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Abstract
In this paper, we investigate the Bohr radius for K -quasiregular sense-preserving harmonic
mappings f = h + g in the unit disk D such that the translated analytic part h(z) − h(0) is
quasi-subordinate to some analytic function. The main aim of this article is to extend and to
establish sharp versions of four recent theorems by Liu and Ponnusamy (Bull Malays Math
Sci Soc 42:2151–2168, 2019) and, in particular, we settle affirmatively the two conjectures
proposed by them. Furthermore, we establish two refined versions of Bohr’s inequalities and
determine the Bohr radius for the derivatives of analytic functions associated with quasi-
subordination.

Keywords Bohr radius · Analytic functions · Harmonic mappings · Convex functions ·
Subordination · Quasi-subordination · K -quasiregular mappings

Mathematics Subject Classification 30A10 · 30C45 · 30C62; Secondary: 30C75

1 Introduction

Throughout we let B denote the class of all analytic functions ω in the unit disk D = {z ∈
C : |z| < 1} such that |ω(z)| ≤ 1 for all z ∈ D, and let B0 = {ω ∈ B : ω(0) = 0}.
Bohr’s inequality says that if f ∈ B and f (z) = ∑∞

n=0 anz
n , then, for the majorant series

M f (r) = ∑∞
k=0 |ak |rk of f , we have
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M f0(r) =
∞∑

k=1

|ak |rk ≤ 1 − |a0| = dist( f (0), ∂D)

for all z ∈ D with |z| = r ≤ 1
3 , where f0(z) = f (z) − f (0). This inequality was discovered

by Bohr [12]. Bohr actually obtained the inequality for |z| ≤ 1
6 . Later, Wiener, Riesz and

Schur, independently established the inequality for |z| ≤ 1
3 and showed that 1/3 is sharp.

See [5], [19, Chapter 8] and the references therein. Few other proofs are also available in
the literature. The Bohr radius has been discussed for certain power series in D, as well
as for analytic functions from D into specific domains, such as convex domains, simply
connected domains, the punctured unit disk, the exterior of the closed unit disk, and concave
wedge-domains. The analogous Bohr radius has also been studied for harmonic and starlike
log-harmonic mappings in D. In particular, in [22], the authors settled the conjecture of Ali
et al. [6] about the Bohr radius for odd functions from B. In the year 2000, powered Bohr
inequality was initiated by Djakov and Ramanujan [17] and a conjecture related to their
work was settled in [24] affirmatively. Bohr’s idea naturally extends to functions of several
complex variables [2,4,5,11,17]. Several other aspects of Bohr’s inequality may be obtained
from [3,5,7,9,13–16,19,26,29,31–33] and the references therein.

In this article, we shall consider Bohr’s radius for complex-valued K -quasiregular har-
monic mappings of the unit disk D. In order to state our main results, we recall the following
notions and notations (see [7,36]).

Definition 1 Let f (z) and g(z) be analytic in D. We say that

1. f (z) is subordinate to g(z) in D, written by f (z) ≺ g(z) or f ≺ g, if there exists an
ω ∈ B0 such that f (z) = g(ω(z)) for z ∈ D. Furthermore, if g(z) is univalent in D, then
we have the following relation

f (z) ≺ g(z) ⇐⇒ f (0) = g(0), f (D) ⊂ g(D).

2. f (z) is majorized by g(z) in D, denoted by f (z) 	 g(z) or f 	 g, if | f (z)| ≤ |g(z)|
for z ∈ D.

3. f is quasi-subordinate to g (relative to �), denoted by f (z) ≺q g(z) in D, if there exists
a � ∈ B and an ω ∈ B0 such that f (z) = �(z)g(ω(z)) for z ∈ D.

Evidently if either f ≺ g or | f (z)| ≤ |g(z)| in D, then f (z) ≺q g(z) in D. Thus, the
notion of quasi-subordination generalizes both the concept of subordination and the principle
of majorization.

A harmonic mapping in D is a complex-valued function f = u + iv of z = x + iy in
D, which satisfies the Laplace equation 
 f = 4 fzz = 0. It follows that every harmonic
mapping f admits a representation of the form f = h + g, where h and g are analytic in
D. This representation is unique up to an additive constant. It is convenient to assume that
f (0) = g(0). The Jacobian J f of f is given by J f (z) = |h′(z)|2 − |g′(z)|2.
We say that f is sense-preserving in D if J f (z) > 0 in D. Consequently, a harmonic

mapping f is locally univalent and sense-preserving in D if and only if J f (z) > 0 in D; or

equivalently if h′ �= 0 in D and the dilatation ω f := g′
h′ of f has the property that |ω f | < 1

in D [27].
If a locally univalent and sense-preserving harmonic mapping f = h + g satisfies the

condition |ω f (z)| ≤ k < 1, then f is called K -quasiregular harmonic mapping on D, where
K = 1+k

1−k ≥ 1 (cf. [21,30]). Obviously k → 1 corresponds to the limiting case K → ∞.
Note that when k = 1, the condition on the dilatation of f becomes |ω f (z)| ≤ 1 in which
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case the Jacobian could be zero at some point. Thus, it is worth pointing out that our results
below cover this case as well as the case where f is sense-preserving. A harmonic extension
of the classical Bohr theorem was established in [1,23,25].

Definition 2 We say that f = h+g ∈ HK , h≺qϕ(D) if it is a K -quasiregular sense-preserving
harmonic mapping of D and has the power series form

f (z) = h(z) + g(z) =
∞∑

n=0

anz
n +

∞∑

n=1

bnzn, z ∈ D,

together with an additional condition that h ≺q ϕ, where k = K−1
K+1 . If h ≺ ϕ, then we simply

write HK , h≺ϕ(D) instead of HK , h≺qϕ(D) by suppressing the subscript ‘q’.
Similarly, we can define HK , h	ϕ(D) by replacing quasi-subordination condition h ≺q ϕ

by the majorization condition h 	 ϕ.

Recently, Liu and Ponnusamy [28] have investigated the class HK , h≺ϕ(D) and obtained
the following results.

Theorem A [28] For f = h + g ∈ HK , h≺ϕ(D) with k = (K − 1)/(K + 1), we have the
following:

(1) If ϕ is analytic and univalent in D, then
∞∑

n=1

(|an | + |bn |)rn ≤ dist (ϕ(0), ∂ϕ(D)) (1.1)

for |z| = r ≤ ru, where ru = ru(k) is the root of the equation

(1 − r)2 − 4r(1 + k
√
1 + r) = 0

in the interval (0, 1).
(2) If ϕ is univalent and convex in D, then (1.1) holds for |z| = r ≤ K+1

5K+1 . The result is
sharp.

(3) If ϕ is univalent and convex in D and b1 = g′(0) = 0, then (1.1) holds for |z| = r ≤ rc,
where rc = rc(k) is the positive root of the equation

r

1 − r
+ kr2

1 − r2

√(
1 + r2

1 − r2

) (
π2

6
− 1

)

= 1

2
.

The number rc(k) cannot be replaced by a number larger than ρ := ρc(k), where ρ is
the positive root of the equation

2(1 + k)ρ

1 − ρ
+ 2k ln(1 − ρ) = 1. (1.2)

(4) If ϕ is analytic and univalent in D, h(0) = 0, and b1 = g′(0) = 0, then (1.1) holds for
|z| = r ≤ rs , where rs = rs(k) is the positive real root of the equation

r

(1 − r)2
+ kr2

(1 − r2)2

√(
r6 + 11r4 + 11r2 + 1

1 − r2

)(
π2

6
− 1

)

= 1

4

in the interval (0, 1). The number rs(k) cannot be replaced by a number larger than
ρ = ρs(k), where ρ is the positive root of the equation

ρ(1 − k + 2kρ)

(1 − ρ)2
− k ln(1 − ρ) = 1

4
. (1.3)
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One of the important special cases is when K → ∞, i.e. k → 1. Thus, the authors in [28]
proposed the following two conjectures.

Conjecture B Suppose that f (z) = h(z) + g(z) = ∑∞
n=0 anz

n + ∑∞
n=2 bnz

n is a sense-
preserving harmonic mapping in D and h ≺ ϕ.

(a) If ϕ is univalent and convex in D, then

∞∑

n=1

|an |rn +
∞∑

n=2

|bn |rn ≤ dist(ϕ(0), ∂ϕ(D)) (1.4)

for |z| = r ≤ ρc = 0.299823 · · · , where ρc is the positive root of the equation

4r

1 − r
+ 2 ln(1 − r) = 1,

(compare with (1.2) with k = 1).
(b) If ϕ is univalent in D, then the inequality (1.4) holds for |z| = r ≤ ρs = 0.161353 · · · ,

where ρs is the positive real root of the equation

2r2

(1 − r)2
− ln(1 − r) = 1

4

(compare with (1.3) with k = 1).

One of the aims of this article is to prove sharp versions of Theorem A(3) and (4) which in
turn imply that Conjecture B is true. In fact, we prove these in a general setting along with
the sharp version of Theorem A(1).

Inspired by Theorem A and the notion of quasi-subordination in the setting of Bohr’s
inequality, as discussed in [7], we obtain the following results.

Theorem 1 Let f = h + g ∈ HK , h0≺qϕ0(D), k = K−1
K+1 , h0(z) = h(z) − h(0) and ϕ0(z) =

ϕ(z) − ϕ(0). We have the following:

(1) If ϕ is analytic and univalent in D, then

∞∑

n=1

(|an | + |bn |)rn ≤ dist (ϕ(0), ∂ϕ(D)) (1.5)

for |z| = r ≤ ru, where ru = ru(k) = 1
2k+3+

√
(2k+3)2−1

∈ (0, 1/3). The result is sharp.

(2) If ϕ is univalent and convex in D, then (1.5) holds for |z| = r ≤ K+1
5K+1 . The result is

sharp.

Remark 1 The conclusion of Theorem 1(1) continues to hold under the assumption that
f = h + g ∈ HK , h≺ϕ(D) and thus, Theorem 1 contains a sharp version of Theorem A(1) or
[28, Theorem 3], namely, with the subordination h0 ≺ ϕ0 (which is equivalent to h ≺ ϕ) in
place of h0 ≺q ϕ0. Note that in the case of quasi-subordination, h0 ≺q ϕ0 is not equivalent
to h ≺q ϕ unless h(0) = ϕ(0) = 0. In particular, if we set k = 0 (i.e. K = 1) in the case
of subordination, then we get the result of Abu-Muhanna [1, Theorem 1] as a special case of
Theorem 1.

Remark 2 Recall that the notion of quasi-subordination generalizes both the concept of sub-
ordination and the principle of majorization and thus, Theorem 1(2) is an extension of
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Theorem A(2) or [28, Theorem 1]. In particular, the conclusion of Theorem 1(2) holds
if we replace the condition h0 ≺q ϕ0 by the majorization condition |h0(z)| ≤ |ϕ0(z)| for
z ∈ D.

Theorem 2 Let f = h + g ∈ HK , h≺ϕ(D), b1 = g′(0) = 0, and k = K−1
K+1 . We have the

following:

(1) If ϕ is univalent and convex in D, then

∞∑

n=1

|an |rn +
∞∑

n=2

|bn |rn ≤ dist (ϕ(0), ∂ϕ(D)) (1.6)

for |z| = r ≤ rc, where rc = rc(k) is the unique positive root in (0, 1/3) of the equation

2(1 + k)r

1 − r
+ 2k ln(1 − r) = 1. (1.7)

The result is sharp.
(2) If ϕ is analytic and univalent in D, then (1.6) holds for |z| = r ≤ rs , where rs = rs(k) is

the unique positive root in (0, 1/3) of the equation

r(1 − k + 2kr)

(1 − r)2
− k ln(1 − r) = 1

4
. (1.8)

The result is sharp.

Remark 3 Theorem 2(1) is the sharp version of Theorem A(3) or [28, Theorem 2]. Also,
Theorem 2(2) is the sharp version of Theorem A(4) or [28, Theorem 4]. Setting k = 0 in
Theorem 2(1), we also get the classical version of the Bohr theorem. Finally, we remark that
the whole proof of Theorem 2 can be imitated to establish Conjecture B only by replacing k
with 1.

The paper is organized as follows. In Sect. 3, we present the proof of Theorems 1 and 2.
In Sect. 4, we state and prove two theorems which extend two recent results of Ponnusamy
et al. [34,35] from the case of analytic functions to the case of sense-preserving harmonic
mappings. Finally, in Sect. 5, we investigate the Bohr radius for the derivatives of analytic
functions in the setting of quasi-subordination.

2 Preliminaries

In order to establish Theorems 1 and 2, we need the following lemmas. It is easy to obtain
the following two well-known lemmas from the latest monograph of Avkhadiev and Wirths
[8]. See also [18, pp. 195–196] and [1,20].

Lemma C Let ϕ be an analytic univalent map from D onto a simply connected domain
� = ϕ(D). We have the following:

(1)
1

4
|ϕ′(0)| ≤ dist (ϕ(0), ∂�) ≤ |ϕ′(0)|.

(2) If g(z) = ∑∞
n=0 bnz

n ≺ ϕ(z), then |bn | ≤ n|ϕ′(0)| ≤ 4n dist (ϕ(0), ∂�).

Lemma D Let ϕ be an analytic univalent map from D onto a convex domain � = ϕ(D). We
have the following:
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(1)
1

2
|ϕ′(0)| ≤ dist (ϕ(0), ∂�) ≤ |ϕ′(0)|.

(2) If g(z) = ∑∞
n=0 bnz

n ≺ ϕ(z), then |bn | ≤ |ϕ′(0)| ≤ 2dist (ϕ(0), ∂�).

The following two lemmas will play a key role in the proofs of our main results in Sect. 3.

Lemma E (Alkhaleefah et al. [7]) Let f (z) and g(z) be two analytic functions in D with the
Taylor series expansions f (z) = ∑∞

n=0 anz
n and g(z) = ∑∞

n=0 bnz
n for z ∈ D. We have the

following:

(1) If f (z) ≺q g(z) in D, then

∞∑

n=0

|an |rn ≤
∞∑

n=0

|bn |rn for all r ≤ 1

3
.

(2) If |g′(z)| ≤ k|h′(z)| in D for some k ∈ (0, 1], then
∞∑

n=1

|bn |rn ≤ k
∞∑

n=1

|an |rn for all r ≤ 1

3
.

Proof The proof of the first part of Lemma E is available in [7] while the second part follows
easily from this. Indeed, by assumption, we obtain that g′(z) ≺q kh′(z) which quickly gives
from Lemma E(1) that

∞∑

n=1

n|bn |rn−1 ≤
∞∑

n=1

kn |an |rn−1 for all r ≤ 1

3

and integrating this with respect to r gives the desired inequality. ��

3 The proofs of Theorems 1 and 2

3.1 Proof of Theorem 1

Assume that f = h + g ∈ HK , h0≺qϕ0(D). Then f (z) = h(z) + g(z) = ∑∞
n=0 anz

n +
∑∞

n=1 bnz
n , where |g′(z)| ≤ k|h′(z)| inD for some k ∈ [0, 1) and h(z)−h(0) ≺q ϕ(z)−ϕ(0)

in D.
(1) By assumption, ϕ(z) = ∑∞

n=0 cnz
n is analytic and univalent in D. Now, by Lemmas

C and E(1), we obtain respectively the inequalities

|cn | ≤ n|ϕ′(0)| ≤ 4n dist (ϕ(0), ∂ϕ(D)), for n = 1, 2, . . . ,

and
∞∑

n=1

|an |rn ≤
∞∑

n=1

|cn |rn for r ≤ 1

3
,

which by the previous inequality leads to

∞∑

n=1

|an |rn ≤ 4dist(ϕ(0), ∂ϕ(D))
r

(1 − r)2
for all r ≤ 1

3
. (3.1)
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Again, as |g′(z)| ≤ k|h′(z)|, Lemma E(2) and (3.1) show that

∞∑

n=1

|bn |rn ≤ k
∞∑

n=1

|an |rn ≤ 4kdist(ϕ(0), ∂ϕ(D))
r

(1 − r)2
for all r ≤ 1

3
.

Consequently, by combining the last two inequalities, we have

∞∑

n=1

(|an | + |bn |)rn ≤ 4(1 + k)dist(ϕ(0), ∂ϕ(D))
r

(1 − r)2

which is less than or equal to dist(ϕ(0), ∂ϕ(D)) if and only if

4(1 + k)r − (1 − r)2 = (r − ru)(2k + 3 +
√

(2k + 3)2 − 1 − r) ≤ 0.

The last inequality holds for r ≤ ru , where ru = ru(k) = 1
2k+3+

√
(2k+3)2−1

∈ (0, 1/3) and

k = K−1
K+1 .

To prove the sharpness, we consider f = h + g such that g′(z) = kλh′(z), where λ ∈ D,

h(z) = a0 + z

(1 − z)2
and ϕ(z) = c0 + z

(1 − z)2
= c0 +

∞∑

n=1

nzn .

Then dist(ϕ(0), ∂ϕ(D)) = 1/4 and so it is easy to see that

∞∑

n=1

(|an | + |bn |)rn = (1 + k|λ|) r

(1 − r)2

which is bigger than or equal to 1/4 if and only if 4(1 + k|λ|)r − (1 − r)2 ≥ 0. Solving the
last inequality shows that the number ru = 1

2k+3+
√

(2k+3)2−1
cannot be improved since |λ|

could be chosen so close to 1 from left. This completes the proof of the first part (1).
(2) For the proof of the second part, we just need to assume that ϕ is convex and then

proceed with the above method of proof, but using Lemma D in place of Lemma C. This
change after minor computation leads to

∞∑

n=1

(|an | + |bn |)rn ≤ 2(1 + k)dist(ϕ(0), ∂ϕ(D))
r

1 − r

which is less than or equal to dist(ϕ(0), ∂ϕ(D)) for r ≤ 1
3+2k ≤ 1

3 . Substituting k = K−1
K+1

gives the desired result.
Again, to prove the sharpness, we consider f = h + g such that

h(z) = a0 + z

1 − z
, ϕ(z) = c0 + z

1 − z
= c0 +

∞∑

n=1

zn,

and g′(z) = kλh′(z), where λ ∈ D. Then a simple computation yields

dist(ϕ(0), ∂ϕ(D)) = 1

2
and g(z) = kλ

z

1 − z

so that for this function we have
∞∑

n=1

(|an | + |bn |)rn = (1 + k|λ|) r

1 − r
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which is bigger than or equal to 1/2 if and only if

r ≥ 1

3 + 2k|λ| = K + 1

3K + 3 + 2|λ|(K − 1)
.

This shows that the number K+1
5K+1 cannot be improved since |λ| could be chosen so close to

1 from left. This completes the proof of the second part. ��

3.2 Proof of Theorem 2

Suppose that f = h + g ∈ HK , h≺ϕ(D). We consider the first part of the theorem, where
b1 = g′(0) = 0, h ≺ ϕ and ϕ is univalent and convex inD. It follows from Lemma D(2) that
|an | ≤ |ϕ′(0)| for n ≥ 1, and thus

∞∑

n=1

|an |rn ≤ |ϕ′(0)| r

1 − r
. (3.2)

Because g′(0) = 0, by Schwarz’s lemma, we obtain that ω = g′
h′ is analytic in D and

|ω(z)| ≤ k|z| in D. Therefore, we have |g′(z)| ≤ |kzh′(z)|, or g′(z) ≺q kzh′(z) in D.
By Lemma E(1), we have

∞∑

n=1

n|bn |rn−1 ≤
∞∑

n=1

kn|an |rn ≤ k|ϕ′(0)|
∞∑

n=1

nrn = k|ϕ′(0)| r

(1 − r)2
for r ≤ 1

3
.

Integrate this inequality on [0, r ], where r ≤ 1/3, we obtain

∞∑

n=1

|bn |rn ≤ k|ϕ′(0)|
∫ r

0

t

(1 − t)2
dt = k|ϕ′(0)|

(

ln(1 − r) + r

1 − r

)

.

Consequently, by combining (3.2) with the last inequality, we find that

∞∑

n=1

|an |rn +
∞∑

n=1

|bn |rn ≤ |ϕ′(0)|
[

r

1 − r
+ k

(

ln(1 − r) + r

1 − r

)]

≤ 2dist(ϕ(0), ∂ϕ(D))

[
(1 + k)r

1 − r
+ k ln(1 − r)

]

≤ dist(ϕ(0), ∂ϕ(D)),

where the last inequality holds if and only if

2(1 + k)r

1 − r
+ 2k ln(1 − r) ≤ 1.

The above inequality holds for r ≤ rc(k), where rc(k) is the unique positive root in (0, 1/3)
of Eq. (1.7). In order to verify the fact, we let

F(r) = 2(1 + k)r

1 − r
+ 2k ln(1 − r) − 1.

Then F(r) is continuous in [0, 1/3],

F(0) = −1 < 0, F(1/3) = k ln
4e

9
> 0, F ′(r) = 2 + 2kr

(1 − r)2
> 0 for r ∈ [0, 1/3],
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and therefore, it follows from the intermediate value theorem that the equation (1.7) has a
unique root rc = rc(k) in (0, 1/3).

To prove the sharpness, we consider f = h + g, where h, g and ϕ are such that g′(z) =
kzh′(z) andh(z) = ϕ(z) = 1/(1−z). Then for these choiceswefind that dist(ϕ(0), ∂ϕ(D)) =
1/2 and it is easy to compute the corresponding sum

∞∑

n=1

|an |rn +
∞∑

n=1

|bn |rn = (1 + k)r

1 − r
+ k ln(1 − r),

which is less than or equal to 1/2 only for r ≤ rc(k), where rc(k) is the unique positive
root in (0, 1/3) of the Eq. (1.7). This shows that the number rc(k) cannot be improved. This
completes the proof of the first part of the theorem.

Now we consider the second part, where ϕ is analytic and univalent in D. It follows from
Lemma C that |an | ≤ |ϕ′(0)|n ≤ 4n dist(ϕ(0), ∂ϕ(D)) for n ≥ 1, and thus

∞∑

n=1

|an |rn ≤ |ϕ′(0)| r

(1 − r)2
. (3.3)

As in the proof of the previous case, we have

∞∑

n=1

n|bn |rn−1 ≤
∞∑

n=1

kn|an |rn ≤ k|ϕ′(0)|
∞∑

n=1

n2rn = k|ϕ′(0)|r(1 + r)

(1 − r)3
for r ≤ 1

3

and thus, by integration, we obtain easily that

∞∑

n=1

|bn |rn ≤ k|ϕ′(0)|
(
2r2 − r

(1 − r)2
− ln(1 − r)

)

for r ≤ 1

3
.

Consequently, by combining (3.3) with the last inequality, we find that

∞∑

n=1

|an |rn +
∞∑

n=1

|bn |rn ≤ |ϕ′(0)|
[

r

(1 − r)2
+ k

(
2r2 − r

(1 − r)2
− ln(1 − r)

)]

≤ 4dist(ϕ(0), ∂ϕ(D))

[
r(1 − k + 2kr)

(1 − r)2
− k ln(1 − r)

]

≤ dist(ϕ(0), ∂ϕ(D)),

where the last inequality holds if and only if

r(1 − k + 2kr)

(1 − r)2
− k ln(1 − r) ≤ 1

4
,

which holds for r ≤ rs(k), where rs(k) is the unique positive root in (0, 1/3) of Eq. (1.8)—a
fact which is easy to verify as in the proof of the case (1.7) above.

To prove the sharpness, we consider the function f = h + g, where

h(z) = ϕ(z) = z

(1 − z)2
= a0 +

∞∑

n=1

nzn,

and g′(z) = kzh′(z). Then we find that dist(ϕ(0), ∂ϕ(D)) = 1
4 , and as before we have

∞∑

n=1

|an |rn +
∞∑

n=2

|bn |rn =
∞∑

n=1

nrn + k
∞∑

n=2

(
n + 1

n
− 2

)
rn = r(1 − k + 2kr)

(1 − r)2
− k ln(1 − r),
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which is less than or equal to 1/4 only in the case where r ≤ rs(k), where rs(k) is the unique
positive root in (0, 1/3) of Eq. (1.8). This shows that the number rs(k) cannot be improved.
The proof of the theorem is complete. ��

4 Improved Bohr’s phenomenon associated with quasi-subordination

Recently, Ponnusamy et al. [34,35] established several refined versions of Bohr’s inequality
in the case of bounded analytic functions. In this section, following the ideas of [34,35],
we will discuss improved Bohr’s phenomenon for two classes of sense-preserving harmonic
mappings associated with quasi-subordination.

Theorem 3 Suppose that f (z) = h(z) + g(z) = ∑∞
n=0 anz

n + ∑∞
n=1 bnz

n is a sense-
preserving harmonic mapping in D and h(z) − h(0) ≺q ϕ(z) − ϕ(0) in D, where ϕ(z) is
univalent and convex inD. Also, let λ = dist(ϕ(0), ∂ϕ(D)) < 1 and ‖ f0‖r = ∑∞

n=1(|an |2 +
|bn |2)r2n, where f0(z) = f (z) − f (0). Then

T f (r) :=
∞∑

n=1

(|an | + |bn |)rn +
(

1

2 − λ
+ r

1 − r

)

‖ f0‖r ≤ λ for |z| = r ≤ r∗,

where r∗ ≈ 0.15867508 is the unique root in (0, 1) of equation

5r3 − 9r2 − 5r + 1 = 0.

Moreover, for any λ ∈ (0, 1), there exists a uniquely defined r0 ∈ (r∗, 1
5 ) such that T f (r) ≤ λ

for r ∈ [0, r0]. The radius r0 can be calculated as the solution of the equation

�(λ, r) = 8r3λ2 − (13r3 + 7r2 − 5r + 1)λ + 10r3 − 2r2 − 10r + 2 = 0.

Proof Let ϕ(z) = ∑∞
n=0 cnz

n . Then, as before, Lemma D implies that |cn | ≤ |ϕ′(0)| ≤ 2λ
for n ≥ 1. Because h(z) − h(0) ≺q ϕ(z) − ϕ(0) and |g′(z)| ≤ | f ′(z)| for z ∈ D, we have

∞∑

n=1

|bn |rn ≤
∞∑

n=1

|an |rn ≤
∞∑

n=1

|cn |rn for r ≤ 1

3
.

In addition we also have

∞∑

n=1

|an |2r2n ≤
∞∑

n=1

|cn |2r2n =: ‖ϕ0‖r and
∞∑

n=1

n2|bn |2r2n−2 ≤
∞∑

n=1

n2|an |2r2n−2

so that

∞∑

n=1

|bn |2r2n ≤
∞∑

n=1

|an |2r2n ≤
∞∑

n=1

|cn |2r2n = ‖ϕ0‖r .

Consequently, ‖ f0‖r ≤ 2‖ϕ0‖r and thus, T f (r) ≤ 2Tϕ(r) for r ≤ 1/3 only, where

Tϕ(r) =
∞∑

n=1

|cn |rn +
(

1

2 − λ
+ r

1 − r

)

‖ϕ0‖r .
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Clearly, the desired conclusion follows if we can show that Tϕ(r) ≤ λ/2. Finally, because
|cn | ≤ 2λ for n ≥ 1, we have

2Tϕ(r) ≤ 4λ
∞∑

n=1

rn +
( 1

2 − λ
+ r

1 − r

)
8λ2

∞∑

n=1

r2n

= 4λr

1 − r
+ 1 + (1 − λ)r

(2 − λ)(1 − r)
· 8λ2r2

1 − r2

= λ − λ

[
1 − 5r

1 − r
− 8λr2(1 + (1 − λ)r)

(2 − λ)(1 − r)(1 − r2)

]

= λ − λ · �(λ, r)

(2 − λ)(1 − r)(1 − r2)
,

where

�(λ, r) = (1 − 5r)(2 − λ)(1 − r2) − 8λr2(1 + (1 − λ)r)

= 8r3λ2 − [
(1 − 5r)(1 − r2) + 8r2(1 + r)

]
λ + 2(1 − 5r)(1 − r2).

It is easy to see that �(λ, r) < 0 for r > 1/5 and 0 < λ ≤ 1, so that

λ − λ · �(λ, r)

(2 − λ)(1 − r)(1 − r2)
> λ

for r > 1/5 and 0 < λ ≤ 1.
We claim that �(λ, r) ≥ 0 for every r ≤ r∗ and for λ ∈ (0, 1]. In fact, we have

∂2�(λ, r)

∂λ2
= 16r3 ≥ 0 for every λ ∈ (0, 1],

and thus ∂�(λ,r)
∂λ

is an increasing function of λ. This gives

∂�(λ, r)

∂λ
≤ ∂�

∂λ
(1, r) = 16r3 − (1 − 5r)(1 − r2) − 8r2(1 + r)

= −(1 − r)2(1 − 3r)

so that �(λ, r) is a decreasing function of λ on (0, 1] for r ≤ 1/3 which implies that

�(λ, r) ≥ �(1, r) = 5r3 − 9r2 − 5r + 1,

which is greater than or equal to 0 for all r ≤ r∗, where r∗ ≈ 0.15867508 is the unique root
of equation 5r3 − 9r2 − 5r + 1 = 0, which lies in (0, 1

5 ).
Since �(0, r) = 2(1 − 5r)(1 − r2), we have �(0, r) ≥ 0 for r ≤ 1/5 and �(0, r) < 0

for r > 1/5. Furthermore,

�′(1, r) = 15r2 − 18r − 5 = 15r(r − 1) − 3r − 5 < 0

which implies that �(1, r) ≥ 0 for r ≤ r∗ and �(1, r) < 0 for r > r∗. According to the fact
that �(λ, r) is a monotonic decreasing function of λ on (0, 1] for r ≤ 1

3 , we see that for any
r ∈ (r∗, 1

5 ), �(0, r) ≥ 0, �(1, r) < 0, there is a uniquely defined λ(r) ∈ (0, 1) such that
�(λ(r), r) = 0.

To prove the last assertion, we have to show that dλ(r)
dr < 0. Indeed, since

dλ(r)

dr
= −

∂�(λ,r)
∂r

∂�(λ,r)
∂λ

,
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it is sufficient to prove that

∂�(λ, r)

∂r
= 24r2λ2 − (39r2 + 14r − 5)λ + 30r2 − 4r − 10 < 0

for λ ∈ (0, 1] and r ∈ (r∗, 1
5 ).

To that end, we use that for the intervals in question the inequalities
{
30r2 − 4r − 10 < −8, and
24r2λ2 − (39r2 + 14r)λ + 5λ − 8 < 24r2λ2 − 24r2λ − (15r2 + 14r)λ < 0

are valid. This completes the proof of Theorem 3 ��

Theorem 4 Assume the hypotheses of Theorem 3with a relaxed condition on ϕ, namely, that
ϕ(z) is analytic and univalent in D. Then

T f (r) =
∞∑

n=1

(|an | + |bn |)rn +
( 1

2 − λ
+ r

1 − r

)
‖ f0‖r ≤ λ

for |z| = r ≤ r∗
u , where r

∗
u ≈ 0.0808958838 is the unique root in (0, 1) of the equation

(1 − 10r + r2)(1 − r)2(1 + r)3 − 32r2(1 + r2) = 0. (4.1)

Proof Following the notation and the method of proof of Theorem 3, we easily have |cn | ≤
4nλ for n ≥ 1 and T f (r) ≤ 2Tϕ(r), where

2Tϕ(r) ≤ 8λ
∞∑

n=1

nrn +
( 1

2 − λ
+ r

1 − r

)
32λ2

∞∑

n=1

n2r2n

= 8λr

(1 − r)2
+ 1 + (1 − λ)r

(2 − λ)(1 − r)
· 32λ

2r2(1 + r2)

(1 − r2)3

= λ − λ

[
(1 − r)2 − 8r

(1 − r)2
− 32λr2(1 + r2)(1 + (1 − λ)r)

(2 − λ)(1 − r)(1 − r2)3

]

= λ − λ · 
(λ, r)

(2 − λ)(1 − r)(1 − r2)3
.

Here


(λ, r) = (1 − 10r + r2)(2 − λ)(1 − r)2(1 + r)3 − 32λr2(1 + r2)(1 + (1 − λ)r).

To complete the proof, it suffices to show that 2Tϕ(r) ≤ λ for r ≤ r∗
u .

We claim that 
(λ, r) ≥ 0 for every r ≤ r∗
u ≈ 0.0808958838 and for λ ∈ (0, 1]. In fact,

we have

∂2
(λ, r)

∂λ2
= 64r3(1 + r2) ≥ 0 for every λ ∈ (0, 1],

and thus ∂
(λ,r)
∂λ

is an increasing function of λ. This gives

∂
(λ, r)

∂λ
≤ ∂


∂λ
(1, r) = −(1 − r)

[
32r2(1 + r2) + (1 − 10r + r2)(1 − r)(1 + r)3

]

= −(1 − r)(1 − 8r + 13r2 + 51r4 + 8r5 − r6) ≤ 0
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for r ≤ 1
5 . Indeed, let F(r) = 1− 8r + 13r2 + 51r4 + 8r5 − r6. Then we only need to prove

F(r) ≥ 0 for r ≤ 1
5 . Since

F ′(r) = −8 + 26r + 204r3 + 40r4 − 6r5 ≤ −8 + 26

5
+ 204

125
+ 40

625
< 0

for r ≤ 1
5 , this implies that F(r) is a decreasing function on [0, 1/5] and thus, we conclude

that

F(r) ≥ F(1/5) = 1 − 8

5
+ 13

25
+ 51

625
+ 8

55
− 1

56

= − 2

25
+ 51

625
+ 8

55
− 1

56
= 1

625
+ 39

56
> 0

for r ≤ 1
5 . Hence

∂
(λ,r)
∂λ

≤ ∂

∂λ

(1, r) ≤ 0 for r ≤ 1
5 . It follows that 
(λ, r) is a decreasing

function of λ on (0, 1] for r ≤ 1
5 , so that


(λ, r) ≥ 
(1, r) = (1 − 10r + r2)(1 − r)2(1 + r)3 − 32r2(1 + r2),

which is greater than or equal to 0 for all r ≤ r∗
u , where r

∗
u ≈ 0.0808958838 is the unique

root of Eq. (4.1). This completes the proof of Theorem 4 ��

5 The Bohr radius of the derivatives of analytic functions

In [10], Bhowmik andDas investigated theBohr radius of the derivatives of analytic functions.
In particular, they established the following results.

Proposition 1 [10] Let f (z) = ∑∞
n=0 anz

n and g(z) = ∑∞
n=0 bnz

n be two analytic functions
in D. Then M f +g(r) ≤ M f (r) + Mg(r) and M f g(r) ≤ M f (r) Mg(r) for any |z| = r ∈
[0, 1), where M f (r) denotes the majorant series of f .

Theorem F [10] Let w(z) be an analytic self map of D with w(0) = 0. Then Mw′(r) ≤ 1 for
|z| = r ≤ r0 = 1 − √

2/3. This radius r0 is the best possible.

Using the similar method as in the proof of Theorem F, we can easily prove the following.

Lemma 1 Let w(z) be an analytic self map of D. Then Mzw′(r) + Mw(r) ≤ 1 for |z| = r ≤
r0 = 1 − √

2/3.

In this section, we determine the Bohr radius for the derivatives of analytic functions
associated with quasi-subordination. More precisely, we have

Theorem 5 Let f (z) = ∑∞
n=0 anz

n and g(z) = ∑∞
n=0 bnz

n be two analytic functions in D.
If f (z) − f (0) ≺q g(z) − g(0) in D, then M f ′(r) ≤ Mg′(r) for |z| = r ≤ r0 = 1 − √

2/3.
The radius r0 cannot be improved.

Proof Suppose that f (z)− f (0) ≺q g(z)− g(0) inD. Then there exist two functions � ∈ B
and ω ∈ B0 such that f (z) − f (0) = �(z)(g(ω(z)) − g(0)). Thus we have

f ′(z) = �′(z)(g(ω(z)) − g(0)) + �(z)g′(ω(z))ω′(z),

which implies

M f ′(r) ≤ Mz�′(z)(r)M ω(z)
z

(r)Mg(ω(z))−g(0)
ω(z)

(r) + M�(r)Mg′◦ω(r)Mω′(r).
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As g′ ◦ ω ≺ g′ and g(ω(z))−g(0)
ω(z) ≺ g(z)−g(0)

z , by Lemma E(1), we have

Mg′◦ω(r) ≤ Mg′(r) and Mg(ω(z))−g(0)
ω(z)

(r) ≤ Mg(z)−g(0)
z

(r) ≤ Mg′(r) for r ≤ 1/3.

From Theorem F, Mω′(r) ≤ 1 for r ≤ r0 = 1 − √
2/3 < 1/3. Further, we observe that

M ω(z)
z

(r) ≤ Mω′(r) ≤ 1 for r ≤ r0 = 1 − √
2/3 < 1/3. Consequently,

M f ′(r) ≤ (
Mz�′(z)(r) + M�(r)

)
Mg′(r).

Moreover Lemma 1 yields that

Mz�′(z)(r) + M�(r) ≤ 1 for r ≤ r0 = 1 − √
2/3 < 1/3.

The desired inequality follows from the last two inequalities.
Following the method of proof of [10, Theorem 2], we can easily obtain that the radius r0

cannot be improved. So, we omit the details. The proof is complete. ��
Remark 4 It is worth pointing out that [10, Theorem 2] is a special case of Theorem 5.
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