ORIGINAL PAPER

Spaces of locally homogeneous affine surfaces

M. Brozos-Vázquez¹ · E. García-Río² · P. Gilkey³

Received: 28 March 2019 / Accepted: 29 October 2019 / Published online: 13 December 2019 © The Royal Academy of Sciences, Madrid 2019

Abstract

We examine the topology of various spaces of locally homogeneous affine surfaces which arise from the classification result of Opozda (Differ Geom Appl 21:173–198, 2004) as orbits of the action of $GL(2, \mathbb{R})$ (Type \mathcal{A}) and the ax + b group (Type \mathcal{B}). We determine the topology of the spaces of Type \mathcal{A} models in relation to the rank of the Ricci tensor. We determine the topology of the spaces of Type \mathcal{B} models which either are flat or where the Ricci tensor is alternating.

Keywords Homogeneous affine surface · Linear equivalence · Ricci tensor

Mathematics Subject Classification 53A15 · 53C05 · 53B05

1 Introduction

1.1 Notational conventions

An *affine surface* is a pair $\mathcal{M} = (M, \nabla)$ where M is a smooth surface and where ∇ is a torsion free connection on the tangent bundle of M. Let $x = (x^1, x^2)$ be a system of local coordinates on M. Adopt the *Einstein convention* and sum over repeated indices to express $\nabla_{\partial_{x^i}} \partial_{x^j} = \Gamma_{ij}{}^k \partial_{x^k}$. The *Christoffel symbols* $\Gamma = {\Gamma_{ij}{}^k}$ determine the connection in the coordinate chart. Let ρ be the associated Ricci tensor. The Ricci tensor carries the geometry

E. García-Río eduardo.garcia.rio@usc.es

> M. Brozos-Vázquez miguel.brozos.vazquez@udc.gal

P. Gilkey gilkey@uoregon.edu

- ¹ Universidade da Coruña, Differential Geometry and its Applications Research Group, Escola Politécnica Superior, 15403 Ferrol, Spain
- ² Faculty of Mathematics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

Supported by projects MTM2016-75897-P and ED431C 2019/10 (European FEDER support included, UE).

³ Mathematics Department, University of Oregon, Eugene, OR 97403-1222, USA

in dimension 2; an affine surface is flat if and only if $\rho = 0$. Since the Ricci tensor of an affine manifold is not necessarily symmetric, let $\rho_s(X, Y) = \frac{1}{2} \{\rho(X, Y) + \rho(Y, X)\}$ and $\rho_a(X, Y) = \frac{1}{2} \{\rho(X, Y) - \rho(Y, X)\}$ be the symmetric and alternating Ricci tensors.

1.2 Locally homogeneous affine surface geometries

Work of Opozda [11] shows that any locally homogeneous affine surface M is modeled on one of the following geometries.

- **Type** \mathcal{A} . $\mathcal{M} = (\mathbb{R}^2, \nabla)$ with constant Christoffel symbols $\Gamma_{ij}{}^k = \Gamma_{ji}{}^k$. This geometry is homogeneous; the Type \mathcal{A} connections are the left invariant connections on the Lie group \mathbb{R}^2 .
- **Type** \mathcal{B} . $\mathcal{M} = (\mathbb{R}^+ \times \mathbb{R}, \nabla)$ with Christoffel symbols $\Gamma_{ij}{}^k = (x^1)^{-1} A_{ij}{}^k$ where $A_{ij}{}^k = A_{ji}{}^k$ is constant. This geometry is homogeneous; the Type \mathcal{B} connections are the left invariant connections on the ax + b group.
- **Type** C. $\mathcal{M} = (M, \nabla)$ where ∇ is the Levi-Civita connection of the round sphere S^2 .

This result has been applied by many authors. Kowalski and Sekizawa [10] used it to examine Riemannian extensions of affine surfaces, Vanžurová [13] used it to study the metrizability of locally homogeneous affine surfaces, and Dúsek [5] used it to study homogeneous geodesics. It plays a central role in the study of locally homogeneous connections with torsion of Arias-Marco and Kowalski [1] (see also [2] for a unified treatment independently of the torsion tensor). Although we will work with the local theory, the compact setting has been examined in [8,12].

The Ricci tensor ρ of an affine surface determines the full curvature tensor. In Sect. 2, we examine the spaces where the Ricci tensor has fixed rank in the Type A setting. In Sect. 3, we consider the spaces where either the Ricci tensor vanishes identically or where the Ricci tensor is alternating and non-trivial in the Type B setting.

1.3 Type \mathcal{A} geometries

Let $\mathcal{M}(a, b, c, d, e, f) := (\mathbb{R}^2, \nabla)$ where the Christoffel symbols of ∇ are constant and given by

$$\Gamma_{11}{}^{1} = a, \qquad \Gamma_{11}{}^{2} = b, \ \Gamma_{12}{}^{1} = \Gamma_{21}{}^{1} = c, \Gamma_{12}{}^{2} = \Gamma_{21}{}^{2} = d, \ \Gamma_{22}{}^{1} = e, \ \Gamma_{22}{}^{2} = f.$$
(1.1)

This identifies the set of Type A geometries with \mathbb{R}^6 . The linear transformations $T(x^1, x^2) = (a_1^1x^1 + a_2^1x^2, a_1^2x^1 + a_2^2x^2)$ where $(a_i^j) \in GL(2, \mathbb{R})$ act on the set of Type A geometries. We say that two Type A surface models are *linearly equivalent* if there exists $T \in GL(2, \mathbb{R})$ intertwining the two structures. One has that two Type A surfaces with non-degenerate Ricci tensor are affine equivalent if and only if they are linearly equivalent (see [3]). On the contrary, there exist Type A surfaces with degenerate Ricci tensor which are not linearly equivalent but which nevertheless are affine equivalent. We refer to the discussion in [6] for further details.

We consider the induced action of $GL(2, \mathbb{R})$ on \mathbb{R}^6 and identify the linear orbit of a Type \mathcal{A} model \mathcal{M} with $\mathcal{S}(\mathcal{M}) = GL(2, \mathbb{R})/\mathcal{I}(\mathcal{M})$ where $\mathcal{I}(\mathcal{M})$ is the isotropy group $\mathcal{I}(\mathcal{M}) = \{T \in GL(2, \mathbb{R}); T^*\mathcal{M} = \mathcal{M}\}.$

It was shown in [6] that any flat Type A model is linearly equivalent to one of the following:

$$\mathcal{M}_{0}^{0} := \mathcal{M}(0, 0, 0, 0, 0, 0), \qquad \mathcal{M}_{1}^{0} := \mathcal{M}(1, 0, 0, 1, 0, 0), \\ \mathcal{M}_{2}^{0} := \mathcal{M}(-1, 0, 0, 0, 0, 1), \qquad \mathcal{M}_{3}^{0} := \mathcal{M}(0, 0, 0, 0, 0, 1), \\ \mathcal{M}_{4}^{0} := \mathcal{M}(0, 0, 0, 0, 1, 0), \qquad \mathcal{M}_{5}^{0} := \mathcal{M}(1, 0, 0, 1, -1, 0).$$

$$(1.2)$$

The structure \mathcal{M}_0^0 is a singular cone point. The next result shows that the remaining orbits $\mathcal{S}(\mathcal{M}_i^0) := \operatorname{GL}(2, \mathbb{R}) \cdot \mathcal{M}_i^0$ for $1 \le i \le 5$ glue together to define a smooth 4-dimensional submanifold of \mathbb{R}^6 . Let \mathbb{I} be the trivial line bundle over the circle S^1 , let \mathbb{L} be the Möbius line bundle over S^1 , and let $\mathcal{A}^0 \subset \mathbb{R}^6 \setminus \{0\}$ be the set of all flat Type \mathcal{A} geometries other than the cone point \mathcal{M}_0^0 .

Theorem 1.1 \mathcal{A}^0 is a smooth submanifold of $\mathbb{R}^6 \setminus \{0\}$ diffeomorphic to the total space of $\mathbb{L} \oplus \mathbb{1} \oplus \mathbb{1}$ minus the zero section.

The Ricci tensor of any Type \mathcal{A} model is symmetric. Let $\mathcal{A}^1_{\pm} \subset \mathbb{R}^6$ be the set of all Type \mathcal{A} geometries where the Ricci tensor has rank 1 and is positive semi-definite (+) or negative semi-definite (-). Any element in \mathcal{A}^1_{\pm} is linearly equivalent to one of the following, where $c \in \mathbb{R}$ and $c_1 \in \mathbb{R} \setminus \{0, -1\}$ (see [3,6]):

$$\mathcal{M}_{1}^{1} := \mathcal{M}(-1, 0, 1, 0, 0, 2),$$

$$\mathcal{M}_{2}^{1}(c_{1}) := \mathcal{M}(-1, 0, c_{1}, 0, 0, 1 + 2c_{1}),$$

$$\mathcal{M}_{3}^{1}(c_{1}) := \mathcal{M}(0, 0, c_{1}, 0, 0, 1 + 2c_{1}),$$

$$\mathcal{M}_{4}^{1}(c) := \mathcal{M}(0, 0, 1, 0, c, 2),$$

$$\mathcal{M}_{5}^{1}(c) := \mathcal{M}(1, 0, 0, 0, 1 + c^{2}, 2c).$$
(1.3)

We will see in Lemma 2.3 that the orbit structure of the action of $GL(2, \mathbb{R})$ on \mathcal{A}^{1}_{\pm} is quite complicated. It is therefore, perhaps, a bit surprising that the set of all orbits $\cup_{i,c} \mathcal{M}^{1}_{i}(c) \cdot GL(2, \mathbb{R})$ is smooth as shown in the following result.

Theorem 1.2 \mathcal{A}^1_+ *is a smooth submanifold of* \mathbb{R}^6 *diffeomorphic to* $S^1 \times S^1 \times \mathbb{R}^3$.

The remaining geometries where the Ricci tensor has rank 2 form an open subset $\mathbb{R}^6 \setminus \{\{0\} \cup \mathcal{A}^0 \cup \mathcal{A}^1_+ \cup \mathcal{A}^1_-\}$.

These results should be contrasted with the results in [9] where it is shown that any Type A affine surface is linearly equivalent to a surface determined by at most two non-zero parameters.

1.4 Type *B* geometries

Let $\mathcal{N}(a, b, c, d, e, f) := (\mathbb{R}^+ \times \mathbb{R}, \nabla)$ where the Christoffel symbols of ∇ are given by

$$\Gamma_{11}{}^{1} = \frac{a}{x^{1}}, \qquad \Gamma_{11}{}^{2} = \frac{b}{x^{1}}, \ \Gamma_{12}{}^{1} = \Gamma_{21}{}^{1} = \frac{c}{x^{1}}, \Gamma_{12}{}^{2} = \Gamma_{21}{}^{2} = \frac{d}{x^{1}}, \ \Gamma_{22}{}^{1} = \frac{e}{x^{1}}, \ \Gamma_{22}{}^{2} = \frac{f}{x^{1}}.$$
(1.4)

This identifies the space of Type \mathcal{B} geometries with \mathbb{R}^6 .

The natural structure group here is not the full general linear group, but rather the ax + b group. We let $T_{a,b}(x^1, x^2) := (x^1, ax^2 + bx^1)$ define an action of the ax + b group on $\mathbb{R}^+ \times \mathbb{R}$; this acts on the Type \mathcal{B} geometries by reparametrization and defines the natural

notion of linear equivalence in this setting. Thus, two Type \mathcal{B} models \mathcal{N}_1 and \mathcal{N}_2 are said to be *linearly equivalent* if and only if there exists an affine transformation of the form $\Psi(x^1, x^2) = (x^1, a_1^2x^1 + a_2^2x^2)$ for $a_2^2 \neq 0$ intertwining the two structures. It follows from the work in [3,4] that two Type \mathcal{B} surfaces which are neither flat nor of Type \mathcal{A} are affine isomorphic if and only if they are linearly isomorphic. This is a non-trivial observation as there are non-linear affine transformations from one model to another if the dimension of the space of affine Killing vector fields is 4-dimensional or if the geometry is flat and thus the dimension of the space of affine Killing vector fields is 6-dimensional.

It was shown in [7] that a flat Type \mathcal{B} model is linearly equivalent to one of the following models:

$$\begin{split} \mathcal{N}^0_0 &:= \mathcal{N}(0, 0, 0, 0, 0, 0), & \mathcal{N}^0_1(\pm) := \mathcal{N}(1, 0, 0, 0, \pm 1, 0), \\ \mathcal{N}^0_2(c_1) &:= \mathcal{N}(c_1 - 1, 0, 0, c_1, 0, 0), c_1 \neq 0, \ \mathcal{N}^0_3 := \mathcal{N}(-2, 1, 0, -1, 0, 0), \\ \mathcal{N}^0_4 &:= \mathcal{N}(0, 1, 0, 0, 0, 0), & \mathcal{N}^0_5 := \mathcal{N}(-1, 0, 0, 0, 0, 0), \\ \mathcal{N}^0_6(c_2) &:= \mathcal{N}(c_2, 0, 0, 0, 0, 0), c_2 \neq 0, -1. \end{split}$$

Let $\mathcal{B}^0 \subset \mathbb{R}^6$ be the space of flat Type \mathcal{B} geometries other than the cone point \mathcal{N}_0^0 determined by the origin in \mathbb{R}^6 . Unlike the Type \mathcal{A} setting described in Theorem 1.1, \mathcal{B}^0 is not a smooth manifold but consists of the union of 3 smooth submanifolds of \mathbb{R}^6 which intersect transversally along the union of 3 smooth curves in \mathbb{R}^6 . Define

$$\begin{aligned} \mathcal{U}_{1}(r,s) &:= \mathcal{N}(1+rs^{2}, -s(1+rs^{2}), rs, -rs^{2}, r, -rs), \ \mathcal{B}_{1} &:= \operatorname{Range}\{\mathcal{U}_{1}\}, \\ \mathcal{U}_{2}(u,v) &:= \mathcal{N}(u,v,0,0,0,0), \\ \mathcal{B}_{3}(u,v) &:= \mathcal{N}(u,v,0,1+u,0,0), \\ \end{aligned}$$

$$\begin{aligned} \mathcal{B}_{3} &:= \operatorname{Range}\{\mathcal{U}_{3}\}. \end{aligned}$$
(1.5)

Theorem 1.3 $\mathcal{B}^0 = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3$. \mathcal{B}_2 and \mathcal{B}_3 are closed smooth surfaces in \mathbb{R}^6 which are diffeomorphic to \mathbb{R}^2 and which intersect transversally along the curve $\mathcal{N}(-1, v, 0, 0, 0, 0)$ for $v \in \mathbb{R}$. \mathcal{B}_1 can be completed to a smooth closed surface $\tilde{\mathcal{B}}_1$ which intersects \mathcal{B}_2 transversally along the curve $\mathcal{N}(1, v, 0, 0, 0, 0)$ and which intersects \mathcal{B}_3 transversally along the curve $\mathcal{N}(0, v, 0, 1, 0, 0)$ for $v \in \mathbb{R}$.

In the Type \mathcal{B} setting, it is possible for the symmetric Ricci tensor ρ_s to vanish without the geometry being flat; this is not possible in the Type \mathcal{A} setting. The alternating Ricci tensor, ρ_a , carries the geometry in this context.

Let \mathcal{B}_a be the set of all Type \mathcal{B} structures where $\rho_s = 0$ but $\rho_a \neq 0$. Set

$$\mathcal{V}_1(r, s, t) := \mathcal{N}(s, t, r, 0, 0, r),$$

$$\mathcal{V}_2(u, v, w) := \mathcal{N}(1 - 2uw + vw^2, w(1 - uw + vw^2), u - vw, -vw^2, v, u + vw)$$

(1.6)

and let $\mathcal{D}_1 := \operatorname{Range}\{\mathcal{V}_1\}$ and $\mathcal{D}_2 := \operatorname{Range}\{\mathcal{V}_2\}$.

Theorem 1.4 $\mathcal{B}_a = \mathcal{D}_1 \cup \mathcal{D}_2$. \mathcal{V}_i defines smoothly embedded 3-dimensional submanifolds of \mathbb{R}^6 for $r \neq 0$ and $u \neq 0$ which intersect transversally along a smooth 2-dimensional submanifold.

2 The space of type \mathcal{A} models

Let $\mathcal{M}(a, b, c, d, e, f) := (\mathbb{R}^2, \nabla)$ be given by Eq. (1.1) where the parameters (a, b, c, d, e, f) are real constants. The associated Ricci tensor is symmetric.

2.1 The space of flat type \mathcal{A} models

Since the Ricci tensor determines the curvature in dimension two, flat surfaces are determined by a vanishing Ricci tensor. We provide the proof of the first result of the paper as follows.

The proof of Theorem 1.1 Let $\theta \in [0, 2\pi]$ be the usual periodic parameter where we identify 0 with 2π to define the circle $S^1 = (\cos \theta, \sin \theta)$. Let (x^1, x^2, x^3) be a point of \mathbb{R}^3 . The bundle $\mathbb{L} \oplus \mathbb{I} \oplus \mathbb{I}$ is then defined by identifying (θ, x^1, x^2, x^3) with $(\theta + \pi, -x^1, x^2, x^3)$; this puts the necessary half twist in the first *x*-coordinate. We require that (x^1, x^2, x^3) belongs to $\mathbb{R}^3 - \{0\}$ to remove the 0-section.

The parametrization of Eq. (1.1) is not a very convenient one for studying the Ricci tensor. We make a linear change of coordinates on \mathbb{R}^6 and let $\mathcal{M}_1(p, q, t, s, v, w)$ be defined by

$$\Gamma_{11}{}^1 = 2q, \qquad \Gamma_{11}{}^2 = p + t, \ \Gamma_{12}{}^1 = \Gamma_{21}{}^1 = w, \Gamma_{12}{}^2 = \Gamma_{21}{}^2 = q + s, \ \Gamma_{22}{}^1 = v, \qquad \Gamma_{22}{}^2 = p - t.$$

We substitute these values in Eq. (2.4) to obtain

$$\rho = \begin{pmatrix} p^2 + q^2 - s^2 - t^2 - pw - tw & -(p+t)v + (q+s)w \\ -(p+t)v + (q+s)w & qv - sv + (p-t-w)w \end{pmatrix}$$

We set $\rho = 0$. If $v^2 + w^2 \neq 0$, we obtain

$$p = (v^{2} + w^{2})^{-1} \{2svw + t(w^{2} - v^{2}) + w^{3}\}, \text{ and}$$

$$q = (v^{2} + w^{2})^{-1} \{s(v^{2} - w^{2}) + vw(2t + w)\}.$$
(2.1)

If $v^2 + w^2 = 0$, we obtain a single equation

$$p^2 + q^2 - s^2 - t^2 = 0. (2.2)$$

We introduce polar coordinates $v = r \cos(\theta)$ and $w = r \sin(\theta)$ to remove the singularity at (v, w) = (0, 0) in Eq. (2.1). We may then combine Eqs. (2.1) and Eq. (2.2) into a single expression:

$$p = p(\theta, r, s, t) := r \sin^3(\theta) + s \sin(2\theta) - t \cos(2\theta),$$

$$q = q(\theta, r, s, t) := r \cos(\theta) \sin^2(\theta) + s \cos(2\theta) + t \sin(2\theta).$$
(2.3)

We assume $(r, s, t) \neq (0, 0, 0)$ to avoid the trivial structure \mathcal{M}_0^0 as the parametrization of Eq. (2.3) is singular there. We have $\theta \in [0, 2\pi]$ and $(r, s, t) \in \mathbb{R}^3 - \{0\}$; since we are permitting *r* to be negative in polar coordinates, we must identify (θ, r) with $(\theta + \pi, -r)$ and obtain thereby the bundle $\mathbb{L} \oplus \mathbb{1} \oplus \mathbb{1}$ minus the zero section over $[0, \pi]$.

Remark 2.1 The isotropy subgroups of the structures \mathcal{M}_i^0 vary with *i* and the dimension of the orbit space varies correspondingly. We list below the associated isotropy subgroups.

$$\begin{split} \mathcal{I}(\mathcal{M}_{0}^{0}) &= \mathrm{GL}(2, \mathbb{R}), \\ \mathcal{I}(\mathcal{M}_{1}^{0}) &= \left\{ T : T(x^{1}, x^{2}) = (x^{1}, ax^{2}) \text{ for } a \neq 0 \right\}, \\ \mathcal{I}(\mathcal{M}_{2}^{0}) &= \left\{ id, T \right\}, \text{ where } T(x^{1}, x^{2}) = (-x^{2}, -x^{1}), \\ \mathcal{I}(\mathcal{M}_{3}^{0}) &= \left\{ T : T(x^{1}, x^{2}) = (ax^{1}, x^{2}) \text{ for } a \neq 0 \right\}, \\ \mathcal{I}(\mathcal{M}_{4}^{0}) &= \left\{ T : T(x^{1}, x^{2}) = (a^{2}x^{1} + bx^{2}, ax^{2}) \text{ for } a \neq 0, \ b \in \mathbb{R} \right\}, \\ \mathcal{I}(\mathcal{M}_{5}^{0}) &= \left\{ T : T(x^{1}, x^{2}) = (x^{1}, \pm x^{2}) \right\}. \end{split}$$

🖄 Springer

2.2 The space of type ${\cal A}$ models with rank-one Ricci tensor

If the Ricci tensor has rank 1, we can make a linear change of coordinates to ensure ρ is a multiple of $dx^2 \otimes dx^2$. We first establish Theorem 1.2. We then examine the isotropy groups of the models in Eq. (1.3) to determine the orbits of the Type A models which are not Type B.

Lemma 2.2 Let \mathcal{M} be a Type \mathcal{A} model which is not flat. Then ρ is a multiple of $dx^2 \otimes dx^2$ if and only if b = 0 and d = 0.

Proof A direct computation shows

$$\rho = \begin{pmatrix} (a-d)d + b(f-c) & cd - be \\ cd - be & c(f-c) + (a-d)e \end{pmatrix}.$$
 (2.4)

Consequently, if b = 0 and if d = 0, then ρ is a multiple of $dx^2 \otimes dx^2$. Conversely, assume ρ is a multiple of $dx^2 \otimes dx^2$ or, equivalently, $-bc + ad - d^2 + bf = 0$ and cd - be = 0. We wish to show b = d = 0.

Case 1. Suppose that $d \neq 0$. The equations are homogeneous so we may assume d = 1 and hence c = be. Substituting these values yields $\rho_{11} = -1 + a - b^2 e + bf = 0$. Thus $a = 1 + b^2 e + bf$. This yields $\rho = 0$ so this case is impossible as we assumed \mathcal{M} was not flat.

Case 2. Suppose that $b \neq 0$. Again, we may assume b = 1 so e = cd. We compute $\rho_{11} = f - c + ad - d^2$. Setting this to zero again yields $\rho = 0$ which is impossible.

Proof of Theorem 1.2 Let $\mathcal{A}_{\pm,0}^1$ be the space of all Type \mathcal{A} models where the Ricci tensor is a non-zero multiple of $dx^2 \otimes dx^2$ where the \pm refers to whether ρ_{22} is positive or negative. By Lemma 2.2, we set b = d = 0 and obtain $\rho_{22} = -c^2 + ae + cf$. We make a change of variables setting

$$a = q + v, b = 0, c = u + p, d = 0, e = q - v, f = 2p.$$

We then have $\rho_{22} = (p^2 + q^2 - u^2 - v^2)dx^2 \otimes dx^2$ so we may identify

$$\begin{split} \mathcal{A}^1_{+,0} &= \{ \Gamma(p,q,u,v) : p^2 + q^2 > u^2 + v^2 \}, \\ \mathcal{A}^1_{-,0} &= \{ \Gamma(p,q,u,v) : p^2 + q^2 < u^2 + v^2 \}. \end{split}$$

We examine $\mathcal{A}^{1}_{-,0}$ as the analysis of $\mathcal{A}^{1}_{+,0}$ is the same after interchanging the roles of (p, q)and (u, v). Let $\mathcal{D}^{2} := \{(U, V) \in \mathbb{R}^{2} : U^{2} + V^{2} < 1\}$ be the open disk in \mathbb{R}^{2} . Let $-\mathcal{M}$ be the Type \mathcal{A} model $\mathcal{M}(-a, -b, -c, -d, -e, -f)$. We construct a diffeomorphism Φ from $S^{1} \times \mathbb{R}^{+} \times \mathcal{D}^{2}$ to $\mathcal{A}^{1}_{-,0}$ by setting $u = r \cos \theta$, $v = r \sin \theta$, p = rU, q = rV. For r > 0, $\theta \in S^{1}$, and $U^{2} + V^{2} < 1$ we have

$$\mathcal{M} = \mathcal{M}(r(\sin(\theta) + V), 0, r(\cos(\theta) + U), 0, r(V - \sin(\theta)), 2rU).$$

It is clear that $-\mathcal{M}(\theta, r, U, V) = \mathcal{M}(\theta + \pi, r, -U, -V).$

Let $\tilde{\mathcal{M}}$ be an arbitrary Type \mathcal{A} model with Rank $\{\rho_{\tilde{\mathcal{M}}}\} = 1$ and $\rho_{\tilde{\mathcal{M}}}$ negative semi-definite. We may express

$$\rho_{\tilde{\mathcal{M}}} = \lambda(\cos(\phi)dx^2 - \sin(\phi)dx^1) \otimes (\cos(\phi)dx^2 - \sin(\phi)dx^1)$$

for $\lambda < 0$. Here ϕ is only defined modulo π instead of the usual 2π . Let

$$T_{\phi}(x^{1}, x^{2}) = (\cos(\phi)x^{1} + \sin(\phi)x^{2}, -\sin(\phi)x^{1} + \cos(\phi)x^{2}).$$

🖉 Springer

be the associated rotation so that $T_{\phi}^*(dx^2) = -\sin(\phi)dx^1 + \cos(\phi)dx^2$ and thus $(T_{\phi})_*\tilde{\mathcal{M}}$ belongs to \mathcal{A}^1_{-0} . We then have

$$\mathcal{A}_{-}^{1} = \{\mathbb{R}/(2\pi\mathbb{Z}) \times \mathcal{A}_{-,0}^{1}\}/(\phi, \mathcal{M}) \sim (\phi + \pi, -\mathcal{M})$$

where the gluing reflects the fact that when $\phi = \pi$ we have replaced (x^1, x^2) by $(-x^1, -x^2)$ and thus changed the sign of the Christoffel symbols. Using our previous parametrization of $\mathcal{A}^1_{-,0}$, this yields

$$\mathcal{A}^{1}_{-} = \left(\mathbb{R}^{2}/(2\pi\mathbb{Z})^{2}\right) \times \mathbb{R}^{+} \times \mathcal{D}^{2}/\left\{\left(\phi, \theta, r, U, V\right) \sim \left(\phi + \pi, \theta + \pi, r, -U, -V\right)\right\}.$$

After setting $\tilde{\theta} = \theta + \phi$, we can rewrite this equivalence relation in the form

$$(\phi, \tilde{\theta}, r, U, V) \sim (\phi + \pi, \tilde{\theta}, r, -U, -V).$$

The variable $\tilde{\theta}$ now no longer plays a role in the gluing. After replacing \mathbb{R}^+ by \mathbb{R} and \mathcal{D}^2 by \mathbb{R}^2 , we see \mathcal{A}^1_- is diffeomorphic to $S^1 \times S^1 \times \mathbb{R}^3$ modulo the relation

$$(\phi, \tilde{\theta}, x_1, x_2, x_3) \sim (\phi + \pi, \tilde{\theta}, x_1, -x_2, -x_3)$$

These gluing relations define the total space of the bundle $\mathbb{1} \oplus \mathbb{L} \oplus \mathbb{L}$ over (S^1, ϕ) . Since $\mathbb{L} \oplus \mathbb{L}$ is diffeomorphic to the trivial 2-plane bundle $\mathbb{1} \oplus \mathbb{1}$, we obtain finally that \mathcal{A}_{-}^1 is diffeomorphic to $S^1 \times S^1 \times \mathbb{R}^3$.

We adopt the notation of Eq. (1.3) to describe the orbits of the models $\mathcal{M}_i^1(\cdot)$ in the following lemma.

Lemma 2.3 (1) $\mathcal{I}(\mathcal{M}_1^1) = \{id\}.$ (2) $\mathcal{I}(\mathcal{M}_2^1(c_1)) = \{id\} \text{ if } c_1 \neq -\frac{1}{2}.$ (3) $\mathcal{I}(\mathcal{M}_2^1(-\frac{1}{2})) = \{id, T\}, \text{ where } T(x^1, x^2) = (x^1 + x^2, -x^2).$ (4) $\mathcal{I}(\mathcal{M}_3^1(c_1)) = \{T : T(x^1, x^2) = (v^{-1}x^1, x^2) \text{ for } v \in \mathbb{R} \setminus \{0\}\}.$ (5) $\mathcal{I}(\mathcal{M}_4^1(c)) = \{T : T(x^1, x^2) = (x^1 - wx^2, x^2) \text{ for } w \in \mathbb{R}\}, \text{ if } c \neq 0..$ (6) $\mathcal{I}(\mathcal{M}_4^1(0)) = \{T : T(x^1, x^2) = (v^{-1}(x^1 - wx^2), x^2) \text{ for } w \in \mathbb{R}, v \in \mathbb{R} \setminus \{0\}\}.$ (7) $\mathcal{I}(\mathcal{M}_5^1(c)) = \{id\}, \text{ if } c \neq 0.$ (8) $\mathcal{I}(\mathcal{M}_5^1(0)) = \{id, T\} \text{ where } T(x^1, x^2) = (x^1, -x^2).$

Proof Suppose $T \in \mathcal{I}(\mathcal{M}_i^1(\cdot))$. The Ricci tensor of $\mathcal{M}_i^1(\cdot)$ is a non-zero multiple of $dx^2 \otimes dx^2$. Since T must preserve the Ricci tensor, $T(dx^2) = \pm dx^2$. This implies $(y^1, y^2) = T(x^1, x^2) = (v^{-1}(x^1 - wx^2), \varepsilon x^2)$ for $\varepsilon = \pm 1$. Then

$$\begin{split} dy^{1} &= v^{-1}(dx^{1} - wdx^{2}), \quad dy^{2} = \varepsilon dx^{2}, \quad \partial_{y^{1}} = v\partial_{x^{1}}, \quad \partial_{y^{2}} = \varepsilon(w\partial_{x^{1}} + \partial_{x^{2}}), \\ {}^{y}\Gamma_{11}{}^{1} &:= v({}^{x}\Gamma_{11}{}^{1} - w {}^{x}\Gamma_{11}{}^{2}). \\ {}^{y}\Gamma_{12}{}^{1} &:= v^{2}\varepsilon^{x}\Gamma_{11}{}^{2}, \\ {}^{y}\Gamma_{12}{}^{1} &:= \varepsilon({}^{x}\Gamma_{12}{}^{1} + w {}^{(x}\Gamma_{11}{}^{1} - {}^{x}\Gamma_{12}{}^{2} - w {}^{x}\Gamma_{11}{}^{2})), \\ {}^{y}\Gamma_{12}{}^{2} &:= v({}^{x}\Gamma_{12}{}^{2} + w {}^{x}\Gamma_{11}{}^{2}), \\ {}^{y}\Gamma_{22}{}^{1} &:= \frac{1}{v}({}^{x}\Gamma_{22}{}^{1} + w(2 {}^{x}\Gamma_{12}{}^{1} - {}^{x}\Gamma_{22}{}^{2}) + w^{2}({}^{x}\Gamma_{11}{}^{1} - 2 {}^{x}\Gamma_{12}{}^{2}) - w^{3} {}^{x}\Gamma_{11}{}^{2}), \\ {}^{y}\Gamma_{22}{}^{2} &:= \varepsilon({}^{x}\Gamma_{22}{}^{2} + 2w {}^{x}\Gamma_{12}{}^{2} + w^{2} {}^{x}\Gamma_{11}{}^{2}). \end{split}$$

Deringer

Case 1. $\mathcal{M}_{1}^{1} = \mathcal{M}(-1, 0, 1, 0, 0, 2)$ and $T^{*}\mathcal{M}_{1}^{1} = \mathcal{M}(-v, 0, \varepsilon(1-w), 0, -\frac{w^{2}}{v}, 2\varepsilon)$. Examining Γ_{11}^{1} and Γ_{22}^{2} yields $\varepsilon = 1$ and v = 1. Examining Γ_{22}^{1} yields w = 0.

Case 2. We have $c \notin \{0, -1\}$, $\mathcal{M}_2^1(c) = \mathcal{M}(-1, 0, c, 0, 0, 1 + 2c)$, and

 $T^*\mathcal{M}_2^1(c) = \mathcal{M}(-v, 0, \varepsilon(c-w), 0, -\frac{1}{v}(w+w^2), (1+2c)\varepsilon).$

Examining Γ_{11}^{11} yields v = 1. Suppose $c \neq -\frac{1}{2}$. Examining Γ_{22}^{22} yields $\varepsilon = 1$. Since $\varepsilon = 1$, examining Γ_{12}^{11} yields w = 0. Suppose $c = -\frac{1}{2}$. Examining Γ_{12}^{11} and Γ_{22}^{11} yields $(\varepsilon, w) = (1, 0)$ or $(\varepsilon, w) = (-1, -1)$.

Case 3. We have $c \notin \{0, -1\}$, $\mathcal{M}_3^1(c) = \mathcal{M}(0, 0, c, 0, 0, 1 + 2c)$, and

$$T^*\mathcal{M}_3^1(c) = \mathcal{M}(0, 0, c\varepsilon, 0, -\frac{w}{v}, (1+2c)\varepsilon).$$

Examining Γ_{12}^{1} yields $\varepsilon = 1$. Examining Γ_{22}^{1} yields w = 0. There is then no condition on v.

Case 4. $\mathcal{M}_4^1(c) = \mathcal{M}(0, 0, 1, 0, c, 2)$ and $T^*\mathcal{M}_4^1(c) = \mathcal{M}(0, 0, \varepsilon, 0, \frac{c}{v}, 2\varepsilon)$. Examining Γ_{22}^2 yields $\varepsilon = 1$. There is no condition on w. If $c \neq 0$, examining Γ_{22}^1 yields v = 1; if c = 0, there is no condition on v.

Case 5. $\mathcal{M}_5^1(c) = \mathcal{M}(1, 0, 0, 0, 1 + c^2, 2c)$ and

$$T^*\mathcal{M}_5^1(c) = \mathcal{M}(v, 0, w\varepsilon, 0, \frac{1}{v}(1 + (c - w)^2), 2c\varepsilon).$$

Examining $\Gamma_{11}{}^1$ shows v = 1. Examining $\Gamma_{12}{}^1$ shows w = 0. If $c \neq 0$, examining $\Gamma_{22}{}^2$ shows $\varepsilon = 1$. If c = 0, we obtain $\varepsilon = \pm 1$.

The general linear group $GL(2, \mathbb{R})$ acts on the space \mathbb{R}^6 of all Type \mathcal{A} geometries via change of coordinates. Let $GL_+(2, \mathbb{R})$ be the subgroup of matrices with positive determinant. If \mathcal{M} is a Type \mathcal{A} model with Rank $\{\rho\}(\mathcal{M}) = 2$, then the associated space of affine Killing vector fields is 2-dimensional and \mathcal{M} does not also admit a Type \mathcal{B} structure [3]. But there are Type \mathcal{A} models with Rank $\{\rho\} = 1$ which also admit Type \mathcal{B} structures. Let $\mathcal{O}^1_{\pm} \subset \mathcal{A}^1_{\pm}$ be the set of Type \mathcal{A} models with Rank $\{\rho\} = 1$ and which do not admit Type \mathcal{B} structures.

Theorem 2.4 (1) O¹₋ is empty; every element of A¹₋ also admits Type B structure.
(2) GL₊(2, ℝ) acts without fixed points on O¹₊. The action admits a section s : ℝ → O¹₊ so O¹₊ = GL₊(2, ℝ) × ℝ is a principal fiber bundle over ℝ.

Proof Results of [3] show that the models $\mathcal{M}_i^1(\cdot)$ for $1 \le i \le 4$ also admit Type \mathcal{B} structures while the models $\mathcal{M}_5^1(c)$ do not. The Ricci tensor associated to $\mathcal{M}_i^1(\cdot)$ is given by:

$$\begin{split} \rho^{\mathcal{M}_1^l} &= dx^2 \otimes dx^2, \qquad \rho^{\mathcal{M}_2^l} = c_1(1+c_1)dx^2 \otimes dx^2, \\ \rho^{\mathcal{M}_3^l} &= c_1(1+c_1)dx^2 \otimes dx^2, \quad \rho^{\mathcal{M}_4^l} = dx^2 \otimes dx^2, \\ \rho^{\mathcal{M}_5^l} &= (1+c^2)dx^2 \otimes dx^2. \end{split}$$

If $\rho \leq 0$, then it follows that i = 2 or i = 3 and $c \in (-1, 0)$. Thus any element of \mathcal{A}^1_- admits a Type \mathcal{B} structure which proves Assertion (1).

Let $\mathfrak{M}_5^1 = \bigcup_c \mathcal{M}_5^1(c)$; this is a smooth curve in \mathbb{R}^6 . Type \mathcal{A} models which are linearly equivalent to $\mathcal{M}_1^1, \mathcal{M}_2^1(c_1)$ for $c_1 + c_1^2 > 0, \mathcal{M}_3^1(c_1)$ for $c_1 + c_1^2 > 0, \text{ or } \mathcal{M}_4^1(c)$ all admit Type \mathcal{B} structures and have $\rho \ge 0$. Thus we may identify the structures $\mathcal{O}_{1,+}$ which do not admit Type \mathcal{B} structures with $\mathrm{GL}(2, \mathbb{R}) \cdot \mathfrak{M}_5^1$. Let $T(x^1, x^2) := (x^1, -x^2)$. We have $T\mathcal{M}_5^1(c) = \mathcal{M}_5^1(-c)$. Since $\det(T) = -1$, we conclude therefore that $\mathcal{O}_+^1 = \mathrm{GL}_+(2, \mathbb{R}) \cdot \mathfrak{M}_5^1$. By Lemma 2.3, the action of $\mathrm{GL}_+(2, \mathbb{R})$ on \mathfrak{M}_5^1 is fixed point free. Assertion (2) follows. \Box

3 The space of type B connections

Let $\mathcal{N}(a, b, c, d, e, f) := (\mathbb{R}^+ \times \mathbb{R}, \nabla)$ where the Christoffel symbols of ∇ are given by (1.4). The Ricci tensor needs not be symmetric in this setting:

$$\rho = (x^{1})^{-2} \begin{pmatrix} (a-d+1)d+b(f-c) & cd-be+f\\ c(d-1)-be & -c^{2}+fc+(a-d-1)e \end{pmatrix}$$
(3.1)

3.1 The space of flat type *B* models

The proof of Theorem 1.3 Let $\mathcal{N} = \mathcal{N}(a, b, c, d, e, f)$. We clear denominators in Eq. (3.1) and set $\tilde{\rho}_{ij} = (x^1)^2 \rho_{ij}$. Adopt the notation of Eq. (1.5). A direct computation shows that the structures $\mathcal{U}_i(\cdot)$ are flat. We distinguish cases to establish the converse. We use Eq. (3.1) and set $\tilde{\rho} = 0$. Since $\tilde{\rho}_{12} - \tilde{\rho}_{21} = c + f$, f = -c.

Case 1. Assume $e \neq 0$. Set c = rs, e = r, and f = -rs for $r \neq 0$. Then

$$\tilde{\rho}_{22} = -r(1-a+d+2rs^2)$$
 and $\tilde{\rho}_{21} = -r(b+s-ds)$.

We solve these equations to obtain $a = 1 + d + 2rs^2$ and b = (-1 + d)s. We have $\tilde{\rho}_{11} = 2(d + rs^2)$. Thus $d = -rs^2$ which gives the parametrization U_1 .

Case 2. Suppose e = 0. Set a = u, b = v, and f = -c to obtain

$$\tilde{\rho} = \begin{pmatrix} d(1+u-d) - 2cv \ c(d-1) \\ c(d-1) & -2c^2 \end{pmatrix}.$$

This yields c = 0 and d(1 + u - d) = 0. If we set d = 0, we obtain the parametrization U_2 ; if we set d = 1 + u, we obtain the parametrization U_3 . This establishes the first assertion.

The parametrization \mathcal{U}_2 and \mathcal{U}_3 intersect when u = -1; the intersection is transversal along the curve $\mathcal{N}(-1, v, 0, 0, 0, 0)$. We wish to extend the parametrization \mathcal{U}_1 to study the limiting behavior as $e \to 0$. We distinguish cases.

Case A. Suppose $\lim_{n\to\infty} \mathcal{U}_1(r_n, s_n) \in \text{Range}\{\mathcal{U}_2\}$. We have

$$\begin{split} \lim_{n \to \infty} 1 + r_n s_n^2 &= u, \ \lim_{n \to \infty} -s_n (1 + r_n s_n^2) = v, \ \lim_{n \to \infty} -r_n s_n = 0, \\ \lim_{n \to \infty} -r_n s_n^2 &= 0, \quad \lim_{n \to \infty} r_n = 0, \quad \lim_{n \to \infty} -r_n s_n = 0. \end{split}$$

These equations imply u = 1, $\lim_{n\to\infty} r_n = 0$, $\lim_{n\to\infty} s_n = -v$. Thus we may simply set r = 0 to obtain a transversal intersection along the curve $\mathcal{N}(1, v, 0, 0, 0, 0)$.

Case B. Suppose $\lim_{n\to\infty} \mathcal{U}_1(r_n, s_n) \in \text{Range}\{\mathcal{U}_3\}$. We have

$$\lim_{n \to \infty} 1 + r_n s_n^2 = u, \quad \lim_{n \to \infty} -s_n (1 + r_n s_n^2) = v, \quad \lim_{n \to \infty} -r_n s_n = 0,$$
$$\lim_{n \to \infty} -r_n s_n^2 = 1 + u, \quad \lim_{n \to \infty} r_n = 0, \qquad \qquad \lim_{n \to \infty} -r_n s_n = 0.$$

These equations imply u = 0, $\lim_{n \to \infty} r_n = 0$, and $\lim_{n \to \infty} r_n s_n^2 = -1$. We change variables setting $r = -t^2$ and $s = \frac{1}{t} + w$ to express

$$\mathcal{U}_1(-t^2, \frac{1}{t} + w) = \mathcal{N}(-tw(2+tw), w(2+3tw+t^2w^2), -t(1+tw), (1+tw)^2, -t^2, t(1+tw)).$$

We may now safely set t = 0 to obtain the intersection with Range{ U_3 } along the curve $\mathcal{N}(0, 2w, 0, 1, 0, 0)$.

🖄 Springer

3.2 Type \mathcal{B} models with alternating Ricci tensor

It was shown in [3] that any Type \mathcal{B} model with alternating Ricci tensor is linearly equivalent to one of the following models:

$$\begin{aligned} \mathcal{N}_1(c) &:= \mathcal{N}(0, c, 1, 0, 0, 1), & \text{for } c \in \mathbb{R}, \\ \mathcal{N}_2(c, \pm) &:= \mathcal{N}(1 \mp c^2), c, 0, \mp c^2, \pm 1, \pm 2c), \text{ for } c > 0. \end{aligned}$$

The proof of Theorem 1.4 Adopt the notation of Eq. (1.6). It is clear that \mathcal{V}_1 defines a smooth 3-dimensional submanifold of \mathbb{R}^6 . To see similarly that \mathcal{V}_2 is smooth, we note that we can recover $u = \frac{1}{2}(c+f)$ and v = e. If $v \neq 0$, then $w = \frac{1}{v}(f-u)$ while if v = 0, $w = \frac{1}{2u}(1-a)$. Thus \mathcal{V}_2 is 1-1; it is not difficult to verify that the Jacobian determinant is non-zero. This shows that \mathcal{V}_2 also defines a smooth 3-dimensional submanifold of \mathbb{R}^6 . We set v = 0 and u = r to see that \mathcal{V}_1 and \mathcal{V}_2 intersect along the surface v = 0, u = r, s = 1 - 2uw and t = w(1 - uw). A direct computation shows that the associated Ricci tensors are non-trivial and alternating:

$$\tilde{\rho}_{\mathcal{V}_1} = r \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 and $\tilde{\rho}_{\mathcal{V}_2} = u \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Let \mathcal{N} be a Type \mathcal{B} model with $\rho_s = 0$ and $\tilde{\rho}_{a,12} = \frac{c+f}{2} \neq 0$. We distinguish two cases.

Case 1. Suppose e = 0. Set c = 2r - f for $r \neq 0$. Setting the $\rho_s = 0$ yields

$$\rho_{s,11}: 0 = d(1+a-d) + 2b(f-r), \ \rho_{s,12}: 0 = (1-d)f + r(2d-1),$$

$$\rho_{s,22}: 0 = -2(f^2 - 3fr + 2r^2).$$

We solve the equation $-2(f^2 - 3fr + 2r^2) = 0$ to obtain f = r or f = 2r. Setting f = 2r yields ρ_{s12} : 0 = r which is false. Thus f = r. We obtain $\rho_{s,12} = 2dr$ so d = 0. Set a = s and b = t to obtain the parametrization \mathcal{V}_1 .

Case 2. Set c = 2u - f and e = v for $u \neq 0$ and $v \neq 0$. We obtain

$$\begin{split} \rho_{s,11} &: \ 0 = d(1+a-d) + 2b(f-u), \\ \rho_{s,12} &: \ 0 = (1-d)f - u + 2du - bv, \\ \rho_{s,22} &: \ 0 = -2f^2 + 6fu - 4u^2 - (1-a+d)v. \end{split}$$

Setting $\rho_{s,12} = 0$ and $\rho_{s,22} = 0$ yields $a = \frac{1}{v}(2f^2 - 6fu + 4u^2 + v + dv)$ and $b = \frac{1}{v}(f - df - u + 2du)$. We obtain $\rho_{s,11} = \frac{1}{v}(2(f^2 - 2fu + u^2 + dv))$. This implies that $d = -\frac{(f-u)^2}{v}$. Setting f = vw + u yields the parametrization \mathcal{V}_2 . This parametrization can be extended safely to v = 0; we require $u \neq 0$ to ensure $\rho_a \neq 0$.

References

- Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous linear connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153, 1–18 (2008)
- Brozos-Vázquez, M., García-Río, E., Gilkey, P.: On distinguished local coordinates for locally homogeneous affine surfaces, arXiv:1901.03523 [math.DG]
- Brozos-Vázquez, M., García-Río, E., Gilkey, P.: Homogeneous affine surfaces: affine Killing vector fields and gradient Ricci solitons. J. Math. Soc. Japan 70, 25–70 (2018)
- Brozos-Vázquez, M., García-Río, E., Gilkey, P.: Homogeneous affine surfaces: Moduli spaces. J. Math. Anal. Appl. 444, 1155–1184 (2016)

- Dusek, Z.: The existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds. J. Geom. Phys. 60, 687–689 (2010)
- Gilkey, P., Valle-Regueiro, X.: Applications of PDEs to the study of affine surface geometry. Mat. Vesnik 71, 45–62 (2019)
- Gilkey, P., Park, J.H., Valle-Regueiro, X.: Affine Killing complete and geodesically complete homogeneous affine surfaces. J. Math. Anal. Appl. 474, 179–193 (2019)
- Guillot, A., Sánchez Godinez, A.: A classification of locally homogeneous affine connections on compact surfaces. Ann. Global Anal. Geom. 46, 335–339 (2014)
- Kowalski, O., Vlášek, Z.: On the local moduli space of locally homogeneous affine connections in plane domains. Comment. Math. Univ. Carolin. 44, 229–234 (2003)
- Kowalski, O., Sekizawa, M.: The Riemann extensions with cyclic parallel Ricci tensor. Math. Nachr. 287, 955–961 (2014)
- Opozda, B.: A classification of locally homogeneous connections on 2-dimensional manifolds. Differential Geom. Appl. 21, 173–198 (2004)
- Opozda, B.: Locally homogeneous affine connections on compact surfaces. Proc. Amer. Math. Soc. 132, 2713–2721 (2004)
- Vanžurová, A.: On metrizability of locally homogeneous affine 2-dimensional manifolds. Arch. Math. (Brno) 49, 347–357 (2013)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.