ORIGINAL PAPER

On a Brunn–Minkowski inequality for measures with quasi-convex densities

Jesús Yepes Nicolás¹

Received: 8 October 2019 / Accepted: 9 April 2020 / Published online: 2 May 2020 © The Royal Academy of Sciences, Madrid 2020

Abstract

In this paper we prove that the classical Brunn–Minkowski inequality holds for product measures on the Euclidean space with quasi-convex densities when considering certain classes of sets that contain, among others, the complements (within a centered box) of unconditional sets. As a consequence, we derive an isoperimetric type inequality.

Keywords Brunn–Minkowski inequality · Quasi-convex density · Product measure · Isoperimetric inequality

Mathematics Subject Classification Primary 52A40 · 28A35; Secondary 26B25

1 Introduction

The Minkowski sum of two non-empty sets $A, B \subset \mathbb{R}^n$ is the classical vector addition of them: $A + B = \{a + b : a \in A, b \in B\}$. It is natural to wonder about the possibility of bounding the volume of the Minkowski sum of two sets in terms of their volumes; this is the statement of the *Brunn–Minkowski inequality* (for extensive and beautiful surveys on

Supported by MINECO/FEDER project MTM2015-65430-P and "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, 19901/GERM/15.

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

this inequality we refer the reader to [1,7]). One form of it asserts that if $\lambda \in (0,1)$ and A and B are non-empty measurable subsets of \mathbb{R}^n such that $(1-\lambda)A + \lambda B$ is also measurable then

$$\operatorname{vol}((1-\lambda)A + \lambda B)^{1/n} \ge (1-\lambda)\operatorname{vol}(A)^{1/n} + \lambda \operatorname{vol}(B)^{1/n}. \tag{1.1}$$

The Brunn–Minkowski inequality was generalized to different types of measures, including the cases of log-concave measures [10,15] and of p-concave measures (see e.g. [3,4]). It is interesting to note that it was proved by Borell [2,3] that such generalizations would require a p-concavity assumption on the density of the underlying measure (see (2.1) below for the precise definition). As a consequence of this approach (see also [21]), when dealing with arbitrary measurable sets and a Radon measure on \mathbb{R}^n , the (1/n)-form of the Brunn–Minkowski inequality (1.1) is only true, in general, for the volume (up to a constant). However, when considering some special families of sets (e.g. that of *unconditional sets*), the (1/n)-Brunn–Minkowski inequality holds for some types of measures, such as the standard Gaussian measure, which is given by

$$d\gamma_n(x) = \frac{1}{(2\pi)^{n/2}} e^{\frac{-|x|^2}{2}} dx$$

(see e.g. [8,11,12,14,16]). Furthermore, for the family of *C-coconvex sets* (complements of closed convex sets, of positive and finite volume, within a pointed closed convex cone with non-empty interior C), a "complemented" version of the Brunn–Minkowski inequality (1.1) holds for the volume (see [9,19]), namely

$$\operatorname{vol}(C \setminus ((1-\lambda)K + \lambda L))^{1/n} \le (1-\lambda)\operatorname{vol}(C \setminus K)^{1/n} + \lambda\operatorname{vol}(C \setminus L)^{1/n}$$

for all $\lambda \in (0, 1)$. And again, this (complemented) Brunn–Minkowski inequality can be also generalized for certain general measures (see [13]).

To complete the picture, one may ask about possible p-convexity conditions on the density of the underlying measure. Among others, what can be said about the measure v_n on \mathbb{R}^n given by

$$\mathrm{d}\nu_n(x) = e^{|x|^2} \mathrm{d}x,$$

whose density is log-convex? In [13], when dealing with measures involving certain log-convex functions as part of their densities, the authors showed another type of complemented Brunn–Minkowski inequality. Nevertheless, not much more seems to be known regarding Brunn–Minkowski inequalities for log-convex densities or, more generally, quasi-convex densities (see (2.2) below for the precise definition).

To this regard, and inspired by the above-mentioned (complemented) Brunn–Minkowski inequalities, it is natural to wonder whether one may find certain classes of sets for which a measure on \mathbb{R}^n of the kind of ν_n satisfies the (1/n)-form of the Brunn–Minkowski inequality. Here we give a positive answer to this question, by showing that it is enough to consider *congruous sets* (see Definition 2.1): a family that contains, among others, the complements of unconditional sets within a centered box (cf. Example 2.1). This is the content of the following result, in the more general setting of product measures with quasi-convex densities (with minimum at the origin).

Theorem 1.1 Let $\mu = \mu_1 \otimes \cdots \otimes \mu_n$ be a product measure on \mathbb{R}^n such that μ_i is the measure given by $d\mu_i(x) = \phi_i(x) dx$, where $\phi_i : \mathbb{R} \longrightarrow [0, \infty)$ is quasi-convex with $\phi_i(0) = \min_{x \in \mathbb{R}} \phi_i(x)$, for all $i = 1, \ldots, n$.

Let $\lambda \in (0, 1)$ and let $A, B \subset \mathbb{R}^n$ be non-empty measurable congruous sets such that $(1 - \lambda)A + \lambda B$ is also measurable. Then

$$\mu((1-\lambda)A + \lambda B)^{1/n} \ge (1-\lambda)\mu(A)^{1/n} + \lambda \mu(B)^{1/n}.$$
 (1.2)

Section 2 is mainly devoted to showing this result. Finally, in Sect. 3, we derive an isoperimetric type inequality as a consequence of (1.2).

2 Proof of the main result

2.1 Background

We recall that a function $\phi: \mathbb{R}^n \longrightarrow [0, \infty)$ is p-concave, for $p \in \mathbb{R} \cup \{\pm \infty\}$, if

$$\phi((1-\lambda)x + \lambda y) \ge M_p(\phi(x), \phi(y), \lambda) \tag{2.1}$$

for all $x, y \in \mathbb{R}^n$ such that $\phi(x)\phi(y) > 0$ and any $\lambda \in (0, 1)$. Here M_p denotes the *p-mean* of two non-negative numbers a, b:

$$M_p(a,b,\lambda) = \begin{cases} \left((1-\lambda)a^p + \lambda b^p \right)^{1/p}, & \text{if } p \neq 0, \pm \infty, \\ a^{1-\lambda}b^{\lambda} & \text{if } p = 0, \\ \max\{a,b\} & \text{if } p = \infty, \\ \min\{a,b\} & \text{if } p = -\infty. \end{cases}$$

A 0-concave function is usually called *log-concave* whereas a $(-\infty)$ -concave function is called *quasi-concave*. Quasi-concavity is equivalent to the fact that the superlevel sets $\{x \in \mathbb{R}^n : \phi(x) > t\}$ are convex for all $t \in [0, 1]$.

On the other side of the coin, one is led to *p*-convex functions, where $p \in \mathbb{R} \cup \{\pm \infty\}$, i.e., those functions satisfying

$$\phi((1-\lambda)x + \lambda y) \le M_p(\phi(x), \phi(y), \lambda)$$
 (2.2)

for all $x, y \in \mathbb{R}^n$ and all $\lambda \in (0, 1)$. Again, 0-convex functions are referred to as *log-convex* whereas ∞ -convex functions are called *quasi-convex*.

Now we define a new class of (pairs of) sets that will play a relevant role throughout this paper.

Definition 2.1 Let $A, B \subset \mathbb{R}^n$ be non-empty bounded sets. For n = 1, we say that A and B are *congruous* if one of the following assertions holds.

- (i) $A \cap (-\infty, 0)$, $B \cap (-\infty, 0) = \emptyset$ and $\max(A) = \max(B)$.
- (ii) $A \cap (0, \infty)$, $B \cap (0, \infty) = \emptyset$ and $\min(A) = \min(B)$.
- (iii) $A \cap (0, \infty)$, $B \cap (0, \infty)$, $A \cap (-\infty, 0)$, $B \cap (-\infty, 0) \neq \emptyset$, $\min(A) = \min(B)$ and $\max(A) = \max(B)$.

For $n \ge 2$, we say that A and B are *congruous* if, for any i = 1, ..., n, the sets $A_i(x)$ and $B_i(y)$ are congruous for all $x \in A | H_i$ and all $y \in B | H_i$.

S

We notice that the fact that, for any i = 1, ..., n, the sets $A_i(x)$ and $B_i(y)$ are congruous (for all $x \in A | H_i$ and all $y \in B | H_i$) does not mean that the same condition in Definition 2.1 holds for all i (see Fig. 1; there $A_2(x)$, $B_2(x')$ satisfy condition (iii) of Definition 2.1, for all

122 Page 4 of 11 J. Yepes Nicolás

Fig. 1 The congruous sets A (in gray) and B (the box), with the sections $A_2(x)$, $A_1(y)$ for given $x \in A|H_2$, $y \in A|H_1$

Fig. 2 A set A (in gray) contained in a centered box P such that $P \setminus A$ is unconditional

 $x \in A|H_2$ and all $x' \in B|H_2$, whereas $A_1(y)$, $B_1(y')$ fulfil condition (i), for any $y \in A|H_1$ and any $y' \in B|H_1$).

Unconditional convex sets are of particular interest in convexity, also regarding Brunn–Minkowski type inequalities (see e.g. [11,18]). A subset $A \subset \mathbb{R}^n$ is said to be unconditional (not necessarily convex) if for every $(x_1, \ldots, x_n) \in A$ and every $(\epsilon_1, \ldots, \epsilon_n) \in [-1, 1]^n$ one has $(\epsilon_1 x_1, \ldots, \epsilon_n x_n) \in A$. As announced before, the family of congruous sets contains certain complements of unconditional sets:

Example 2.1 Let $P = \prod_{i=1}^n [-\alpha_i, \alpha_i]$, $\alpha_i > 0$ for i = 1, ..., n, be a centered orthogonal compact box and let $A, B \subset P$ be non-empty compact sets such that $P \setminus A, P \setminus B$ are unconditional. Then A and B are congruous. Indeed, from the unconditionality of $P \setminus A$ and $P \setminus B$, we have that $\max(A_i(x)) = \max(B_i(y)) = \alpha_i$ and $\min(A_i(x)) = \min(B_i(y)) = -\alpha_i$, for all $x \in A \mid H_i$ and all $y \in B \mid H_i$; thus $A_i(x)$ and $B_i(y)$ are congruous for any i = 1, ..., n since they satisfy condition (iii) in Definition 2.1 (see Fig. 2).

The following result is well-known in the literature (see e.g. the one-dimensional case of [6, Theorem 4.1] and the references therein. Regarding its statement, and following the notation used in [6], we notice that for a quasi-concave function $\phi : \mathbb{R} \longrightarrow [0, \infty)$ we have $(1 - \lambda)\phi\chi_A\star_{-\infty}\lambda\phi\chi_B = \phi\chi_{(1-\lambda)A+\lambda B}$, where χ_M denotes the characteristic function of the set $M \subset \mathbb{R}$).

Lemma 2.1 Let μ be the measure on \mathbb{R} given by $d\mu(x) = \phi(x)dx$, where $\phi: \mathbb{R} \longrightarrow [0, \infty)$ is quasi-concave with $\phi(0) = \max_{x \in \mathbb{R}} \phi(x)$. Let $\lambda \in (0, 1)$ and let $A, B \subset \mathbb{R}$ be measurable sets with $0 \in A \cap B$. Then

$$\mu(C) \ge (1 - \lambda)\mu(A) + \lambda\mu(B)$$

for any measurable set C such that $C \supset (1 - \lambda)A + \lambda B$.

As a consequence of such a Brunn–Minkowski inequality for quasi-concave densities on \mathbb{R} , we will obtain the one-dimensional Brunn–Minkowski inequality for measures associated to quasi-convex functions when working with congruous sets. This is the content of Lemma 2.2.

2.2 Proof

We start this subsection by showing the one-dimensional case of our main result, Theorem 1.1.

Lemma 2.2 Let μ be the measure on \mathbb{R} given by $d\mu(x) = \phi(x)dx$, where $\phi: \mathbb{R} \longrightarrow [0, \infty)$ is quasi-convex with $\phi(0) = \min_{x \in \mathbb{R}} \phi(x)$. Let $\lambda \in (0, 1)$ and let $A, B \subset \mathbb{R}$ be non-empty measurable congruous sets. Then

$$\mu(C) \ge (1 - \lambda)\mu(A) + \lambda\mu(B)$$

for any non-empty measurable set C such that $C \supset (1 - \lambda)A + \lambda B$.

Proof Let A and B satisfy condition (iii) in Definition 2.1. Assuming that the result is true if either (i) or (ii) (of Definition 2.1) holds, it is enough to consider A^+ , A^- , B^+ , B^- , C^+ , C^- where, for any $M \subset \mathbb{R}$, the sets M^+ and M^- stand for $M^+ = M \cap (0, \infty)$ and $M^- = M \cap (-\infty, 0)$. Indeed, applying the result to the sets A^+ , B^+ , C^+ and A^- , B^- , C^- , respectively, we have

$$(1 - \lambda)\mu(A) + \lambda\mu(B) = (1 - \lambda)\mu(A^{+}) + \lambda\mu(B^{+}) + (1 - \lambda)\mu(A^{-}) + \lambda\mu(B^{-})$$
$$< \mu(C^{+}) + \mu(C^{-}) = \mu(C).$$

Moreover, we note that the function $\bar{\phi}:\mathbb{R}\longrightarrow [0,\infty)$ given by $\bar{\phi}(x)=\phi(-x)$ is quasiconvex (and, clearly, $\bar{\phi}(0)=\min_{x\in\mathbb{R}}\bar{\phi}(x)$). Thus, considering if necessary $\bar{A}=-A$, $\bar{B}=-B$, $\bar{C}=-C$, and the measure $\bar{\mu}$ with density $\bar{\phi}$, it is enough to prove the result for congruous sets satisfying (i). Now, the quasi-convexity of ϕ implies that $\phi(x)\leq \max\{\phi(0),\phi(y)\}=\phi(y)$ for any 0< x< y. This shows that ϕ is increasing on $(0,\infty)$ and then $\phi\cdot\chi_{(0,\infty)}$ is quasi-concave. Thus, setting $x_0=\max(A)=\max(B)$, the result follows from applying Lemma 2.1 to the function $\psi:\mathbb{R}\longrightarrow [0,\infty)$ given by $\psi(x)=\phi(x+x_0)\cdot\chi_{(-\infty,0]}(x)$ and the sets $A-x_0,B-x_0,C-x_0$.

As stated in Theorem 1.1, the above result extends to dimension n. The approach we follow here is based on the underlying idea of [16, Theorem 1.3], and it goes back to some classical proofs of functional versions of the Brunn–Minkowski inequality (such as the $Pr\acute{e}kopa-Leindler$ inequality) and other related results.

Proof of Theorem 1.1 For the sake of brevity we write $C = (1 - \lambda)A + \lambda B$ and, given $t_1, t_2 \in \mathbb{R}, t_\lambda = (1 - \lambda)t_1 + \lambda t_2$. We also set $\bar{\mu} = \mu_1 \otimes \mu_2 \otimes \cdots \otimes \mu_{n-1}$ (i.e., $\mu = \bar{\mu} \otimes \mu_n$). Since μ is inner regular (i.e., $\mu(A) = \sup\{\mu(K) : K \subset A, K \text{ compact}\}$ for any measurable set A), we may assume, without loss of generality, that A and B are compact. Indeed, given sequences of compact sets $(K_n)_{n \in \mathbb{N}}$, $(L_n)_{n \in \mathbb{N}}$ that approximate from inside the congruous sets A and B, respectively, one may clearly consider certain sequences of congruous compact sets $(K'_n)_{n \in \mathbb{N}}$, $(L'_n)_{n \in \mathbb{N}}$ such that $\mu(K'_n) = \mu(K_n)$ and $\mu(L'_n) = \mu(L_n)$, for all $n \in \mathbb{N}$. In fact, it is enough to add to K_n and L_n , respectively, the projections $(A|H_i)$ and $(B|H_i)$, located at the appropriate height(s) in the direction of e_i , for $i = 1, \ldots, n$.

Moreover, we observe that we may assume that $\mu(A)\mu(B) > 0$. Indeed, the case in which one of the sets, say B, has measure zero whereas the other one, A, has positive measure can

122 Page 6 of 11 J. Yepes Nicolás

be obtained (cf. [16, Proposition 2.7]) by applying the positive measures case to A and the following set: let P be an orthogonal compact box congruous with B (and so, with A) and let C_m be a decreasing sequence of (unions of) boxes, which are congruous with B, that shrinks (as $m \to \infty$) to the subset of vertices of P that belong to B; then we take $B_m = B \cup C_m$, which is also congruous with A for all $m \in \mathbb{N}$. We note that this congruence ensures that the points in the limit case belong to B, and hence $\bigcap_{m \in \mathbb{N}} \left((1 - \lambda)A + \lambda B_m \right) = (1 - \lambda)A + \lambda B$. Taking into account that

$$\mu\left(\bigcap_{m\in\mathbb{N}}\left((1-\lambda)A+\lambda B_m\right)\right)=\lim_m\mu\left((1-\lambda)A+\lambda B_m\right),$$

we get (1.2).

We then show the result by (finite) induction on the dimension n. The case n=1 is just Lemma 2.2. So, we suppose that $n \ge 2$ and that the inequality is true for dimension n-1. The sets $A(t_1)$, $B(t_2)$, for $t_1, t_2 \in \mathbb{R}$ such that $t_1 e_n \in A | H_n^{\perp}, t_2 e_n \in B | H_n^{\perp}$, are clearly congruous and thus, applying the induction hypothesis (i.e., (1.2) in \mathbb{R}^{n-1} for $\bar{\mu}$) together with the fact that $C(t_{\lambda}) \supset (1-\lambda)A(t_1) + \lambda B(t_2)$, we have

$$\bar{\mu}(C(t_{\lambda})) \ge \left((1 - \lambda)\bar{\mu}(A(t_1))^{1/(n-1)} + \lambda\bar{\mu}(B(t_2))^{1/(n-1)} \right)^{n-1}.$$
 (2.3)

Now, we take the non-negative functions $f, g, h : \mathbb{R} \longrightarrow [0, \infty)$ given by

$$f(t) = \frac{\bar{\mu}(A(t))}{|\bar{\mu}(A(\cdot))|_{\infty}}, \ g(t) = \frac{\bar{\mu}(B(t))}{|\bar{\mu}(B(\cdot))|_{\infty}}, \ h(t) = \frac{\bar{\mu}(C(t))}{c},$$

where

$$c = \left((1-\lambda) \left| \bar{\mu}(A(\cdot)) \right|_{\infty}^{1/(n-1)} + \lambda \left| \bar{\mu}(B(\cdot)) \right|_{\infty}^{1/(n-1)} \right)^{n-1}.$$

We notice that the above functions are well-defined: denominators are positive since $\mu(A)\mu(B) > 0$, and they are finite because $A|H_{n-1}$ and $B|H_{n-1}$ are compact sets and $\bar{\mu}$ is locally finite. Furthermore, $\sup_{t \in \mathbb{R}} f(t) = \sup_{t \in \mathbb{R}} g(t) = 1$.

Using (2.3), and setting
$$\theta = \frac{\lambda |\bar{\mu}(B(\cdot))|_{\infty}^{1/(n-1)}}{c^{1/(n-1)}} \in (0, 1)$$
, we get

$$\bar{\mu}(C(t_{\lambda})) \ge \left((1 - \lambda)\bar{\mu}(A(t_{1}))^{1/(n-1)} + \lambda\bar{\mu}(B(t_{2}))^{1/(n-1)} \right)^{n-1}$$

$$= c \left((1 - \theta)f(t_{1})^{1/(n-1)} + \theta g(t_{2})^{1/(n-1)} \right)^{n-1}$$

$$\ge c \min\{f(t_{1}), g(t_{2})\}.$$

This shows that $h((1 - \lambda)t_1 + \lambda t_2) \ge \min\{f(t_1), g(t_2)\}\$ for any $t_1, t_2 \in \mathbb{R}$, which clearly implies that

$$\{t \in \mathbb{R} : h(t) > s\} \supset (1 - \lambda)\{t \in \mathbb{R} : f(t) > s\} + \lambda\{t \in \mathbb{R} : g(t) > s\}$$
 (2.4)

for all $s \in [0, 1)$. Moreover, since $A_n(x)$ and $B_n(y)$ are congruous for all $x \in A | H_n$ and all $y \in B | H_n$ then the superlevel sets $\{t \in \mathbb{R} : f(t) \ge s\}$ and $\{t \in \mathbb{R} : g(t) \ge s\}$ are also congruous for any $s \in [0, 1)$. Indeed, assuming without loss of generality that $A_n(x)$, $B_n(y)$ satisfy condition (i) of Definition 2.1, for all $x \in A | H_n$ and all $y \in B | H_n$, then there exists $s_0 > 0$ such that $(A | H_n) + s_0 e_n \subset A$, $(B | H_n) + s_0 e_n \subset B$ and $A, B \subset [0, s_0 e_n] + H_n$. Hence, both f and g attain their maximum at s_0 and vanish on $(-\infty, 0) \cup (s_0, \infty)$, which implies that their superlevel sets satisfy condition (i) of Definition 2.1 and thus are congruous.

Therefore, we may apply Lemma 2.2 to get

$$\mu_n(\lbrace t \in \mathbb{R} : h(t) \ge s \rbrace) \ge (1 - \lambda)\mu_n(\lbrace t \in \mathbb{R} : f(t) \ge s \rbrace) + \lambda\mu_n(\lbrace t \in \mathbb{R} : g(t) \ge s \rbrace)$$

for any $s \in [0, 1)$. This, together with Fubini's theorem and the Cavalieri Principle

$$\int_{\mathbb{R}} \psi(x) \, \mathrm{d}\mu_n(x) = \int_0^{|\psi|_{\infty}} \mu_n \big(\{ t \in \mathbb{R} : \psi(t) \ge s \} \big) \, \mathrm{d}s$$

for $\psi = f, g, h$, jointly with the fact that $|h|_{\infty} \ge 1 = |f|_{\infty} = |g|_{\infty}$ (cf. (2.4)), allows us to obtain

$$\mu((1-\lambda)A + \lambda B) = c \int_{\mathbb{R}} h(x) \, d\mu_n(x)$$

$$\geq c \left((1-\lambda) \int_{\mathbb{R}} f(x) \, d\mu_n(x) + \lambda \int_{\mathbb{R}} g(x) \, d\mu_n(x) \right)$$

$$= c \left((1-\lambda) \frac{\mu(A)}{|\bar{\mu}(A(\cdot))|_{\infty}} + \lambda \frac{\mu(B)}{|\bar{\mu}(B(\cdot))|_{\infty}} \right).$$

And then, applying the (reverse) Hölder inequality (see e.g. [5, Theorem 1, page 178]),

$$a_1b_1 + a_2b_2 \ge (a_1^p + a_2^p)^{1/p} (b_1^q + b_2^q)^{1/q},$$

with parameters p = 1/n and q = -1/(n-1), and taking $a_1 = (1-\lambda)^{1/p}\mu(A)$, $a_2 = \lambda^{1/p}\mu(B)$, $b_1 = (1-\lambda)^{1/q} |\bar{\mu}(A(\cdot))|_{\infty}^{-1}$ and $b_2 = \lambda^{1/q} |\bar{\mu}(B(\cdot))|_{\infty}^{-1}$, we conclude that

$$\mu \Big((1 - \lambda)A + \lambda B \Big) \ge \Big((1 - \lambda)\mu(A)^{1/n} + \lambda \mu(B)^{1/n} \Big)^n,$$

as desired.

3 A remark on an isoperimetric inequality

Given a set $M \subset \mathbb{R}^n$, let pos M and int M denote, respectively, the positive hull and interior of M. Moreover, let $\varepsilon_1, \ldots, \varepsilon_{2^n}$ denote the elements of $\{-1, 1\}^n$. Then, setting $\varepsilon_j = (\varepsilon_1^j, \ldots, \varepsilon_n^j)$ for any $j = 1, \ldots, 2^n$, we write

$$O_j = pos\{\varepsilon_1^j \mathbf{e}_1, \dots, \varepsilon_n^j \mathbf{e}_n\}$$

for the corresponding orthant of \mathbb{R}^n .

Along this section, we deal with certain sets contained in an orthogonal compact box (which, for the sake of simplicity, will be assumed to be centered): fixing a box $P = \prod_{i=1}^{n} [-\alpha_i, \alpha_i]$, with $\alpha_i > 0$ for all i, we consider unions of orthants of unconditional compact convex sets 'embedded' in the corners of P. More precisely, such a set A satisfies that, for all $j = 1, \ldots, 2^n$,

$$A \cap O_j = x_j + (K_j \cap (-O_j)) \tag{3.1}$$

for some unconditional compact convex set $K_j \subset \text{int } P$ (cf. Fig. 3), where $x_j = (\varepsilon_1^j \alpha_1, \ldots, \varepsilon_n^j \alpha_n)$ is the corresponding vertex of P. In the following, for the sake of brevity, we will write $A_j = A \cap O_j$.

122 Page 8 of 11 J. Yepes Nicolás

Fig. 3 Union of orthants A_j of unconditional compact convex sets (left) and the corresponding orthants of balls $x_j + r_j (B_n \cap (-O_j))$ of the same measure (right)

As in the Euclidean setting, we will obtain an isoperimetric type inequality as a consequence of (1.2). To this aim, we introduce some notation. Let

$$W_1^{\mu}(A; B) = \frac{1}{n} \liminf_{t \to 0^+} \frac{\mu(A + tB) - \mu(A)}{t}$$

be the first *quermassintegral* of A with respect to the set B associated to the measure μ . Here we assume that A and B are measurable sets such that A + tB is also measurable for all t > 0.

In a similar way, and denoting by B_n the n-dimensional Euclidean (closed) unit ball, we may define

$$\mu^{+}(A) = \liminf_{t \to 0^{+}} \frac{\mu(A + tB_n) - \mu(A)}{t},$$

the surface area measure associated to μ , i.e., its (lower) Minkowski content. Clearly, $\mu^+(A) = n W_1^{\mu}(A; B_n)$. The relative Minkowski content of a set $A \subset \mathbb{R}^n$ with respect to a second set $\Omega \subset \mathbb{R}^n$ is defined by

$$\mu^{+}(A,\Omega) = \liminf_{t \to 0^{+}} \frac{\mu((A+tB_n) \cap \Omega) - \mu(A \cap \Omega)}{t}.$$

Moreover, given $x \in \mathbb{R}^n$, we set

$$M^{\mu}(x, A) = n\mu(x + A) - \frac{d^{-}}{dt}\Big|_{t=1} \mu(x + tA),$$

provided that $((x, A), \mu)$ is so that the above (left) derivative exists. When dealing with a set $A \subset \mathbb{R}^n$ satisfying (3.1) for all $j=1,\ldots,2^n$, we also write $M^\mu(A)=\sum_{j=1}^{2^n}M_j^\mu(A_j)$, where $M_j^\mu(A_j)=M^\mu(x_j,K_j\cap(-O_j))$. We notice that, from the convexity of $K_j\cap(-O_j)$ and using Theorem 1.1, the function $t\mapsto \mu(x_j+t(K_j\cap(-O_j)))^{1/n}$ is (increasing and) concave on (0, 1] for any product measure μ in the conditions of the latter result. This implies that the left derivative of $\mu(x_j+t(K_j\cap(-O_j)))$ at t=1 (possibly infinite) exists (cf. [17, Theorem 23.1]) and hence, for all $j=1,\ldots,2^n,M_j^\mu(A_j)$ (and so $M^\mu(A)$) is well-defined. Clearly, $M^{\mathrm{vol}}(A)=0$ for such a set A and thus this functional does not appear in the classical isoperimetric inequality. For more information about this functional, we refer the reader to [11,16] and the references therein.

Now we show an isoperimetric type inequality for unions of orthants of unconditional compact convex sets embedded in the corners of a fixed orthogonal box, in the setting of product measures with quasi-convex densities. This a straightforward consequence of the following result for (such) a sole orthant.

Theorem 3.1 Let $\mu = \mu_1 \otimes \cdots \otimes \mu_n$ be a product measure on \mathbb{R}^n such that μ_i is the measure given by $d\mu_i(x) = \phi_i(x) dx$, where $\phi_i : \mathbb{R} \longrightarrow [0, \infty)$ is quasi-convex with $\phi_i(0) = \min_{x \in \mathbb{R}} \phi_i(x)$, for all $i = 1, \ldots, n$.

Let $P = \prod_{i=1}^{n} [-\alpha_i, \alpha_i]$, with $\alpha_i > 0$ for all i and let $K \subset \text{int } P$ be a non-empty unconditional compact convex set. Let $A = x_1 + (K \cap (-O_1))$, where $x_1 = (\alpha_1, \dots, \alpha_n)$ and $O_1 = \text{pos}\{e_1, \dots, e_n\}$. Then, for any r > 0 such that $rB_n \subset \text{int } P$,

$$r\mu^+(A, P) + M^\mu(x_1, K_1 \cap (-O_1)) \ge n\mu(A)^{1-1/n}\mu(x_1 + (rB_n \cap (-O_1)))^{1/n},$$

with equality if $A = x_1 + (rB_n \cap (-O_1))$.

Following the same argument for any orthant A_j of a non-empty set $A \subset P$ satisfying (3.1) for all $j = 1, ..., 2^n$, we get that, for any $r_1, ..., r_{2^n} > 0$ such that $r_j B_n \subset \text{int } P$ for all j, we have

$$\sum_{j=1}^{2^n} \left(r_j \mu^+(A_j, P) + M_j^{\mu}(A_j) \right) \ge n \sum_{j=1}^{2^n} \mu(A_j)^{1-1/n} \mu \left(x_j + (r_j B_n \cap (-O_j)) \right)^{1/n},$$

with equality if $A_j = x_j + (r_j B_n \cap (-O_j))$ for all $j = 1, ..., 2^n$.

The particular case $r_1 = \cdots = r_{2^n} (=: r)$ of the latter inequality shows that

$$r\mu^+(A, P) + M^\mu(A) \ge n \sum_{j=1}^{2^n} \mu(A_j)^{1-1/n} \mu (x_j + (rB_n \cap (-O_j)))^{1/n}.$$

In other words: among all unions A of orthants of unconditional compact convex sets embedded in the corners of a fixed centered orthogonal box P (i.e., satisfying (3.1) for all $j = 1, ..., 2^n$) with predetermined measure $\mu(A_j) = \mu(x_j + (rB_n \cap (-O_j)))$, (union of orthants embedded in the corners of P of) Euclidean balls rB_n minimize the functional $r\mu^+(A, P) + M^\mu(A)$.

The main idea of the proof we present here goes back to the classical proof of the Minkowski first inequality that can be found in [20, Theorem 7.2.1]. We refer also the reader to [16, Sect. 4] and the references therein.

Proof We consider $L = rB_n$ and we denote by $B = x_1 + L^-$, where $L^- = L \cap (-O_1)$. In the same way, we will write $K^- = K \cap (-O_1)$.

Notice that, for any $\epsilon > 0$ such that $K^- + \epsilon L^- \subset P$, we have that $x_1 + K^- + t_1 L^-$ and $x_1 + K^- + t_2 L^-$ are congruous for all $t_1, t_2 \in [0, \epsilon]$ (since each one-dimensional section of them in the direction of e_i , $i = 1, \ldots, n$, satisfies condition (i) in Definition 2.1, with maximum equal to α_i). Then, from the convexity of L^- (and K^-) and using Theorem 1.1, the function $t \mapsto \mu(A + tL^-)^{1/n}$ is concave on $[0, \epsilon]$. This implies that the right derivative of $\mu(A + tL^-)$ at t = 0 (possibly infinite) exists (cf. [17, Theorem 23.1]). Similarly, the left derivative of $\mu(x_1 + tK^-)$ at t = 1 exists.

Now, we consider the function $f:[0,1] \longrightarrow \mathbb{R}_{>0}$ given by

$$f(t) = \mu ((1-t)A + tB)^{1/n} - ((1-t)\mu(A)^{1/n} + t\mu(B)^{1/n}).$$

122 Page 10 of 11 J. Yepes Nicolás

By Theorem 1.1 (and from the convexity of both K^- and L^-) f is concave (we notice that the fact of being an unconditional set is closed under convex combinations) and, moreover, f(0) = f(1) = 0. Thus, the right derivative of f at t = 0 exists and furthermore

$$\frac{\mathrm{d}^+}{\mathrm{d}t}\bigg|_{t=0} f(t) \ge 0 \tag{3.2}$$

with equality if and only if f(t) = 0 for all $t \in [0, 1]$, i.e., if and only if (1.2) holds with equality for all $t \in [0, 1]$.

Now, since

$$\frac{\mathrm{d}^+}{\mathrm{d}t}\bigg|_{t=0} f(t) = \frac{1}{n} \mu(A)^{(1/n)-1} \frac{\mathrm{d}^+}{\mathrm{d}t}\bigg|_{t=0} \mu((1-t)A + tB) + \mu(A)^{1/n} - \mu(B)^{1/n},$$

we just must compute the right derivative at 0 of $\mu((1-t)A + tB)$. Writing $g(r,s) = \mu(x_1 + r(K^- + sL^-))$, we have

$$\begin{aligned} \frac{d^{+}}{dt} \Big|_{t=0} \mu \Big((1-t)A + tB \Big) &= \frac{d^{+}}{dt} \Big|_{t=0} g \left(1 - t, \frac{t}{1-t} \right) \\ &= -\frac{d^{-}}{dt} \Big|_{t=1} \mu (x_{1} + tK^{-}) + \frac{d^{+}}{dt} \Big|_{t=0} \mu (A + tL^{-}) \\ &= M^{\mu}(x_{1}, K^{-}) - n\mu(A) + nW^{\mu}_{\mu}(A; L^{-}). \end{aligned}$$

and thus

$$\frac{\mathrm{d}^+}{\mathrm{d}t}\bigg|_{t=0} f(t) = \frac{1}{n} \mu(A)^{(1/n)-1} \big(M^\mu(x_1, K^-) + n \mathrm{W}_1^\mu(A; L^-) \big) - \mu(B)^{1/n}.$$

Hence, the latter identity, together with (3.2), gives

$$W_1^{\mu}(A; L^-) + \frac{1}{n} M^{\mu}(x_1, K^-) \ge \mu(A)^{1-1/n} \mu(B)^{1/n},$$

with equality if A = B.

Finally, from the unconditionality of K^- we clearly have that $((A+tL)\cap P)=A+tL^-$, which yields $nW_1^{\mu}(A;L^-)=r\mu^+(A,P)$. Then, we have

$$r\mu^+(A, P) + M^{\mu}(x_1, K_1 \cap (-O_1)) \ge n\mu(A)^{1-1/n}\mu(x_1 + (rB_n)^-)^{1/n}$$

with equality if $A = x_1 + (rB_n \cap (-O_1))$. This concludes the proof.

Acknowledgements I would like to thank the anonymous referees for their very valuable comments and remarks which have allowed me to improve the presentation of this work. I also thank Prof. M. A. Hernández Cifre for carefully reading the manuscript and her very helpful suggestions during the preparation of it.

References

- Barthe, F.: Autour de l'inégalité de Brunn–Minkowski. Ann. Fac. Sci. Toulouse Math. (6) 12(2), 127–178 (2003)
- 2. Borell, C.: Convex measures on locally convex spaces. Ark. Mat. 12, 239-252 (1974)
- 3. Borell, C.: Convex set functions in d-space. Period. Math. Hungar. 6(2), 111–136 (1975)
- Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

- Bullen, P.S.: Handbook of means and their inequalities, Mathematics and its Applications vol. 560, Revised from the 1988 original, Kluwer Academic Publishers Group, Dordrecht (2003)
- Colesanti, A., Saorín Gómez, E., Yepes Nicolás, J.: On a linear refinement of the Prékopa–Leindler Inequality. Can. J. Math. 68(4), 762–783 (2016)
- 7. Gardner, R.J.: The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 39(3), 355-405 (2002)
- Gardner, R.J., Zvavitch, A.: Gaussian Brunn–Minkowski inequalities. Trans. Am. Math. Soc. 362(10), 5333–5353 (2010)
- Khovanskii, A., Timorin, V.: On the theory of coconvex bodies. Discrete Comput. Geom. 52(4), 806–823 (2014)
- Leindler, L.: On a certain converse of Hölder's inequality II. Acta Sci. Math. (Szeged) 33(3–4), 217–223 (1972)
- Livshyts, G., Marsiglietti, A., Nayar, P., Zvavitch, A.: On the Brunn–Minkowski inequality for general measures with applications to new isoperimetric-type inequalities. Trans. Am. Math. Soc. 369(12), 8725– 8742 (2017)
- Marsiglietti, A.: On the improvement of concavity of convex measures. Proc. Am. Math. Soc. 144(2), 775–786 (2016)
- Milman, E., Rotem, L.: Complemented Brunn–Minkowski inequalities for homogeneous and non-homogeneous measures. Adv. Math. 262, 867–908 (2014)
- Nayar, P., Tkocz, T.: A note on a Brunn–Minkowski inequality for the Gaussian measure. Proc. Am. Math. Soc. 141, 4027–4030 (2013)
- Prékopa, A.: Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged) 32, 301–315 (1971)
- Ritoré, M., Yepes Nicolás, J.: Brunn–Minkowski inequalities in product metric measure spaces. Adv. Math. 325, 824–863 (2018)
- 17. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
- Saroglou, C.: Remarks on the conjectured log-Brunn–Minkowski inequality. Geom. Dedicata. 177(1), 353–365 (2015)
- Schneider, R.: A Brunn–Minkowski theory for coconvex sets of finite volume. Adv. Math. 332, 199–234 (2018)
- Schneider, R.: Convex bodies: the Brunn-Minkowski theory, 2nd edn. In: Encyclopedia of Mathematics and its Applications, vol. 151. Cambridge: Cambridge University Press (2014)
- Yepes Nicolás, J.: Characterizing the volume via a Brunn–Minkowski type inequality. Analytic aspects of convexity, pp. 103–120. Springer INdAM Ser., 25. Cham: Springer (2018)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

