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Abstract
We examine the topology of various spaces of locally homogeneous affine surfaces which
arise from the classification result of Opozda (Differ GeomAppl 21:173–198, 2004) as orbits
of the action ofGL(2,R) (TypeA) and the ax+b group (TypeB).We determine the topology
of the spaces of Type A models in relation to the rank of the Ricci tensor. We determine the
topology of the spaces of Type B models which either are flat or where the Ricci tensor is
alternating.
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Mathematics Subject Classification 53A15 · 53C05 · 53B05

1 Introduction

1.1 Notational conventions

An affine surface is a pair M = (M,∇) where M is a smooth surface and where ∇ is a
torsion free connection on the tangent bundle of M . Let x = (x1, x2) be a system of local
coordinates on M . Adopt the Einstein convention and sum over repeated indices to express
∇∂xi

∂x j = �i j
k∂xk . The Christoffel symbols � = {�i j

k} determine the connection in the
coordinate chart. Let ρ be the associated Ricci tensor. The Ricci tensor carries the geometry
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in dimension 2; an affine surface is flat if and only if ρ = 0. Since the Ricci tensor of an
affine manifold is not necessarily symmetric, let ρs(X , Y ) = 1

2 {ρ(X , Y ) + ρ(Y , X)} and
ρa(X , Y ) = 1

2 {ρ(X , Y ) − ρ(Y , X)} be the symmetric and alternating Ricci tensors.

1.2 Locally homogeneous affine surface geometries

Work of Opozda [11] shows that any locally homogeneous affine surface M is modeled on
one of the following geometries.

• Type A. M = (R2,∇) with constant Christoffel symbols �i j
k = � j i

k . This geometry
is homogeneous; the Type A connections are the left invariant connections on the Lie
group R2.

• Type B.M = (R+ ×R,∇) with Christoffel symbols �i j
k = (x1)−1Ai j

k where Ai j
k =

A ji
k is constant. This geometry is homogeneous; the Type B connections are the left

invariant connections on the ax + b group.
• Type C. M = (M,∇) where ∇ is the Levi-Civita connection of the round sphere S2.

This result has been applied by many authors. Kowalski and Sekizawa [10] used it to
examineRiemannian extensions of affine surfaces, Vanžurová [13] used it to study themetriz-
ability of locally homogeneous affine surfaces, and Dǔsek [5] used it to study homogeneous
geodesics. It plays a central role in the study of locally homogeneous connectionswith torsion
of Arias-Marco and Kowalski [1] (see also [2] for a unified treatment independently of the
torsion tensor). Although we will work with the local theory, the compact setting has been
examined in [8,12].

The Ricci tensor ρ of an affine surface determines the full curvature tensor. In Sect. 2, we
examine the spaces where the Ricci tensor has fixed rank in the Type A setting. In Sect. 3,
we consider the spaces where either the Ricci tensor vanishes identically or where the Ricci
tensor is alternating and non-trivial in the Type B setting.

1.3 TypeA geometries

Let M(a, b, c, d, e, f ) := (R2,∇) where the Christoffel symbols of ∇ are constant and
given by

�11
1 = a, �11

2 = b, �12
1 = �21

1 = c,

�12
2 = �21

2 = d, �22
1 = e, �22

2 = f .
(1.1)

This identifies the set of TypeA geometries withR6. The linear transformations T (x1, x2) =
(a11x

1 + a12x
2, a21x

1 + a22x
2) where (a j

i ) ∈ GL(2,R) act on the set of Type A geometries.
We say that two TypeA surface models are linearly equivalent if there exists T ∈ GL(2,R)

intertwining the two structures. One has that two TypeA surfaces with non-degenerate Ricci
tensor are affine equivalent if and only if they are linearly equivalent (see [3]). On the contrary,
there exist Type A surfaces with degenerate Ricci tensor which are not linearly equivalent
but which nevertheless are affine equivalent. We refer to the discussion in [6] for further
details.

We consider the induced action of GL(2, R) on R
6 and identify the linear orbit of a

Type A model M with S(M) = GL(2,R)/I(M) where I(M) is the isotropy group
I(M) = {T ∈ GL(2,R); T ∗M = M}.
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It was shown in [6] that any flat TypeAmodel is linearly equivalent to one of the following:

M0
0 := M(0, 0, 0, 0, 0, 0), M0

1 := M(1, 0, 0, 1, 0, 0),

M0
2 := M(−1, 0, 0, 0, 0, 1), M0

3 := M(0, 0, 0, 0, 0, 1),

M0
4 := M(0, 0, 0, 0, 1, 0), M0

5 := M(1, 0, 0, 1,−1, 0).

(1.2)

The structure M0
0 is a singular cone point. The next result shows that the remaining orbits

S(M0
i ) := GL(2,R) · M0

i for 1 ≤ i ≤ 5 glue together to define a smooth 4-dimensional
submanifold of R6. Let 1 be the trivial line bundle over the circle S1, let L be the Möbius
line bundle over S1, and let A0 ⊂ R

6\{0} be the set of all flat Type A geometries other than
the cone point M0

0.

Theorem 1.1 A0 is a smooth submanifold of R6\{0} diffeomorphic to the total space of
L ⊕ 1 ⊕ 1 minus the zero section.

The Ricci tensor of any TypeAmodel is symmetric. LetA1± ⊂ R
6 be the set of all TypeA

geometries where the Ricci tensor has rank 1 and is positive semi-definite (+) or negative
semi-definite (−). Any element in A1± is linearly equivalent to one of the following, where
c ∈ R and c1 ∈ R\{0,−1} (see [3,6]):

M1
1 := M(−1, 0, 1, 0, 0, 2),

M1
2(c1) := M(−1, 0, c1, 0, 0, 1 + 2c1),

M1
3(c1) := M(0, 0, c1, 0, 0, 1 + 2c1),

M1
4(c) := M(0, 0, 1, 0, c, 2),

M1
5(c) := M(1, 0, 0, 0, 1 + c2, 2c). (1.3)

We will see in Lemma 2.3 that the orbit structure of the action of GL(2,R) on A1± is quite
complicated. It is therefore, perhaps, a bit surprising that the set of all orbits ∪i,cM1

i (c) ·
GL(2,R) is smooth as shown in the following result.

Theorem 1.2 A1± is a smooth submanifold of R6 diffeomorphic to S1 × S1 × R
3.

The remaining geometrieswhere theRicci tensor has rank 2 form an open subsetR6\{{0}∪
A0 ∪ A1+ ∪ A1−}.

These results should be contrasted with the results in [9] where it is shown that any
TypeA affine surface is linearly equivalent to a surface determined by at most two non-zero
parameters.

1.4 TypeB geometries

Let N (a, b, c, d, e, f ) := (R+ × R,∇) where the Christoffel symbols of ∇ are given by

�11
1 = a

x1
, �11

2 = b

x1
, �12

1 = �21
1 = c

x1
,

�12
2 = �21

2 = d

x1
, �22

1 = e

x1
, �22

2 = f

x1
.

(1.4)

This identifies the space of Type B geometries with R
6.

The natural structure group here is not the full general linear group, but rather the ax + b
group. We let Ta,b(x1, x2) := (x1, ax2 + bx1) define an action of the ax + b group on
R

+ × R; this acts on the Type B geometries by reparametrization and defines the natural
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notion of linear equivalence in this setting. Thus, two Type B models N1 and N2 are said
to be linearly equivalent if and only if there exists an affine transformation of the form
�(x1, x2) = (x1, a21x

1 + a22x
2) for a22 	= 0 intertwining the two structures. It follows from

the work in [3,4] that two Type B surfaces which are neither flat nor of Type A are affine
isomorphic if and only if they are linearly isomorphic. This is a non-trivial observation as
there are non-linear affine transformations from one model to another if the dimension of the
space of affine Killing vector fields is 4-dimensional or if the geometry is flat and thus the
dimension of the space of affine Killing vector fields is 6-dimensional.

It was shown in [7] that a flat Type B model is linearly equivalent to one of the following
models:

N 0
0 := N (0, 0, 0, 0, 0, 0), N 0

1 (±) := N (1, 0, 0, 0,±1, 0),

N 0
2 (c1) := N (c1 − 1, 0, 0, c1, 0, 0), c1 	= 0, N 0

3 := N (−2, 1, 0,−1, 0, 0),

N 0
4 := N (0, 1, 0, 0, 0, 0), N 0

5 := N (−1, 0, 0, 0, 0, 0),

N 0
6 (c2) := N (c2, 0, 0, 0, 0, 0), c2 	= 0,−1.

Let B0 ⊂ R
6 be the space of flat Type B geometries other than the cone point N 0

0
determined by the origin in R

6. Unlike the Type A setting described in Theorem 1.1, B0

is not a smooth manifold but consists of the union of 3 smooth submanifolds of R6 which
intersect transversally along the union of 3 smooth curves in R6. Define

U1(r , s) := N (1 + rs2,−s(1 + rs2), rs,−rs2, r ,−rs), B1 := Range{U1},
U2(u, v) := N (u, v, 0, 0, 0, 0), B2 := Range{U2},
U3(u, v) := N (u, v, 0, 1 + u, 0, 0), B3 := Range{U3}.

(1.5)

Theorem 1.3 B0 = B1 ∪ B2 ∪ B3. B2 and B3 are closed smooth surfaces in R
6 which are

diffeomorphic toR2 andwhich intersect transversally along the curveN (−1, v, 0, 0, 0, 0) for
v ∈ R. B1 can be completed to a smooth closed surface B̃1 which intersects B2 transversally
along the curve N (1, v, 0, 0, 0, 0) and which intersects B3 transversally along the curve
N (0, v, 0, 1, 0, 0) for v ∈ R.

In the Type B setting, it is possible for the symmetric Ricci tensor ρs to vanish without the
geometry being flat; this is not possible in the Type A setting. The alternating Ricci tensor,
ρa , carries the geometry in this context.

Let Ba be the set of all Type B structures where ρs = 0 but ρa 	= 0. Set

V1(r , s, t) := N (s, t, r , 0, 0, r),

V2(u, v, w) := N (1 − 2uw + vw2, w(1 − uw + vw2), u − vw,−vw2, v, u + vw)

(1.6)

and let D1 := Range{V1} and D2 := Range{V2}.
Theorem 1.4 Ba = D1 ∪ D2. Vi defines smoothly embedded 3-dimensional submanifolds
of R6 for r 	= 0 and u 	= 0 which intersect transversally along a smooth 2-dimensional
submanifold.

2 The space of typeAmodels

Let M(a, b, c, d, e, f ) := (R2,∇) be given by Eq. (1.1) where the parameters
(a, b, c, d, e, f ) are real constants. The associated Ricci tensor is symmetric.
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2.1 The space of flat typeAmodels

Since the Ricci tensor determines the curvature in dimension two, flat surfaces are determined
by a vanishing Ricci tensor. We provide the proof of the first result of the paper as follows.

The proof of Theorem 1.1 Let θ ∈ [0, 2π ] be the usual periodic parameter where we identify
0 with 2π to define the circle S1 = (cos θ, sin θ). Let (x1, x2, x3) be a point of R3. The
bundle L ⊕ 1 ⊕ 1 is then defined by identifying (θ, x1, x2, x3) with (θ + π,−x1, x2, x3);
this puts the necessary half twist in the first x-coordinate.We require that (x1, x2, x3) belongs
to R

3 − {0} to remove the 0-section.
The parametrization of Eq. (1.1) is not a very convenient one for studying the Ricci tensor.

We make a linear change of coordinates on R6 and let M1(p, q, t, s, v, w) be defined by

�11
1 = 2q, �11

2 = p + t, �12
1 = �21

1 = w,

�12
2 = �21

2 = q + s, �22
1 = v, �22

2 = p − t .

We substitute these values in Eq. (2.4) to obtain

ρ =
(
p2 + q2 − s2 − t2 − pw − tw −(p + t)v + (q + s)w

−(p + t)v + (q + s)w qv − sv + (p − t − w)w

)
.

We set ρ = 0. If v2 + w2 	= 0, we obtain

p = (v2 + w2)−1{2svw + t(w2 − v2) + w3}, and

q = (v2 + w2)−1{s(v2 − w2) + vw(2t + w)} .
(2.1)

If v2 + w2 = 0, we obtain a single equation

p2 + q2 − s2 − t2 = 0 . (2.2)

We introduce polar coordinates v = r cos(θ) and w = r sin(θ) to remove the singularity at
(v,w) = (0, 0) in Eq. (2.1). We may then combine Eqs. (2.1) and Eq. (2.2) into a single
expression:

p = p(θ, r , s, t) := r sin3(θ) + s sin(2θ) − t cos(2θ),

q = q(θ, r , s, t) := r cos(θ) sin2(θ) + s cos(2θ) + t sin(2θ) .
(2.3)

We assume (r , s, t) 	= (0, 0, 0) to avoid the trivial structure M0
0 as the parametrization

of Eq. (2.3) is singular there. We have θ ∈ [0, 2π ] and (r , s, t) ∈ R
3 − {0}; since we are

permitting r to be negative in polar coordinates, we must identify (θ, r) with (θ + π,−r)
and obtain thereby the bundle L ⊕ 1 ⊕ 1 minus the zero section over [0, π]. 
�
Remark 2.1 The isotropy subgroups of the structuresM0

i vary with i and the dimension of
the orbit space varies correspondingly. We list below the associated isotropy subgroups.

I(M0
0) = GL(2,R),

I(M0
1) = {

T : T (x1, x2) = (x1, ax2) for a 	= 0
}
,

I(M0
2) = {id, T } , where T (x1, x2) = (−x2,−x1),

I(M0
3) = {

T : T (x1, x2) = (ax1, x2) for a 	= 0
}
,

I(M0
4) = {

T : T (x1, x2) = (a2x1 + bx2, ax2) for a 	= 0, b ∈ R
}
,

I(M0
5) = {

T : T (x1, x2) = (x1,±x2)
}
.
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2.2 The space of typeAmodels with rank-one Ricci tensor

If the Ricci tensor has rank 1, we can make a linear change of coordinates to ensure ρ is a
multiple of dx2 ⊗dx2. We first establish Theorem 1.2. We then examine the isotropy groups
of the models in Eq. (1.3) to determine the orbits of the TypeAmodels which are not Type B.

Lemma 2.2 Let M be a Type A model which is not flat. Then ρ is a multiple of dx2 ⊗ dx2

if and only if b = 0 and d = 0.

Proof A direct computation shows

ρ =
(

(a − d)d + b( f − c) cd − be

cd − be c( f − c) + (a − d)e

)
. (2.4)

Consequently, if b = 0 and if d = 0, then ρ is a multiple of dx2 ⊗ dx2. Conversely, assume
ρ is a multiple of dx2 ⊗ dx2 or, equivalently, −bc + ad − d2 + b f = 0 and cd − be = 0.
We wish to show b = d = 0.

Case 1. Suppose that d 	= 0. The equations are homogeneous so we may assume d = 1
and hence c = be. Substituting these values yields ρ11 = −1 + a − b2e + b f = 0. Thus
a = 1 + b2e + b f . This yields ρ = 0 so this case is impossible as we assumed M was not
flat.

Case 2. Suppose that b 	= 0. Again, we may assume b = 1 so e = cd . We compute
ρ11 = f − c + ad − d2. Setting this to zero again yields ρ = 0 which is impossible. 
�
Proof of Theorem 1.2 Let A1±,0 be the space of all Type A models where the Ricci tensor is

a non-zero multiple of dx2 ⊗ dx2 where the ± refers to whether ρ22 is positive or negative.
By Lemma 2.2, we set b = d = 0 and obtain ρ22 = −c2 + ae + c f . We make a change of
variables setting

a = q + v, b = 0, c = u + p, d = 0, e = q − v, f = 2p.

We then have ρ22 = (p2 + q2 − u2 − v2)dx2 ⊗ dx2 so we may identify

A1+,0 = {�(p, q, u, v) : p2 + q2 > u2 + v2},
A1−,0 = {�(p, q, u, v) : p2 + q2 < u2 + v2} .

We examine A1−,0 as the analysis of A1+,0 is the same after interchanging the roles of (p, q)

and (u, v). Let D2 := {(U , V ) ∈ R
2 : U 2 + V 2 < 1} be the open disk in R

2. Let −M be
the Type A model M(−a,−b,−c,−d,−e,− f ). We construct a diffeomorphism � from
S1 × R

+ × D2 to A1−,0 by setting u = r cos θ , v = r sin θ , p = rU , q = rV . For r > 0,

θ ∈ S1, and U 2 + V 2 < 1 we have

M = M(r(sin(θ) + V ), 0, r(cos(θ) +U ), 0, r(V − sin(θ)), 2rU ) .

It is clear that −M(θ, r ,U , V ) = M(θ + π, r ,−U ,−V ).
Let M̃ be an arbitrary TypeAmodel with Rank{ρM̃} = 1 and ρM̃ negative semi-definite.

We may express

ρM̃ = λ(cos(φ)dx2 − sin(φ)dx1) ⊗ (cos(φ)dx2 − sin(φ)dx1)

for λ < 0. Here φ is only defined modulo π instead of the usual 2π . Let

Tφ(x1, x2) = (cos(φ)x1 + sin(φ)x2,− sin(φ)x1 + cos(φ)x2) .
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be the associated rotation so that T ∗
φ (dx2) = − sin(φ)dx1 + cos(φ)dx2 and thus (Tφ)∗M̃

belongs to A1−,0. We then have

A1− = {R/(2πZ) × A1−,0}/(φ,M) ∼ (φ + π,−M)

where the gluing reflects the fact that when φ = π we have replaced (x1, x2) by (−x1,−x2)
and thus changed the sign of the Christoffel symbols. Using our previous parametrization of
A1−,0, this yields

A1− = (R2/(2πZ)2) × R
+ × D2/{(φ, θ, r ,U , V ) ∼ (φ + π, θ + π, r ,−U ,−V )} .

After setting θ̃ = θ + φ, we can rewrite this equivalence relation in the form

(φ, θ̃ , r ,U , V ) ∼ (φ + π, θ̃, r ,−U ,−V ) .

The variable θ̃ now no longer plays a role in the gluing. After replacing R+ by R and D2 by
R
2, we see A1− is diffeomorphic to S1 × S1 × R

3 modulo the relation

(φ, θ̃ , x1, x2, x3) ∼ (φ + π, θ̃, x1,−x2,−x3) .

These gluing relations define the total space of the bundle 1 ⊕ L ⊕ L over (S1, φ). Since
L ⊕ L is diffeomorphic to the trivial 2-plane bundle 1 ⊕ 1, we obtain finally that A1− is
diffeomorphic to S1 × S1 × R

3. 
�
We adopt the notation of Eq. (1.3) to describe the orbits of the models M1

i (·) in the
following lemma.

Lemma 2.3 (1) I(M1
1) = {id}.

(2) I(M1
2(c1)) = {id} if c1 	= − 1

2 .

(3) I(M1
2(− 1

2 )) = {id, T }, where T (x1, x2) = (x1 + x2,−x2).

(4) I(M1
3(c1)) = {T : T (x1, x2) = (v−1x1, x2) for v ∈ R\{0}}.

(5) I(M1
4(c)) = {T : T (x1, x2) = (x1 − wx2, x2) for w ∈ R}, if c 	= 0,.

(6) I(M1
4(0)) = {T : T (x1, x2) = (v−1(x1 − wx2), x2) for w ∈ R, v ∈ R\{0}}.

(7) I(M1
5(c)) = {id}, if c 	= 0.

(8) I(M1
5(0)) = {id, T } where T (x1, x2) = (x1,−x2).

Proof Suppose T ∈ I(M1
i (·)). The Ricci tensor of M1

i (·) is a non-zero multiple of dx2 ⊗
dx2. Since T must preserve the Ricci tensor, T (dx2) = ±dx2. This implies (y1, y2) =
T (x1, x2) = (v−1(x1 − wx2), εx2) for ε = ±1. Then

dy1 = v−1(dx1 − wdx2), dy2 = εdx2, ∂y1 = v∂x1 , ∂y2 = ε(w∂x1 + ∂x2),

y�11
1 := v(x�11

1 − w x�11
2).

y�11
2 := v2εx�11

2,
y�12

1 := ε(x�12
1 + w (x�11

1 − x�12
2 − w x�11

2)),
y�12

2 := v(x�12
2 + w x�11

2),

y�22
1 := 1

v
(x�22

1 + w(2 x�12
1 − x�22

2) + w2(x�11
1 − 2 x�12

2) − w3 x�11
2),

y�22
2 := ε(x�22

2 + 2w x�12
2 + w2 x�11

2).
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Case 1.M1
1 = M(−1, 0, 1, 0, 0, 2) and T ∗M1

1 = M(−v, 0, ε(1−w), 0,−w2

v
, 2ε). Exam-

ining �11
1 and �22

2 yields ε = 1 and v = 1. Examining �22
1 yields w = 0.

Case 2. We have c /∈ {0,−1}, M1
2(c) = M(−1, 0, c, 0, 0, 1 + 2c), and

T ∗M1
2(c) = M(−v, 0, ε(c − w), 0,− 1

v
(w + w2), (1 + 2c)ε) .

Examining �11
1 yields v = 1. Suppose c 	= − 1

2 . Examining �22
2 yields ε = 1. Since

ε = 1, examining �12
1 yields w = 0. Suppose c = − 1

2 . Examining �12
1 and �22

1 yields
(ε, w) = (1, 0) or (ε, w) = (−1,−1).

Case 3. We have c /∈ {0,−1}, M1
3(c) = M(0, 0, c, 0, 0, 1 + 2c), and

T ∗M1
3(c) = M(0, 0, cε, 0,−w

v
, (1 + 2c)ε) .

Examining �12
1 yields ε = 1. Examining �22

1 yields w = 0. There is then no condition on
v.

Case 4. M1
4(c) = M(0, 0, 1, 0, c, 2) and T ∗M1

4(c) = M(0, 0, ε, 0, c
v
, 2ε). Examining

�22
2 yields ε = 1. There is no condition on w. If c 	= 0, examining �22

1 yields v = 1; if
c = 0, there is no condition on v.

Case 5. M1
5(c) = M(1, 0, 0, 0, 1 + c2, 2c) and

T ∗M1
5(c) = M(v, 0, wε, 0, 1

v
(1 + (c − w)2), 2cε) .

Examining �11
1 shows v = 1. Examining �12

1 shows w = 0. If c 	= 0, examining �22
2

shows ε = 1. If c = 0, we obtain ε = ±1. 
�
The general linear group GL(2,R) acts on the space R

6 of all Type A geometries via
change of coordinates. Let GL+(2,R) be the subgroup of matrices with positive determinant.
If M is a Type A model with Rank{ρ}(M) = 2, then the associated space of affine Killing
vector fields is 2-dimensional and M does not also admit a Type B structure [3]. But there
are Type A models with Rank{ρ} = 1 which also admit Type B structures. Let O1± ⊂ A1±
be the set of Type A models with Rank{ρ} = 1 and which do not admit Type B structures.

Theorem 2.4 (1) O1− is empty; every element of A1− also admits Type B structure.
(2) GL+(2,R) acts without fixed points on O1+. The action admits a section s : R → O1+

so O1+ = GL+(2,R) × R is a principal fiber bundle over R.

Proof Resuts of [3] show that the modelsM1
i (·) for 1 ≤ i ≤ 4 also admit Type B structures

while the models M1
5(c) do not. The Ricci tensor associated to M1

i (·) is given by:
ρM1

1 = dx2 ⊗ dx2, ρM1
2 = c1(1 + c1)dx2 ⊗ dx2,

ρM1
3 = c1(1 + c1)dx2 ⊗ dx2, ρM1

4 = dx2 ⊗ dx2,

ρM1
5 = (1 + c2)dx2 ⊗ dx2.

If ρ ≤ 0, then it follows that i = 2 or i = 3 and c ∈ (−1, 0). Thus any element ofA1− admits
a Type B structure which proves Assertion (1).

Let M1
5 = ∪cM1

5(c); this is a smooth curve in R
6. Type A models which are linearly

equivalent toM1
1,M1

2(c1) for c1+c21 > 0,M1
3(c1) for c1+c21 > 0, orM1

4(c) all admit TypeB
structures and have ρ ≥ 0. Thus we may identify the structures O1,+ which do not admit
Type B structures with GL(2,R) · M1

5. Let T (x1, x2) := (x1,−x2). We have TM1
5(c) =

M1
5(−c). Since det(T ) = −1, we conclude therefore that O1+ = GL+(2,R) · M1

5. By
Lemma 2.3, the action of GL+(2,R) onM1

5 is fixed point free. Assertion (2) follows. 
�
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3 The space of typeB connections

Let N (a, b, c, d, e, f ) := (R+ × R,∇) where the Christoffel symbols of ∇ are given by
(1.4). The Ricci tensor needs not be symmetric in this setting:

ρ = (x1)−2

(
(a − d + 1)d + b( f − c) cd − be + f

c(d − 1) − be −c2 + f c + (a − d − 1)e

)
(3.1)

3.1 The space of flat typeBmodels

The proof of Theorem 1.3 Let N = N (a, b, c, d, e, f ). We clear denominators in Eq. (3.1)
and set ρ̃i j = (x1)2ρi j . Adopt the notation of Eq. (1.5). A direct computation shows that the
structures Ui (·) are flat. We distinguish cases to establish the converse. We use Eq. (3.1) and
set ρ̃ = 0. Since ρ̃12 − ρ̃21 = c + f , f = −c.

Case 1. Assume e 	= 0. Set c = rs, e = r , and f = −rs for r 	= 0. Then

ρ̃22 = −r(1 − a + d + 2rs2) and ρ̃21 = −r(b + s − ds) .

We solve these equations to obtain a = 1 + d + 2rs2 and b = (−1 + d)s. We have
ρ̃11 = 2(d + rs2). Thus d = −rs2 which gives the parametrization U1.

Case 2. Suppose e = 0. Set a = u, b = v, and f = −c to obtain

ρ̃ =
(
d(1 + u − d) − 2cv c(d − 1)

c(d − 1) −2c2

)
.

This yields c = 0 and d(1+ u − d) = 0. If we set d = 0, we obtain the parametrization U2;
if we set d = 1 + u, we obtain the parametrization U3. This establishes the first assertion.

The parametrization U2 and U3 intersect when u = −1; the intersection is transversal
along the curve N (−1, v, 0, 0, 0, 0). We wish to extend the parametrization U1 to study the
limiting behavior as e → 0. We distinguish cases.

Case A. Suppose limn→∞ U1(rn, sn) ∈ Range{U2}. We have

limn→∞ 1 + rns2n = u, limn→∞ −sn(1 + rns2n ) = v, limn→∞ −rnsn = 0,

limn→∞ −rns2n = 0, limn→∞ rn = 0, limn→∞ −rnsn = 0.

These equations imply u = 1, limn→∞ rn = 0, limn→∞ sn = −v. Thus we may simply set
r = 0 to obtain a transversal intersection along the curve N (1, v, 0, 0, 0, 0).

Case B. Suppose limn→∞ U1(rn, sn) ∈ Range{U3}. We have

limn→∞ 1 + rns2n = u, limn→∞ −sn(1 + rns2n ) = v, limn→∞ −rnsn = 0,

limn→∞ −rns2n = 1 + u, limn→∞ rn = 0, limn→∞ −rnsn = 0.

These equations imply u = 0, limn→∞ rn = 0, and limn→∞ rns2n = −1.We change variables
setting r = −t2 and s = 1

t + w to express

U1(−t2, 1
t + w) = N ( −tw(2 + tw), w(2 + 3tw + t2w2), −t(1 + tw),

(1 + tw)2, −t2, t(1 + tw)) .

We may now safely set t = 0 to obtain the intersection with Range{U3} along the curve
N (0, 2w, 0, 1, 0, 0). 
�
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3.2 TypeBmodels with alternating Ricci tensor

It was shown in [3] that any Type B model with alternating Ricci tensor is linearly equivalent
to one of the following models:

N1(c) := N (0, c, 1, 0, 0, 1), for c ∈ R,

N2(c,±) := N (1 ∓ c2), c, 0,∓c2,±1,±2c), for c > 0.

The proof of Theorem 1.4 Adopt the notation of Eq. (1.6). It is clear that V1 defines a smooth
3-dimensional submanifold of R6. To see similarly that V2 is smooth, we note that we can
recover u = 1

2 (c+ f ) and v = e. If v 	= 0, thenw = 1
v
( f −u)while if v = 0,w = 1

2u (1−a).
Thus V2 is 1-1; it is not difficult to verify that the Jacobian determinant is non-zero. This
shows that V2 also defines a smooth 3-dimensional submanifold of R6. We set v = 0 and
u = r to see that V1 and V2 intersect along the surface v = 0, u = r , s = 1 − 2uw and
t = w(1− uw). A direct computation shows that the associated Ricci tensors are non-trivial
and alternating:

ρ̃V1 = r

(
0 1

−1 0

)
and ρ̃V2 = u

(
0 1

−1 0

)
.

Let N be a Type B model with ρs = 0 and ρ̃a,12 = c+ f
2 	= 0. We distinguish two cases.

Case 1. Suppose e = 0. Set c = 2r − f for r 	= 0. Setting the ρs = 0 yields

ρs,11 : 0 = d(1 + a − d) + 2b( f − r), ρs,12 : 0 = (1 − d) f + r(2d − 1),

ρs,22 : 0 = −2( f 2 − 3 f r + 2r2).

We solve the equation −2( f 2 − 3 f r + 2r2) = 0 to obtain f = r or f = 2r . Setting f = 2r
yields ρs12: 0 = r which is false. Thus f = r . We obtain ρs,12 = 2dr so d = 0. Set a = s
and b = t to obtain the parametrization V1.

Case 2. Set c = 2u − f and e = v for u 	= 0 and v 	= 0. We obtain

ρs,11 : 0 = d(1 + a − d) + 2b( f − u),

ρs,12 : 0 = (1 − d) f − u + 2du − bv,

ρs,22 : 0 = −2 f 2 + 6 f u − 4u2 − (1 − a + d)v.

Setting ρs,12 = 0 and ρs,22 = 0 yields a = 1
v
(2 f 2 − 6 f u + 4u2 + v + dv) and b =

1
v
( f − d f − u + 2du). We obtain ρs,11 = 1

v
(2( f 2 − 2 f u + u2 + dv)). This implies that

d = − ( f −u)2

v
. Setting f = vw + u yields the parametrization V2. This parametrization can

be extended safely to v = 0; we require u 	= 0 to ensure ρa 	= 0. 
�
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