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Abstract
In this paper, the Chover’s law of the iterated logarithm is established for a sequence of inde-
pendent and identically distributed random variables under a sub-linear expectation space.
As applications, several results on the Chover’s law of the iterated logarithm for traditional
probability space have been generalized to the sub-linear expectation space context. Our
results generalize those on Chover’s law of the iterated logarithm previously obtained by
Qi and Cheng (Chinese Ann Math 17(A):195–206, 1996), Wu and Jiang (J Korean Stat Soc
39(2):199–206, 2010), and Wu (Acta Math Appl Sin (English Series) 32(2):385–394, 2016)
from traditional probability space to the general sub-linear expectation space. There is no
report on this form of Chover’s law of the iterated logarithm under sub-linear expectation,
and we provide a method to study this subject.

Keywords Sub-linear expectation · Chover’s law of the iterated logarithm · Independence
random variables

Mathematics Subject Classification Primary 60F15

1 Introduction

The classical limit theorems in probability theory play a fruitful role in the development
of probability theory and its applications. These theorems have always been considered
under additive probabilities and additive expectations. However, such additive hypothesis is
unrealistic in many areas of applications. In fact, non-additive probabilities and non-additive
expectations are useful tools for studying uncertainties for a long time, as early as 1961,
Ellsberg [10] presented his arguments against necessarily additive probabilities with the help
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of the ‘mind experiments’. Feynman et al. [11] described the deviation of elementary particles
from mechanical behavior to wave-like behavior by non-additivity, and so on.

The most convincing and well known axiomatization of additive probability was given
by Savage [26]. However compelling Savage’s axioms and results are, they are not immune
to attacks. Ellsberg [10] gave an example to show that in some cases additive probability of
Savage [26] is not applicable, and that without additive probability measure is more suitable.
In the framework ofAnscombe andAumann [1], Schmeidler [27] and [28] also suggested that
the probability measure is allowed to be non-additive. Facts have proved that Schmeidler’s
model may also explain some of the ‘paradoxes’ or counterexamples to the vonNeumann and
Morgenstern [19] expected theory, which have already stimulated many studies of various
generalizations of expected theory. Such asHuber and Strassen [15], Quiggin [25], Yaari [36],
Gilboa [12], Wakker [30], El Karoui et al. [9], Artzner et al. [2], Marinacci [17], Denis and
Martini [8] and others, lead to results of the non-additive theory. This was the primary motive
for developing the non-additive probability and non-additive expected theory. In the recent
years, the theory andmethodology of non-additive expectation have been well developed and
received much attention in some application fields. For example, G-expectation (sub-linear
expectation), was introduced in Peng [20] in the framework of the sub-linear expectation in a
general function space by relaxing the linear property of the classical expectation to the sub-
additivity and positive homogeneity. As a further development, Peng [21–23] constructed the
basic framework, basic properties and a new central limit theorem under sub-linear expecta-
tions. In the framework of Peng [20–23] and Zhang [37–39], Hu and Yang [14] established
the exponential inequalities, Rosenthal’s inequalities, Kolmogorov’s and Marcinkiewicz’s
strong law of larger numbers and Hartman–Wintner’s law of iterated logarithm, Hu [13]
and Chen [6] studied Kolmogorov’s strong law of larger numbers, Wu and Jiang [35] estab-
lished the Chover’s law of iterated logarithm (LIL), Wu et al. [31] obtained the asymptotic
approximation of inverse moment, Li et al. [16] get reflected solutions of backward stochastic
differential equations driven by G-Brownian motion, and so on.

In probability space, Chover [7] established first the classical Chover’s LIL for a sequence
of independent and identically distributed (i.i.d.) random variables. Some results of Chover’s
LIL obtained by Mikosch [18], Vasudeva [29], Qi and Cheng [24] for sequences of indepen-
dent random variables with different distributions, Chen [5], Cai [4] and Wu and Jiang [32]
for dependent sequences. Some papers have been devoted to the study of another form of
Chover’s LIL. We refer the reader to Qi and Cheng [24], Wu and Jiang [33], and Wu [34].

Recently, for a sequence of extended i.i.d. random variables under sub-linear expectation,
Wu and Jiang [35] established the Chover’s LIL under the following condition

V(|X1| > x) = c(x)l(x)

xα
for 0 < α < 2 and any x > 0, (1.1)

where, c(x) ≥ 0, limx→∞ c(x) = c > 0, l(x) > 0 is a slowly varying function, and V is the
capacities corresponding to the sub-linear expectations (defined in Sect. 2).

The main purpose of this paper is to study and obtain another form of Chover’s LIL, and
extend the LIL obtained by Qi and Cheng [24] and Wu and Jiang [33], etc. from traditional
probability space to the general sub-linear expectation space. Because sub-linear expectation
and capacity are not additive, many powerful tools and common methods for linear expec-
tations and probabilities are no longer valid, so that the study of the limit theorems under
sub-linear expectation becomes much more complex and difficult. We provide a method to
study this subject.
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2 Basic settings

The study of this paper uses the framework and notations which are established by Peng [23]
and Wu and Jiang [35]. Let (�,F) be a measurable space and let H be a linear space of
real functions defined on (�,F) such that ϕ(X1, . . . , Xn) ∈ H for any X1, . . . , Xn ∈ H,
ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of local Lipschitz functions ϕ

satisfying

|ϕ(x) − ϕ(y)| ≤ c(1 + |x|m + |y|m)|x − y|, ∀x, y ∈ Rn,

for some c > 0,m ∈ N depending on ϕ. H is considered as a space of “random variables”.
In this case we denote X ∈ H.

Definition 2.1 Ê : H → [−∞,+∞] is called a sub-linear expectation, if Ê satisfies the
following properties: for all X , Y ∈ H, we have

(a) Monotonicity: If X ≥ Y , then ÊX ≥ ÊY ;
(b) Constant preserving: Êc = c;
(c) Sub-additivity: Ê(X + Y ) ≤ ÊX + ÊY ;
(d) Positive homogeneity: Ê(λX) = λÊX , λ ≥ 0.

The triple (�,H, Ê) is called a sub-linear expectation space, compared with the classical
probability space (�,F, P). For Ê, the linear property of expectation is replaced by the
sub-additivity and positive homogeneity. Ê is called a sub-linear expectation.

Given a sub-linear expectation Ê, let us denote the conjugate expectation ε̂ of Ê by

ε̂X := −Ê(−X), ∀X ∈ H.

In a sub-linear expectation space, we replace the concept of probability with the concept
of capacity. Let G ⊂ F . A function V : G → [0, 1] is called a capacity if

V (∅) = 0, V (�) = 1 and V (A) ≤ V (B) for ∀A ⊆ B, A, B ∈ G.

It is called to be sub-additive if V (A
⋃

B) ≤ V (A)+V (B) for all A, B ∈ G with A
⋃

B ∈ G.
In the sub-linear expectation space (�,H, Ê), we denote a pair (V, ν) of capacities by

V(A) := inf{Êξ ; I (A) ≤ ξ, ξ ∈ H}, ν(A) := 1 − V(Ac), ∀A ∈ F,

where Ac is the complement set of A. By definition of V and ν, it is obvious that V is
sub-additive, and ν(A) ≤ V(A), for all A ∈ F .

Definition 2.2 (i) Ê is called to be countably sub-additive if it satisfies

Ê(X) ≤
∞∑

n=1

Ê(Xn), whenever X ≤
∞∑

n=1

Xn, X , Xn ∈ H, X ≥ 0, Xn ≥ 0.

It is called to be continuous if it satisfies

Ê(Xn) ↑ Ê(X), if 0 ≤ Xn ↑ X , and Ê(Xn) ↓ Ê(X), if 0 ≤ Xn ↓ X , where X , Xn ∈ H.

(ii) A capacity V is called to be countably sub-additive if

V

( ∞⋃

n=1

An

)

≤
∞∑

n=1

V (An), ∀An ∈ F .

It is called to be continuous if it satisfies

V (An) ↑ V (A), if An ↑ A, and V (An) ↓ V (A), if An ↓ A, where A, An ∈ F .
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Also, we define the Choquet integrals/expecations (CV,Cν) by

CV (X) :=
∫ ∞

0
V (X > x)dx +

∫ 0

−∞
(V (X > x) − 1)dx

with V being replaced by V and ν respectively.
The following Proposition 2.3 contains some basic properties used in this paper. Proposi-

tion 2.3 (i)–(iv) is easily shown from theDefinitions 2.1 and 2.2 , respectively. Proposition 2.3
(v) follows from I (|X | ≥ x) ≤ |X |p/x p ∈ H, p > 0 and Proposition 2.3 (iii), Proposi-
tion 2.3 (vi) and (vii) has been established by Zhang [37], Lemma 4.1, Lemma 4.5(iii)).

Proposition 2.3 (i) For all X , Y ∈ H,

ε̂X ≤ ÊX , Ê(X + c) = ÊX + c, |Ê(X − Y )| ≤ Ê|X − Y | and Ê(X − Y ) ≥ ÊX − ÊY .

(ii) If ÊY = ε̂Y , then Ê(X + aY ) = ÊX + aÊY for any a ∈ R.
(iii) If f ≤ I (A) ≤ g, f , g ∈ H, then

Ê f ≤ V(A) ≤ Êg, ε̂ f ≤ ν(A) ≤ ε̂g. (2.1)

(iv) If V (resp. Ê) is continuous, then V (resp. Ê) is countably sub-additive.
(v) Markov inequality: for any X ∈ H,

V(|X | ≥ x) ≤ Ê(|X |p)/x p, ν(|X | ≥ x) ≤ ε̂(|X |p)/x p for any x > 0, p > 0.

(vi) Hölder inequality: ∀X , Y ∈ H, p, q > 1 satisfying p−1 + q−1 = 1,

Ê(|XY |) ≤
(
Ê(|X |p)

)1/p (
Ê(|Y |q)

)1/q
.

particularly, Jensen inequality: ∀X ∈ H,
(
Ê(|X |r )

)1/r ≤
(
Ê(|X |s)

)1/s
for 0 < r ≤ s.

(vii) If Ê is countably sub-additive, then Ê(|X |) ≤ CV(|X |) for any X ∈ H.

Definition 2.4 (Peng [22,23], Zhang [37])

(i) (Identical distribution) Let X1 and X2 be two random variables defined in sub-linear

expectation spaces (�,H, Ê). They are called identically distributed, denoted by X1
d=

X2, if

Ê(ϕ(X1)) = Ê(ϕ(X2)), ∀ϕ ∈ Cl,Lip(R).

(ii) (Independence) In a sub-linear expectation space (�,H, Ê), a random vector Y =
(Y1, . . . , Yn), Yi ∈ H is said to be independent to another random vector X =
(X1, . . . , Xm), Xi ∈ H under Ê if for each test function ϕ ∈ Cl,Lip(Rm × Rn) we
have Ê(ϕ(X,Y)) = Ê[Ê(ϕ(x,Y))|x=X], whenever ϕ̄(x) := Ê (|ϕ(x,Y)|) < ∞ for all
x and Ê (|ϕ̄(X)|) < ∞.
From the definition of independence, it is easily seen that, if Y is independent to X , and
X , Y ∈ H, X > 0, ÊY > 0, then

Ê(XY ) = Ê(X)Ê(Y ).

(iii) (I.I.D. Random Variables) A sequence {Xn; n ≥ 1} of random variables is said to be
independent and identically distributed (i.i.d.), if Xi+1 is independent to (X1, . . . , Xi )

and Xi
d= X1 for each i ≥ 1.
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It can be showed that if {Xn; n ≥ 1} is a sequence of independent random variables
and f1(x), f2(x), . . . ∈ Cl,Lip(R), then { fn(Xn); n ≥ 1} is also a sequence of independent
random variables.

In the following, let {Xn; n ≥ 1} be a sequence of random variables in a sub-linear
expectation space (�,H, Ê), and Sn =∑n

i=1 Xi . The symbol c stands for a generic positive
constant which may differ from one place to another. Let an  bn denote that there exists a
constant c > 0 such that an ≤ cbn for sufficiently large n, ax ∼ bx denotes limx→∞ ax/bx =
1, and I (·) denotes an indicator function.

To prove our results, we need the following three lemmas.

Lemma 2.5 (Borel–Cantelli Lemma, Zhang 2016a, Lemma 3.9 [37]) Let {An; n ≥ 1}
be a sequence of events in F . Suppose that V is a countably sub-additive capacity. If∑∞

n=1 V (An) < ∞, then V (An; i.o.) = 0, where {An; i.o.} =⋂∞
n=1
⋃∞

m=n Am.

Lemma 2.6 (Zhang (2016b, Theorem 2.1 (b) [38], 2016a, Theorem 3.1 (b) [37])) Suppose
that Xk is independent to (Xk+1, . . . , Xn) for each k = 1, . . . , n − 1, and ÊXn ≤ 0. Then

Ê

(∣
∣
∣
∣max
k≤n

Sk

∣
∣
∣
∣

p)

≤ cp

⎧
⎨

⎩

n∑

k=1

Ê|Xk |p +
(

n∑

k=1

ÊX2
k

)p/2
⎫
⎬

⎭
for p ≥ 2. (2.2)

V(Sn ≥ x) ≤ c

∑n
k=1 ÊX2

k

x2
, for x > 0. (2.3)

Here cp is a positive constant depending only on p.

Definition 2.7 l(x) > 0 is said to be a slowly varying function at infinity if

lim
t→∞

l(t x)

l(t)
= 1 for any x > 0.

f (x) > 0 is said to be a regularly varying function with index ρ at infinity, we write f ∈ Rρ ,
if

lim
t→∞

f (t x)

f (t)
= xρ for any x > 0.

R0 is the class of slowly varying function at infinity.

From Bingham et al. (1987 [3], (i) corresponds to p.12 Theorem 1.3.1, (ii)–(iv) corre-
spond to p.16 Proposition 1.3.6, (v) corresponds to Theorem 1.5.4, and (vi) corresponds to
Proposition 1.5.7 (ii)), we have

Proposition 2.8 (i) l(x) is a slowly varying function at infinity if and only if

l(x) = c(x) exp

{∫ x

a

b(u)

u
du

}

, x ≥ a,

for some a > 0, where c(x) ≥ 0, limx→∞ c(x) = c > 0, and limx→∞ b(x) = 0.
Furthermore, f (x) is a regularly varying function with index ρ at infinity if and only if

f (x) = xρl(x),

where l(x) is a slowly varying function.
(ii) If l(x) varies slowly, then (ln l(x))/ ln x → 0 as x → ∞.
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(iii) If l(x) varies slowly, so does (l(x))α for every α ∈ R. If l1, l2 vary slowly, so do
l1(x)l2(x), l1(x) + l2(x).

(iv) If l(x) varies slowly and α > 0, then

xαl(x) → ∞, x−αl(x) → 0 (x → ∞).

(v) l(x) is a slowly varying function at infinity if and only if, for every α > 0, there exists
a non-decreasing function φ and a non-increasing function ψ with

xαl(x) ∼ φ(x), x−αl(x) ∼ ψ(x) (x → ∞).

(vi) If fi ∈ Rρi (i = 1, 2), f2(x) → ∞ as x → ∞, then f1( f2(x)) ∈ Rρ1ρ2 .

Lemma 2.9 (Qi and Cheng 1996 [24]) Suppose that l(x) is a slowly varying function at
infinity and h(x) is a positive function with limx→∞ h(x) = ∞. Then, for any given δ > 0,
there exists an x0 > 0 such that

h−δ(x) ≤ inf
x≤y≤xl(x)

l(y)

l(x)
≤ sup

x≤y≤xl(x)

l(y)

l(x)
≤ hδ(x) for all x > x0.

3 Chover’s law of the iterated logarithm

In the sub-linear expectation space, the almost sure convergence of randomvariable sequences
is different from the traditional probability space. Next we give the definition of almost sure
convergence of a sequence of random variables in sub-linear expectation space.

Definition 3.1 A sequence of random variables {Xn; n ≥ 1} in (�,H, Ê) is said to converge
to X almost surely V , denoted by Xn → X a.s. V as n → ∞ if, V (Xn � X) = 0.

In general, for arbitrary event A, it is said that A has the certain nature a.s. V , if V (A does
not have the certain nature) = 0.

V can be replaced by V and ν respectively. By ν(A) ≤ V(A) and ν(A)+ V(Ac) = 1 for any
A ∈ F , it is obvious that Xn → X a.s.V implies Xn → X a.s. ν, but Xn → X a.s. ν does not
imply Xn → X a.s. V. Therefore, we can’t define Xn → X a.s. V with V(Xn → X) = 1.

We give an example satisfying Xn → X a.s. ν; but not Xn → X a.s.V. To this end, first
give the notations of G-normal distribution which is introduced by Peng [23].

Definition 3.2 (G-normal random variable) For 0 ≤ σ 2 ≤ σ̄ 2 < ∞, a random variable ξ

in a sub-linear expectation space (�,H, Ê) is called a G-normal N (0, [σ 2, σ̄ 2]) distributed
random variable, where σ̄ 2 = Êξ2, σ 2 = ε̂ξ2 (write ξ ∼ N (0, [σ 2, σ̄ 2]) under Ê), if for
any ϕ ∈ Cl,Lip(R), the function u(x, t) = Ê

[
ϕ(x + √

tξ)
]
(x ∈ R, t ≥ 0) is the unique

viscosity solution of the following heat equation:

∂t u − G(∂2xxu) = 0, u(0, x) = ϕ(x),

where G(α) = (σ̄ 2α+ − σ 2α−)/2.

In particular, if σ = σ̄ := σ , then N (0, [σ 2, σ̄ 2]) = N (0, σ 2) is the usual normal
distribution random variable.

Example 3.3 Let Xn be independent G-normal random variables with Xn ∼ N (0, [1/42n, 1])
in a sub-linear expectation space (�,H, Ê). Ê and V are continuous. Then Xn → 0 a.s. ν;
but not Xn → 0 a.s.V.
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Proof Takeμ = 1/2, g is defined by the following form (3.6), by (2.1), Xn being independent
and V being continuous.

V

( ∞⋂

m=n

(|Xm | ≤ 1/2m)

)

≥ Ê

( ∞∏

m=n

g(2m |Xm |)
)

=
∞∏

m=n

Ê
(
g(2m |Xm |))

≥
∞∏

m=n

V(|Xm | ≤ 1/2m+1).

Hence, combiningMarkov inequality:ν(|Xm | > 1/2m+1) ≤ 22m+2ε̂X2
m = 22m+24−2m =

1/4m−1, we get

ν(Xn � 0) ≤ ν

( ∞⋂

n=1

∞⋃

m=n

(|Xm | > 1/2m)

)

≤ ν

( ∞⋃

m=n

(|Xm | > 1/2m)

)

= 1 − V

( ∞⋂

m=n

(|Xm | ≤ 1/2m)

)

≤ 1 −
∞∏

m=n

V(|Xm | ≤ 1/2m+1)

= 1 −
∞∏

m=n

(
1 − ν(|Xm | > 1/2m+1)

)

≤ 1 −
∞∏

m=n

(1 − 1/4m−1) ≤
∞∑

m=n

1

4m−1

→ 0, as n → ∞.

That is Xn → 0 a.s. ν.
However, on the other hand

V

( ∞⋃

m=n

(|Xm | ≥ 1/2)

)

≥ V(|Xm | ≥ 1/2) ≥ V(|N (0, 1)| ≥ 1/2) = C0 > 0.

This combining with the continuity of V, implies

V(Xn � 0) ≥ V

( ∞⋂

n=1

∞⋃

m=n

(|Xm | > 1/2)

)

= lim
n→∞ V

( ∞⋃

m=n

(|Xm | ≥ 1/2)

)

≥ C0 > 0.

That is Xn � 0 a.s. V.
In traditional probability space, let {Xn; n ≥ 1} be a sequence of i.i.d. random variables

with a nondegenerate distribution function F satisfying 1 − F(x) = c1(x)l(x)
xα and F(−x) =

c2(x)l(x)
xα for 0 < α < 2, x → ∞, where for x > 0, ci (x) ≥ 0, limx→∞ ci (x) = ci , i = 1, 2,

c1 + c2 > 0, and l(x) is a slowly varying function at infinity. Chover [7] established the
following classical Chover LIL:

lim sup
n→∞

∣
∣
∣
∣
Sn
n1/α

∣
∣
∣
∣

1
ln ln n = e

1
α a.s.,
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Some Chover’s LIL type results obtained by Mikosch [18], Qi and Cheng [24],
Vasudeva [29], Chen [5], Wu and Jiang [32]. Qi and Cheng [24], Wu and Jiang [33], and
Wu [34] also studied and obtained another form of Chover’s LIL. They proved separately
that there exist some constants An ∈ R, Bn > 0 such that

lim sup
n→∞

∣
∣
∣
∣
Sn − An

Bn

∣
∣
∣
∣

1
ln ln n ≤ e

1
2 a.s. (3.1)

for sequences of independent and dependent random variables.
Recently, under sub-linear expectation, for a sequence of extended i.i.d. random variables

satisfying (1.1), Wu and Jiang [35] established the following Chover’s LIL:

lim sup
n→∞

⎛

⎜
⎜
⎝

|Sn − cn |
B

(

n
∏k

j=1 lg j n

)

⎞

⎟
⎟
⎠

1
lgk+2 n

= e
1
α a.s. ν, (3.2)

where cn = 0 for 0 < α < 1, cn = nÊX1 for 1 ≤ α < 2, lg0 x := x and lg j x :=
ln{max(e, lg j−1 x)} for j ≥ 1, and B(x) = inf{y; V(|X1| ≥ y) ≤ 1/x} for x > 0.

In this paper we studied and extended another form of Chover’s LIL different from (3.2).
The corresponding results are obtained for traditional probability space by obtained Qi and
Cheng [24], Wu and Jiang [33], and Wu [34], etc. from traditional probability space to the
sub-linear expectation space. We will prove that Chover’s LIL similar to (3.1) still holds
under the sub-linear expectation space.

Later in this paper, we always assume that {Xn; n ≥ 1} is a sequence of identically
distributed random variables in (�,H, Ê) and satisfies the following condition

lim
x→∞

x2V(|X1| > x)

CV(X2
1 I (|X1| ≤ x))

= 0. (3.3)

It shall be noted that the identical distribution is defined under Ê, not under V (see
Definition 3.2). The identically distributed of Xi refers to Ê( f (Xi )) = Ê( f (X1)) for
f (·) ∈ Cl,Lip(R), but does not imply V( f (Xi ) ∈ A) = V( f (X1) ∈ A). Therefore, it is
necessary to prove that (3.3) is equivalent to for any natural number k ≥ 1,

lim
x→∞

x2V(|Xk | > x)

CV(X2
k I (|Xk | ≤ x))

= 0. (3.4)

We only need to prove that (3.3) implies (3.4). Firstly, by the definition of CV,

CV(X2
k I (|Xk | ≤ x)) =

∫ ∞

0
V(X2

k I (|Xk | ≤ x) > y)dy

=
∫ ∞

0
2tV(|Xk |I (|Xk | ≤ x) > t)dt (let y = t2)

=
∫ x

0
2tV(t < |Xk | ≤ x)dt . (3.5)

In order to prove (3.4), we need to convertV to Ê by using (2.1), so we construct the lower
function g(x) ∈ Cl,Lip(R).

For 0 < μ < 1, let g(x) ∈ Cl,Lip(R) be a non-increasing function such that

0 ≤ g(x) ≤ 1 for all x and g(x) = 1 if x ≤ μ, g(x) = 0 if x > 1. (3.6)
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Then

I (|x | ≤ μ) ≤ g(|x |) ≤ I (|x | ≤ 1), I (|x | > c) ≤ 1 − g

( |x |
c

)

≤ I (|x | > μc)

for any c > 0. (3.7)

Thus, combining this with (2.1) and Xk
d= X1, we obtain for x > 0

V(|Xk | > x) ≤ Ê

(

1 − g

( |Xk |
x

))

= Ê

(

1 − g

( |X1|
x

))

≤ V(|X1| > μx)

and for any 0 < a < b,

V(a < |Xk | ≤ b) ≥ Ê

(

g

( |Xk |
b

)

− g

(
μ|Xk |
a

))

= Ê

(

g

( |X1|
b

)

− g

(
μ|X1|
a

))

≥ V

(
a

μ
< |X1| ≤ μb

)

.

Hence, combining with (3.5),

CV(X2
k I (|Xk | ≤ x)) ≥

∫ x

0
2tV(t/μ < |X1| ≤ μx)dt

=
∫ x/μ

0
2μ2zV(z < |X1| ≤ μx)dz (let z = t/μ)

≥ μ2
∫ μx

0
2zV(z < |X1| ≤ μx)dz

= μ2CV(X2
1 I (|X1| ≤ μx)).

Therefore,

x2V(|Xk | > x)

CV(X2
k I (|Xk | ≤ x))

≤ 1

μ4

(μx)2V(|X1| > μx)

CV(X2
1 I (|X1| ≤ μx))

→ 0 as x → ∞

from (3.3). That is, (3.4) is established.
Now, we show that (3.3) implies CV(|X1|p) < ∞ for all 0 < p < 2.
Set

G(x) := V(|X1| > x), K (x) := 2x−2
∫ x

0
tG(t)dt,

H(x) := 2
∫ x

0
tG(t)dt = x2K (x), L(x) := G(x)

K (x)
, x > 0,

and define

D(x) := inf{y; 1/K (y) ≥ x} for x > 0, and a j = D( j ln j(ln ln j)2).

By (3.5),

CV(X2
1 I (|X1| ≤ x)) =

∫ x

0
2tV(t < |X1| ≤ x)dt ≤ 2

∫ x

0
tG(t)dt = H(x).
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On the other hand, by sub-additivity of V, we have V(t < |X1| ≤ x) ≥ V(|X1| > t) −
V(|X1| > x), so

CV(X2
1 I (|X1| ≤ x)) ≥

∫ x

0
2t (V(|X1| > t) − V(|X1| > x)) dt = H(x) − x2V(|X1| > x).

Hence, we get

H(x) − x2V(|X1| > x) ≤ CV(X2
1 I (|X1| ≤ x)) ≤ H(x). (3.8)

Therefore, when (3.3) holds, we get CV(X2
1 I (|X1| ≤ x)) ∼ H(x), and

L(x) = G(x)

K (x)
= x2V(|X1| > x)

H(x)
∼ x2V(|X1| > x)

CV(X2
1 I (|X1| ≤ x))

→ 0. (3.9)

From

(
H(x)

exp(
∫ x
1

2L(t)
t dt)

)′

≡ 0, we have

H(x) = H(1) exp

(∫ x

1

2L(t)

t
dt

)

.

Thus, from (3.9) and Proposition 2.8 (i) (iii), H(x) is a slowly varying function at infinity
and 1/K (x) = x2/H(x) is a regularly varying function with index 2 at infinity. Hence, from
Bingham et al. [3], p. 28 Theorem 1.5.12), D(x) is a regularly varying function with index
1/2 at infinity and 1/K (D(x)) ∼ x as x → ∞, so, combining Proposition 2.8 (iii) (vi),

D(x) = x1/2l1(x), an = n1/2l2(n), (3.10)

where l1(·) and l2(·) are slowly varying functions, and

lim
x→∞ xK (D(x)) = 1. (3.11)

By (3.10) and Proposition 2.8 (ii)

lim
x→∞

ln(D(x))

ln x
= 1

2
. (3.12)

By (3.9): there is n0, so that when n ≥ n0 , we have G(can) ≤ K (can), (3.11), and
K (can) ∼ c−2K (an), for any c > 0,

∞∑

n=1

V(|X1| > can) =
∞∑

n=1

G(can) 
∞∑

n=n0

K (can) ∼ c−2
∞∑

n=n0

K (an)

= c−2
∞∑

n=n0

K (D(n ln n(ln ln n)2))
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∼ c−2
∞∑

n=n0

1

n ln n(ln ln n)2

< ∞. (3.13)

For any 0 < p < 2, by (3.10) and the Proposition 2.8 (iv), we have an ≤ n1/p for
sufficiently large n, thus,

CV(|X1|p) =
∞∫

0

V(|X1|p > x)dx =
∞∑

n=0

n+1∫

n

V(|X1| > x1/p)dx

≤
∞∑

n=0

n+1∫

n

V(|X1| > n1/p)dx =
∞∑

n=0

V(|X1| > n1/p) 
∞∑

n=0

V(|X1| > an) < ∞,

from (3.13).
Further, if Ê is countably sub-additive, then by Proposition 2.3 (vii), Ê(|X1|p) ≤

CV(|X1|p) < ∞ for any 0 < p < 2. In particular, Ê(|X1|) < ∞.
With the above preparation, we can describe our theorems as follows.

Theorem 3.4 Assume that {Xn; n ≥ 1} is a sequence of i.i.d. random variables with ÊXk =
ε̂Xk, Ê and V are countably sub-additive, and (3.3) holds. Then

lim sup
n→∞

(
|S̃n |
D(n)

) 1

ln ln n ≤ e
1
2 a.s. V, (3.14)

where S̃n =∑n
j=1(X j − Ê(X j )).

It is natural to ask, whether there exists a distribution satisfying (3.3) such that the lower
bound of (3.14) holds. Our answer is positive under ν. And we can get a fixed value such
that the equal in (3.14) is established about ν under some extra conditions for L(x).

Theorem 3.5 Assume that the conditions of Theorem 3.4 hold, and δ ∈ [0, 1) is fixed. If for
any given ε > 0, there exists an x1 > 0 such that for all x ≥ x1,

(ln x)−ε−δ ≤ L(x) ≤ (ln x)ε−δ. (3.15)

Then

lim sup
n→∞

(
|S̃n |
D(n)

) 1

ln ln n ≤ e
1−δ
2 a.s. V, (3.16)

further, if V is continuous, then

lim sup
n→∞

(
|S̃n |
D(n)

) 1

ln ln n ≥ e
1−δ
2 a.s. ν, (3.17)

so,

lim sup
n→∞

(
|S̃n |
D(n)

) 1

ln ln n = e
1−δ
2 a.s. ν

where S̃n is defined by Theorem 3.4.
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Remark 3.6 Theorems 3.4 and 3.5 are Chover’s LIL under the sub-linear expectations. Theo-
rems 3.4 and 3.5 extended Chover’s LIL by obtained Qi and Cheng [24], Wu and Jiang [33],
and Wu [34], etc. from traditional probability space to the sub-linear expectation space.

Remark 3.7 Under condition (1.1), Wu and Jiang [35] studied and obtained Chover’s LIL:
(3.2). In this paper, under condition (3.3), we study and obtain another form of Chover’s LIL:
(3.14), (3.16) and (3.17). The research contents and research results of Wu and Jiang [35]
and this paper are not overlapping and do not include each other.

Remark 3.8 It is important to note that the condition that “a sequence {Xn; n ≥ 1} is inde-
pendent under Ê” does not implies that “a sequence {Xn; n ≥ 1} is independent under V”.
So, we have not “the divergence part” of the Borel–Cantelli lemma.We can’t use the standard
argument of the Borel–Cantelli lemma to show (3.17). It is very difficult to prove (3.17), and
we do not know yet whether (3.17) is established about almost surely V.

Proof of Theorem 3.4 Suppose that {Xn; n ≥ 1} is a sequence of independent random vari-
ables. It is important to note that the independence under Ê is defined through ϕ inCl,Lip (see
Definition 3.2) and the indicator function I (|x | ≤ a) does not belong to Cl,Lip . Therefore,
in order to ensure that the sequence of truncated random variables is also independent, we
cannot censor Xi using the indicator function. This needs to modify the indicator function
by functions g(·) in Cl,Lip . Let g(·) be defined by (3.6).

For a j = D( j ln j(ln ln j)2), let,

Y j = X j g

( |X j |
a j

)

, Ỹ j = Y j − ÊY j ,

and

T̃n =
n∑

j=1

Ỹ j , Bn =
n∑

j=1

ÊỸ j
2
.

Obviously, {Ỹ j ; j ≥ 1} is also a sequence of independent random variables with ÊỸ j = 0.
By (3.7), (3.8), (3.10), (3.11), Proposition 2.3 (vi): Jensen inequality, Ê is countably sub-

additive and Proposition 2.3 (vii), X j
d= X1, and H(x) is increasing,

Bn =
n∑

j=1

Ê(Y j − ÊY j )
2 ≤ 2

n∑

j=1

Ê

(
Y 2
j + (ÊY j )

2
)


n∑

j=1

ÊY 2
j =

n∑

j=1

Ê

(

X2
j g

( |X j |
a j

))

=
n∑

j=1

Ê

(

X2
1g

( |X1|
a j

))

≤
n∑

j=1

CV

(

X2
1g

( |X1|
a j

))

≤
n∑

j=1

CV

(
X2
1 I (|X1| ≤ a j )

)

≤
n∑

j=1

H(a j ) ≤ nH(an)

= nH(D(n ln n(ln ln n)2))

= nK (D(n ln n(ln ln n)2))(D(n ln n(ln ln n)2))2
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∼
√
n√

ln n ln ln n
l1(n ln n(ln ln n)2)D(n ln n(ln ln n)2)

= D(n)D(n ln n(ln ln n)2)
l1(n ln n(ln ln n)2)

l1(n)

1
√
ln n(ln ln n)2

.

Thus, for any ε > 0, let h(x) = ln x(ln ln x)2, δ = 1/2 in Lemma 2.9, for sufficiently
large n, we get

Bn ≤ D(n)D(n ln n(ln ln n)2) = D(n)an . (3.18)

On the other hand, let h(x) = ln x(ln ln x)2, δ = ε/4 in Lemma 2.9, for sufficiently large
n, we have

D(n)(ln n)(1+ε)/2

an
= D(n)(ln n)(1+ε)/2

D(n ln n(ln ln n)2)
= (ln n)(1+ε)/2
√
ln n(ln ln n)2

l1(n)

l1(n(ln n)(ln ln n)2)

≥ (ln n)(1+ε)/2
√
ln n(ln ln n)2

(ln n(ln ln n)2)−ε/4

= (ln n)ε/4

(ln ln n)1+ε/2 ≥ (ln n)ε/8. (3.19)

For any ε > 0, let p > max(2, 1 + 4(1 − ε)/ε, 16/(5ε + 4)) in (2.2) of Lemma 2.6,
by Proposition 2.3 (v): Markov inequality, max1≤ j≤2n |Ỹ j | ≤ 2a2n , (3.18) and (3.19), for
sufficiently large n, we obtain

V

(

| max
1≤ j≤2n

T̃ j | ≥ D(2n)(ln 2n)(1+ε)/2
)

≤ Ê
∣
∣max1≤ j≤2n T̃ j

∣
∣p

Dp(2n)(ln 2n)(1+ε)p/2


∑2n

k=1 Ê|Ỹk |p +
(∑2n

k=1 ÊỸ 2
k

)p/2

Dp(2n)(ln 2n)(1+ε)p/2


∑2n

k=1 ÊỸ 2
k a

p−2
2n + B p/2

2n

Dp(2n)(ln 2n)(1+ε)p/2

 a p−1
2n D(2n)

Dp(2n)(ln 2n)(1+ε)p/2
+ a p/2

2n Dp/2(2n)

Dp(2n)(ln 2n)(1+ε)p/2

≤ 1

(ln 2n)(p−1)ε/8+(1+ε)/2
+ 1

(ln 2n)(5ε+4)p/16

 1

n(p−1)ε/8+(1+ε)/2
+ 1

n(5ε+4)p/16
.

Hence,

∞∑

n=1

V

(

| max
1≤ j≤2n

T̃ j | ≥ D(2n)(ln 2n)(1+ε)/2
)

< ∞,

from (p − 1)ε/8 + (1 + ε)/2 > 1 and (5ε + 4)p/16 > 1. By the Borel-Cantelli lemma
(Lemma 2.5),
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lim sup
n→∞

|max1≤ j≤2n T̃ j |
D(2n)(ln 2n)(1+ε)/2

≤ 1 a.s. V.

For any n, there exists k such that 2k−1 ≤ n < 2k , by above inequality, for sufficiently large
n,

T̃n
D(n)(ln n)(1+ε)/2

≤ |max2k−1≤n≤2k T̃n |
D(2k−1)(ln 2k−1)(1+ε)/2

≤ |max1≤n≤2k T̃n |
D(2k)(ln 2k)(1+ε)/2

sup
k≥1

D(2k)(ln 2k)(1+ε)/2

D(2k−1)(ln 2k−1)(1+ε)/2

= max1≤n≤2k |T̃n |
D(2k)(ln 2k)(1+ε)/2

sup
k≥1

√
2l1(2k)k(1+ε)/2

l1(2k−1)(k − 1)(1+ε)/2

≤ c a.s. V. (3.20)

In the calculation ofV( f (Xi ) ∈ A), we need to convertV to Ê. By (2.1), (3.7), and (3.13),

∞∑

n=1

V(Xn �= Yn) ≤
∞∑

n=1

V(|Xn | > μan) ≤
∞∑

n=1

Ê

(

1 − g

( |Xn |
μan

))

=
∞∑

n=1

Ê

(

1 − g

( |X1|
μan

))

≤
∞∑

n=1

V(|X1| ≥ μ2an)

< ∞.

Thus, combining this with (3.20), we get

∑n
k=1(Xk − ÊYk)

D(n)
≤ c(ln n)(1+ε)/2 a.s. V for any ε > 0. (3.21)

Let g j (x) ∈ Cl,Lip(R), j ≥ 1 such that 0 ≤ g j (x) ≤ 1 for all x and g j

(
x
a2 j

)
= 1 if

a2 j−1 < x ≤ a2 j , g j

(
x
a2 j

)
= 0 if x ≤ μa2 j−1 or x > (1 + μ)a2 j . Then,

g j

( |X1|
a2 j

)

≤ I (μa2 j−1 < |X1| ≤ (1 + μ)a2 j ), 1 − g

( |X1|
a2k−1

)

≤
∞∑

j=k−1

g j

( |X1|
a2 j

)

.

(3.22)

Similar to (3.10) in Wu and Jiang [35],

∞∑

n=1

V(|X1| > can) ≥
∞∑

k=1

∑

2k−1≤n≤2k

V(|X1| > can) ≥
∞∑

k=1

∑

2k−1≤n≤2k

V(|X1| > ca2k )

= 2−1
∞∑

k=1

2kV(|X1| > ca2k ).

Hence, (3.13) implies

∞∑

k=1

2kV(|X1| > c · a2k ) < ∞, ∀c > 0.

123



Another form of Chover’s law of the iterated logarithm... Page 15 of 22 22

Thus, from Proposition 2.8 (v), D(n)(ln n)(1+ε)/2 and an being increasing, by g(x) being
decreasing, (3.19), (3.22), and Ê being countably sub-additive, we get

∞∑

n=1

Ê|Xn − Yn |
D(n)(ln n)(1+ε)/2

=
∞∑

k=1

∑

2k−1≤n<2k

Ê

(
|X1|

(
1 − g

( |X1|
an

)))

D(n)(ln n)(1+ε)/2

≤
∞∑

k=1

∑

2k−1≤n<2k

Ê

(
|X1|

(
1 − g

( |X1|
a2k−1

)))

D(2k−1)(ln 2k−1)(1+ε)/2

=
∞∑

k=1

2k−1

D(2k−1)(ln 2k−1)(1+ε)/2
Ê

(

|X1|
(

1 − g

( |X1|
a2k−1

)))

≤
∞∑

k=1

2k−1

D(2k−1)(ln 2k−1)(1+ε)/2

∞∑

j=k−1

Ê

(

|X1|g j

( |X1|
a2 j

))

=
∞∑

j=0

j+1∑

k=1

2k−1

D(2k−1)(ln 2k−1)(1+ε)/2
Ê

(

|X1|g j

( |X1|
a2k−1

))


∞∑

j=0

2 j

D(2 j )(ln 2 j )(1+ε)/2
Ê

(

|X1|g j

( |X1|
a2 j

))


∞∑

j=0

a2 j
2 j

D(2 j )(ln 2 j )(1+ε)/2
V
(|X1| > μa2 j−1

)


∞∑

j=1

2 j a2 j

D(2 j )(ln 2 j )(1+ε)/2
V
(|X1| > μa2 j

)


∞∑

j=1

2 j
V
(|X1| > μa2 j

)

< ∞.

Thus, by Kronecker Lemma,
∣
∣
∣
∑n

i=1(ÊXi − ÊYi )
∣
∣
∣

D(n)(ln n)(1+ε)/2
≤
∑n

i=1 Ê|Xi − Yi )|
D(n)(ln n)(1+ε)/2

→ 0, as n → ∞. (3.23)

This and (3.21) imply that

S̃n
D(n)

≤ c(ln n)(1+ε)/2 a.s. V for any ε > 0. (3.24)

considering {−Xn; n ≥ 1} instead of {Xn; n ≥ 1} in (3.24), we can obtain
∑n

k=1(−Xk − Ê(−Xk))

D(n)
≤ c(ln n)(1+ε)/2 a.s. V for any ε > 0.

By ÊXk = ε̂Xk , we have Ê(−Xk) = −ε̂Xk = −ÊXk , therefore,
∑n

k=1(Xk − Ê(Xk))

D(n)
≥ −c(ln n)(1+ε)/2 a.s. V for any ε > 0.
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Hence, for any ε > 0,

lim sup
n→∞

(
|S̃n |
D(n)

) 1
ln ln n

≤ e(1+ε)/2 a.s. V.

Let ε → 0, we have

lim sup
n→∞

(
|S̃n |
D(n)

) 1
ln ln n

≤ e1/2 a.s. V.

That is (3.14) holds. This completes the proof of Theorem 3.4.

Proof of Theorem 3.5 First prove (3.16). Let δ ∈ [0, 1) be fixed. And for any given ε > 0, let

a′
j = D

(
j(ln j)1−δ+ε(ln ln j)2

)
.

Using the same notations and similar method of Theorem 3.4, we can easily get

T̃n
D(n)(ln n)(1−δ+ε)/2

≤ c a.s. V. (3.25)

By (3.11), (3.12) and (3.15), for all sufficiently large n,

V(|X1| > a′
n) = G(a′

n) = K (a′
n)L(a′

n) ≤ K (a′
n)(ln a

′
n)

ε−δ

= K (D(n(ln n)1−δ+ε(ln ln n)2))(ln D(n(ln n)1−δ+ε)(ln ln n)2)ε−δ

∼ 1

n(ln n)1−δ+ε(ln ln n)2

1

2
(ln(n(ln n)1−δ+ε(ln ln n)2))ε−δ

∼ 1

2n ln n(ln ln n)2
.

Therefore
∑∞

n=1 V(Xn �= Yn) ≤∑∞
n=1 V(|X1| > μ2a′

n) < ∞, which combining (3.25), we
obtain

∑n
k=1(Xk − ÊYk)

D(n)(ln n)(1−δ+ε)/2
≤ c a.s. V.

Similar to the proof of (3.23), we can obtain

∣
∣
∣
∑n

k=1(ÊXk − ÊYk)
∣
∣
∣

D(n)(ln n)(1−δ+ε)/2
→ 0, as n → ∞.

Hence,

S̃n
D(n)

≤ c(ln n)(1−δ+ε)/2 a.s. V.

Considering {−Xn; n ≥ 1} instead of {Xn; n ≥ 1} in above formula and using the fact
ÊXk = ε̂Xk , we can obtain

S̃n
D(n)

≥ −c(ln n)(1−δ+ε)/2 a.s. V.
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Therefore, by the arbitrariness of ε

lim sup
n→∞

(
|S̃n |
D(n)

) 1
ln ln n

≤ e(1−δ)/2 a.s. V.

Secondly, we prove (3.17). By (3.11), (3.12) and (3.15), for any c > 0,

V(|X1| > cD(n(ln n)1−δ−ε)) = G(cD(n(ln n)1−δ−ε))

= K (cD(n(ln n)1−δ−ε))L(cD(n(ln n)1−δ−ε))

≥ cK (D(n(ln n)1−δ−ε))(ln D(n(ln n)1−δ−ε))−ε−δ

∼ c
(ln(n(ln n)1−δ−ε))−ε−δ

n(ln n)1−δ−ε
∼ c

n ln n
.

Hence
∞∑

n=1

V(|X1| > cdn) = ∞ for any c > 0, (3.26)

where dn = D(n(ln n)1−δ−ε). For any M > 0, let

ξ j = 1 − g

( |X j |
Mdj

)

, ηn =
n∑

j=1

ξ j and bn =
n∑

j=1

Êξ j .

By 1 − g(x) ∈ Cl,Lip , so {ξ j ; j ≥ 1} is also independent. Using (2.1), (3.7), and (3.26),

bn =
n∑

j=1

Ê

(

1 − g

( |X j |
Mdj

))

=
n∑

j=1

Ê

(

1 − g

( |X1|
Mdj

))

≥
n∑

j=1

V(|X1| > Mdj ) → ∞.

For any 0 < δ < ε < 1 and t > 0, we get

I

(
ηn − bn

bn
≥ −ε

)

≥ I

(

−ε ≤ ηn − bn
bn

< δ

)

≥ e−tδ exp

{

t
ηn − bn

bn

}

I

(

−ε ≤ ηn − bn
bn

< δ

)

=
⎧
⎨

⎩

0 ≥ e−tδ
(
exp
{
t ηn−bn

bn

}
− e−tε

)
,

ηn−bn
bn

< −ε,

e−tδ exp
{
t ηn−bn

bn

}
≥ e−tδ

(
exp
{
t ηn−bn

bn

}
− e−tε

)
, −ε ≤ ηn−bn

bn
< δ

≥ e−tδ
(

exp

{

t
ηn − bn

bn

}

− e−tε
)

I

(
ηn − bn

bn
< δ

)

≥ e−tδ
(

exp

{

t
ηn − bn

bn

}

− e−tε
)

− e−tδ−t exp

{

t
ηn

bn

}

I (
ηn − bn

bn
≥ δ)

≥ e−tδ
(

exp

{

t
ηn − bn

bn

}

− e−tε
)

− e−tδ−t exp

{

t
ηn

bn

}(

1 − g

(
ηn − bn

δbn

))

.

So, using Proposition 2.3 (i): Ê(X − Y ) ≥ ÊX − ÊY ,

V

(
ηn − bn

bn
≥ −ε

)

≥ e−tδ
(

Ê exp

{

t
ηn − bn

bn

}

− e−tε
)

−e−tδ−t
Ê

(

exp

{

t
ηn

bn

}(

1 − g

(
ηn − bn

δbn

)))

. (3.27)
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By the independence of {ξi ; i ≥ 1} and the fact that ex ≥ 1 + x ,

Ê

(

exp

{

t
ηn − bn

bn

})

=
n∏

j=1

Ê

(

exp

{

t
ξ j − Êξ j

bn

})

≥
n∏

j=1

Ê

(

t
ξ j − Êξ j

bn
+ 1

)

= 1.

(3.28)

On the other hand, by noting ex ≤ 1 + |x |e|x |, ex ≥ 1 + x and 0 ≤ ξ j ≤ 1,

Ê

(

exp

{

2t
ηn

bn

})

≤
n∏

j=1

Ê

(

1 + t
2ξ j
bn

e2t/bn
)

≤
n∏

j=1

exp

(

2t
Êξ j

bn
e2t/bn

)

= exp
(
2te2t/bn

)
.

(3.29)

Also, by (2.3) in Lemma 2.6, bn → ∞ and for 0 ≤ ξ j ≤ 1, Ê(ξ j − Êξ j )
2 = Ê(ξ2j −2ξ Êξ j +

(Êξ j )
2) ≤ Ê(ξ j + Êξ j ) = 2Ê(ξ j ),

V

(
ηn − bn

bn
≥ μδ

)

= V

⎛

⎝
n∑

j=1

(ξ j − Êξ j ) ≥ μδbn

⎞

⎠
∑n

j=1 Ê(ξ j − Êξ j )
2

b2n


∑n

j=1 Êξ j

b2n
= 1

bn
→ 0 as n → ∞.

Thus, by Proposition 2.3 (vi): Hölder inequality and (3.7), it follows that

Ê

[

exp

{

t
ηn

bn

}(

1 − g

(
ηn − bn

δbn

))]

≤
{

Ê

[

exp

{

2t
ηn

bn

}]

Ê

[

1 − g

(
ηn − bn

δbn

)]2
}1/2

≤ exp
(
te2t/bn

)(

V

(
ηn − bn

bn
≥ μδ

))1/2

≤ exp
(
te2t/bn

) 1

b1/2n

→ 0. (3.30)

Hence, substitute (3.28)–(3.30) in (3.27), we have

lim inf
n→∞ V

(
ηn − bn

bn
≥ −ε

)

≥ e−tδ(1 − e−tε).

Letting δ → 0 and then t → ∞, we get

lim
n→∞ V

(
ηn − bn

bn
≥ −ε

)

= 1.

Now, choose ε = 1 − μ > 0. Noting that

(
ηn

bn
> μ; i.o.

)

⊂
⎛

⎝
∞∑

j=1

ξ j = ∞
⎞

⎠ ⊂ (ξ j �= 0; i.o.) ⊂
( |Xn |
Mdn

> μ; i.o.
)

and the continuity of V, we get

V

(

lim sup
n→∞

|Xn |
dn

> μM

)

= V

( |Xn |
Mdn

> μ; i.o.
)

≥ V

⎛

⎝
∞∑

j=1

(

1 − g

( |X j |
Mdj

))

= ∞
⎞

⎠
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≥ V

(
ηn

bn
> μ; i.o.

)

= V

(
ηn − bn

bn
> −(1 − μ); i.o.

)

≥ lim sup
n→∞

V

(
ηn − bn

bn
> −(1 − μ)

)

= 1.

Note that

lim sup
n→∞

|Xn |
dn

= lim sup
n→∞

|S̃n − S̃n−1 + ÊXn |
dn

≤ 2 lim sup
n→∞

|S̃n |
dn

+ lim sup
n→∞

Ê|X1|
dn

= 2 lim sup
n→∞

|S̃n |
dn

.

From the arbitrariness of M , it follows that

V

(

lim sup
n→∞

|S̃n |
dn

> M1

)

= 1, ∀M1 > 0.

Therefore,

V

(

lim sup
n→∞

|S̃n |
dn

= ∞
)

= lim
M1→∞ V

(

lim sup
n→∞

|S̃n |
dn

> M1

)

= 1.

That is

lim sup
n→∞

|S̃n |
dn

= ∞ a.s. ν (3.31)

Since 0 ≤ δ < 1, let h(x) = (ln x)1−δ−ε , 0 < ε < 1 − δ, 0 < η = ε
4(1−δ−ε)

, applying
Lemma 2.9 and (3.10),

D(n(ln n)1−δ−ε)

D(n)(ln n)(1−δ)/2−ε
= (ln n)(1−δ−ε)/2l1(n(ln n)1−δ−ε)

l1(n)(ln n)(1−δ)/2−ε

≥ (ln n)ε/2(ln n)−η(1−δ−ε)

= (ln n)ε/4 → ∞, n → ∞.

Thus combining this with (3.31), for all sufficiently large n,

|S̃n |
D(n)(ln n)(1−δ)/2−ε

= |S̃n |
dn

D(n(ln n)1−δ−ε)

D(n)(ln n)(1−δ)/2−ε
≥ 1 a.s. ν

which implies

lim sup
n→∞

(
|S̃n |
D(n)

) 1
ln ln n

≥ e(1−δ)/2 a.s. ν

from ε being arbitrary. That is that (3.17) holds.
By Proposition 2.3, continuous implies countably sub-additive for V, and (3.16) implies

lim sup
n→∞

(
|S̃n |
D(n)

) 1

ln ln n ≤ e
1−δ
2 a.s. ν,
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Therefore, (3.16) and (3.17) imply

lim sup
n→∞

(
|S̃n |
D(n)

) 1

ln ln n = e
1−δ
2 a.s. ν

This completes the proof of Theorem 3.5.

Finally, we give an example to show that for each δ ∈ [0, 1), there exists a distribution
such that conditions in Theorem 3.5 are satisfied.

Example Assume that {Xn; n ≥ 1} is a sequence of i.i.d. random variables with ÊXk = ε̂Xk ,
Ê is countably sub-additive, and V is continuous. For δ ∈ [0, 1), if

G(x) := V(|X1| > x) = x−2 exp

{∫ x

e

2

u(ln u)δ ln ln u
du

}

, x > e,

then (3.16) and (3.17) hold.

Proof It is easy to check that

H(x) := 2
∫ x

0
tG(t)dt ∼

∫ x

e
2t−1 exp

{∫ t

e

2

u(ln u)δ ln ln u
du

}

dt

∼
∫ x

e

(
2

t
+ δ ln ln t

t ln1−δ t
+ 1

t ln1−δ t

)

exp

{∫ t

e

2

u(ln u)δ ln ln u
du

}

dt

=
∫ x

e

(

lnδ t ln ln t exp

{∫ t

e

2

u(ln u)δ ln ln u
du

})′
dt

= lnδ x ln ln x exp

{∫ x

e

2

u(ln u)δ ln ln u
du

}

as x → ∞.

Which implies that

H(x)

x2V(|X1| > x)
∼ lnδ x ln ln x → ∞ as x → ∞.

Thus, combining with (3.8), we have

x2V(|X1| > x)

CV(X2
1 I (|X1| ≤ x))

≤ x2V(|X1| > x)

H(x) − x2V(|X1| > x)
= 1

H(x)
x2V(|X1|>x)

− 1
→ 0, as x → ∞,

and

L(x) = x2V(|X1| > x)

H(x)
∼ 1

(ln x)δ ln ln x
.

Therefore, (3.3) and (3.15) hold. That is, all conditions of Theorem 3.5 are satisfied. Hence
(3.16) and (3.17) hold. ��
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