n is (increasing and)

concave on (0, 1] for any product measureμ in the conditions of the latter result. This implies
that the left derivative of μ(x j + t(K j ∩ (−Oj ))) at t = 1 (possibly infinite) exists (cf. [17,
Theorem 23.1]) and hence, for all j = 1, . . . , 2n , Mμ

j (A j ) (and so Mμ(A)) is well-defined.

Clearly, Mvol(A) = 0 for such a set A and thus this functional does not appear in the classical
isoperimetric inequality. For more information about this functional, we refer the reader to
[11,16] and the references therein.
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Now we show an isoperimetric type inequality for unions of orthants of unconditional
compact convex sets embedded in the corners of a fixed orthogonal box, in the setting of
product measures with quasi-convex densities. This a straightforward consequence of the
following result for (such) a sole orthant.

Theorem 3.1 Let μ = μ1 ⊗ · · · ⊗ μn be a product measure on R
n such that μi is the

measure given by dμi (x) = φi (x) dx, where φi : R −→ [0,∞) is quasi-convex with
φi (0) = minx∈R φi (x), for all i = 1, . . . , n.

Let P = ∏n
i=1[−αi , αi ], with αi > 0 for all i and let K ⊂ int P be a non-empty

unconditional compact convex set. Let A = x1 + (K ∩ (−O1)), where x1 = (α1, . . . , αn)

and O1 = pos{e1, . . . , en}. Then, for any r > 0 such that r Bn ⊂ int P,

rμ+(A, P) + Mμ(x1, K1 ∩ (−O1)) ≥ nμ(A)1−1/nμ
(
x1 + (r Bn ∩ (−O1))

)1/n
,

with equality if A = x1 + (r Bn ∩ (−O1)).

Following the same argument for any orthant A j of a non-empty set A ⊂ P satisfying
(3.1) for all j = 1, . . . , 2n , we get that, for any r1, . . . , r2n > 0 such that r j Bn ⊂ int P for
all j , we have

2n∑

j=1

(
r jμ

+(A j , P) + Mμ
j (A j )

)
≥ n

2n∑

j=1

μ(A j )
1−1/nμ

(
x j + (r j Bn ∩ (−Oj ))

)1/n
,

with equality if A j = x j + (r j Bn ∩ (−Oj )) for all j = 1, . . . , 2n .
The particular case r1 = · · · = r2n (=: r) of the latter inequality shows that

rμ+(A, P) + Mμ(A) ≥ n
2n∑

j=1

μ(A j )
1−1/nμ

(
x j + (r Bn ∩ (−Oj ))

)1/n
.

In other words: among all unions A of orthants of unconditional compact convex sets
embedded in the corners of a fixed centered orthogonal box P (i.e., satisfying (3.1) for
all j = 1, . . . , 2n) with predetermined measure μ(A j ) = μ(x j + (r Bn ∩ (−Oj )), (union
of orthants embedded in the corners of P of) Euclidean balls r Bn minimize the functional
rμ+(A, P) + Mμ(A).

The main idea of the proof we present here goes back to the classical proof of the
Minkowski first inequality that can be found in [20, Theorem 7.2.1]. We refer also the reader
to [16, Sect. 4] and the references therein.

Proof We consider L = r Bn and we denote by B = x1 + L−, where L− = L ∩ (−O1). In
the same way, we will write K− = K ∩ (−O1).

Notice that, for any ε > 0 such that K− + εL− ⊂ P , we have that x1 + K− + t1L− and
x1 + K− + t2L− are congruous for all t1, t2 ∈ [0, ε] (since each one-dimensional section
of them in the direction of ei , i = 1, . . . , n, satisfies condition (i) in Definition 2.1, with
maximum equal to αi ). Then, from the convexity of L− (and K−) and using Theorem 1.1,
the function t �→ μ(A + t L−)1/n is concave on [0, ε]. This implies that the right derivative
of μ(A+ t L−) at t = 0 (possibly infinite) exists (cf. [17, Theorem 23.1]). Similarly, the left
derivative of μ(x1 + t K−) at t = 1 exists.

Now, we consider the function f : [0, 1] −→ R≥0 given by

f (t) = μ
(
(1 − t)A + t B

)1/n − (
(1 − t)μ(A)1/n + tμ(B)1/n

)
.
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By Theorem 1.1 (and from the convexity of both K− and L−) f is concave (we notice that
the fact of being an unconditional set is closed under convex combinations) and, moreover,
f (0) = f (1) = 0. Thus, the right derivative of f at t = 0 exists and furthermore

d

dt

+∣∣∣∣
t=0

f (t) ≥ 0 (3.2)

with equality if and only if f (t) = 0 for all t ∈ [0, 1], i.e., if and only if (1.2) holds with
equality for all t ∈ [0, 1].

Now, since

d

dt

+∣∣∣∣
t=0

f (t) = 1

n
μ(A)(1/n)−1 d

dt

+∣∣∣∣
t=0

μ
(
(1 − t)A + t B

) + μ(A)1/n − μ(B)1/n,

we just must compute the right derivative at 0 of μ
(
(1 − t)A + t B

)
. Writing g(r , s) =

μ
(
x1 + r(K− + sL−)

)
, we have

d

dt

+∣∣∣∣
t=0

μ
(
(1 − t)A + t B

) = d

dt

+∣∣∣∣
t=0

g

(
1 − t,

t

1 − t

)

= − d

dt

−∣∣∣∣
t=1

μ(x1 + t K−) + d

dt

+∣∣∣∣
t=0

μ(A + t L−)

= Mμ(x1, K
−) − nμ(A) + nWμ

1 (A; L−),

and thus

d

dt

+∣∣∣∣
t=0

f (t) = 1

n
μ(A)(1/n)−1(Mμ(x1, K

−) + nWμ
1 (A; L−)

) − μ(B)1/n .

Hence, the latter identity, together with (3.2), gives

Wμ
1 (A; L−) + 1

n
Mμ(x1, K

−) ≥ μ(A)1−1/nμ(B)1/n,

with equality if A = B.
Finally, from the unconditionality of K− we clearly have that

(
(A+ t L)∩ P

) = A+ t L−,
which yields nWμ

1 (A; L−) = rμ+(A, P). Then, we have

rμ+(A, P) + Mμ(x1, K1 ∩ (−O1)) ≥ nμ(A)1−1/nμ
(
x1 + (r Bn)

−)1/n
,

with equality if A = x1 + (r Bn ∩ (−O1)). This concludes the proof. ��
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