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Abstract
In this paper we look for the existence of large linear and algebraic structures of sequences
of measurable functions with different modes of convergence. Concretely, the algebraic size
of the family of sequences that are convergent in measure but not a.e. pointwise, uniformly
but not pointwise convergent, and uniformly convergent but not in L1-norm, are analyzed.
These findings extend and complement a number of earlier results by several authors.
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1 Introduction

The notion of convergence is natural and clear in the scalar case or even in the finite dimen-
sional setting. But when we speak about the limit of a sequence of functions, it is crucial to
define what mode of convergence we are going to deal with. Every undergraduate student
knows the notions of pointwise and uniform convergence of a sequence of functions, but
if we endow our space of functions with a measure or even a norm, we can speak about
convergence in measure, convergence almost everywhere, almost uniformly convergence,
convergence in norm, etc. In this paper we investigate the differences between some of these
modes of convergence in sequence spaces of measurable functions from the point of view of
lineability.
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The notion of lineability was first coined by Gurariy in 1966 (see [12]) in order to look for
linearity into nonlinear settings. Later, in 2009, this notion was extended by Aron, Seoane,
Gurariy et al. to an algebraic frame (see [3,4]). Let us introduce the definitions of this new
branch.

Definition 1.1 Given a topological vector space X , a subset A ⊂ X and a cardinal number
α, we say that A is:

• lineable if there is an infinite dimensional vector space M such that M\{0} ⊂ A,
• α-lineable if there is an a vector space M with dim(M) = α such that M\{0} ⊂ A (hence

lineability means ℵ0-lineability, where ℵ0 = card (N) and N denotes the set of positive
integers).

• maximal lineable if A is dim(X)-lineable.

Moreover, if X is a topological vector space, then A is said to be:

• spaceable in X when there exists a closed infinite dimensional vector space M such that
M\{0} ⊂ A;

• dense-lineable in X whenever there is a dense vector subspace M with M\{0} ⊂ A;
• α-dense-lineable in X when, in addition, dim(M) = α;
• maximal dense-lineable in X if we also have that dim(M) = dim(X).

When X is a topological vector space contained in some (linear) algebra, then A is called:

• algebrable if there is an algebra M so that M\{0} ⊂ A and M is infinitely generated,
that is, the cardinality of any system of generators of M is infinite;

• α-algebrable if there is an α-generated algebra M with M\{0} ⊂ A.
• strongly α-algebrable if, in addition, the algebra M can be taken free.

If the algebraic structure of X is commutative, the strong algebrability is equivalent to
the existence of a generating set B of the algebra M such that, for any s ∈ N, any nonzero
polynomial P in s variables without constant term and any distinct f1, . . . , fs ∈ B, we have
P( f1, . . . , fs) ∈ M\{0}.

There is a wide literature about lineability and we refer the reader to the survey [7] and
the book [2] for a huge compendium of results in many situations. But, up to the knowledge
of the authors, the study of lineability in function sequence spaces has not been extensively
treated, probably because of the difficulty to define an appropriate topology to handle with.

The first result about lineability in sequence spaces goes back to 2014, when Bernal and
Ordóñez [6] proved, as a consequence of a general result, the spaceability and maximal
lineability of the family of sequences ( fn : R → R)n of continuous bounded and integrable

functions such that ‖ fn‖∞
n→∞−→ 0, sup{‖ fn‖1 : n ∈ N} < +∞ but ‖ fn‖1 �→ 0 (n → ∞).

Here, as usual, R will denote the real line and for g : R → R, ‖g‖∞ will stand for the
supremum of |g| over R and ‖g‖1 for the integral of |g| (respect to the classical Lebesgue
measure) over R.

Later, in 2017, Araújo et al. [1] showed the c-lineability (where c denotes the cardinality
of the continuum) of the family of sequences of Lebesgue measurable functions R → R

such that fn converges pointwise to zero and fn(I ) = R for any non-degenerate interval
I ⊂ R and any n ∈ N, as well as the maximal dense-lineability (in the vector space of
sequences of Lebesgue-measurable functions [0, 1] → R) of the family of all sequences of
Lebesgue-measurable functions such that fn → 0 in measure but not almost everywhere in
[0, 1].
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In the probability theory setting, Conejero et al. (see [11]) studied in 2017 some lineabil-
ity and algebrability problems, as for example, convergent not L1-unbounded martingales,
pointwise convergent random variables whose means do not converge to the expected value,
stochastic processes that are L2 bounded and convergent but not pointwise convergent in a
null set.

Finally, in 2019, the authors [10] showed that the family of sequences of unbounded
continuous and integrable functions in [0,+∞) converging to zero uniformly in compacta
and in L1-norm is maximal dense-lineable and strongly algebrable. Moreover, they also
prove that the uniform convergence in compacta of [0,+∞) can be strengthened to almost
uniformly convergence, but not to uniform convergence in [0,+∞).

A number of results about Banach or quasi-Banach spaces of vector valued sequences,
but not directly related to modes of convergence, can be found in [5,8,9,15].

In this paper we try to contribute to the study of the algebraic structure inside func-
tion sequence spaces. Concretely, in Sect. 2 we are interested in the algebraic structure of
sequences converging to zero in measure but not almost everywhere (a.e.), thus extending
results of Araújo et al. [1]. Section 3 is devoted to analyze the difference between uniform,
pointwise, uniformly a.e. and almost uniform convergence; in particular we show the strong-
c-algebrability, spaceability and maximal dense-lineability of the family of all sequences of
functions converging to zero pointwise a.e. and almost uniformly but not uniformly in [0, 1].
Finally, in Sect. 4, the algebraic size of the set of sequences of functions that are uniformly
convergent to zero in [0,+∞) but not in L1-norm will be stated.

2 Measure vs pointwise a.e. convergence

Let L0 be the set of all measurable (with respect to the Lebesgue measure m) functions
[0, 1] → R. We denote by L0 the vector space of all classes of functions in L0, where two
functions are identified whenever they are equal a.e. in [0, 1]. In L0, it is natural to consider
the next two types of convergence: the (pointwise) a.e. convergence and the convergence
in measure. Recall that a sequence ( fn)n ⊂ L0 converges to f a.e. in [0, 1] if there is a
measurable set E such that m(E) = 0 and fn → f pointwise in [0, 1]\E (n → ∞); and
( fn)n ⊂ L0 converges to f in measure if

lim
n→∞ m({x ∈ [0, 1]: | fn(x) − f (x)| > ε}) = 0 for all ε > 0.

Using Egorov’s Theorem (see, for instance, [16, Theorem 8.3]), it is clear that convergence
a.e. in [0, 1] (in fact, in any finite-measure set) is stronger than convergence in measure, but
they are not equivalent. For instance, the so-called “Typewriter sequence” given by

Tn := χ[ j2−k ,( j+1)2−k ] (1)

(where, for each n, the non-negative integers j and k are uniquely determined by n = 2k + j
and 0 ≤ j < 2k , and χA denotes the characteristic function of A) satisfies that Tn → 0
(n → ∞) in measure (moreover, limn→∞ m({x ∈ [0, 1] : Tn(x) �= 0}) = 0) but, for every
point x0 ∈ [0, 1] the sequence (Tn(x0))n does not converge, since it takes infinitely many
times the value 0 and infinitely many times the value 1. However, the difference between both
types of convergence is not so big. In fact, convergence in measure of a sequence ( fn)n to f
implies a.e. convergence to f of some subsequence (see, for instance, [14, Theorem 21.9]).

In the following lemma we define a metric in L0 that will be used later (see [14, p. 379]).
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Lemma 2.1 Let be ρ : L0 × L0 → [0,+∞) the metric given by

ρ( f , g) =
∫

[0,1]
| f (x) − g(x)|

1 + | f (x) − g(x)|dx .

Then ρ( fn, f ) → 0 if and only if fn → f in measure.

Observe that under the topology generated by ρ, the space L0 turns out to be a separable
complete metrizable topological vector space, and the space LN

0 , endowed with the natural
product metric

D(( fn)n, (gn)n) =
∞∑

n=1

1

2n
· ρ( fn, gn)

1 + ρ( fn, gn)
,

becomes also a complete metrizable separable topological vector space. If we ask for the
amount of sequences with the same behaviour than the Typewriter sequence, we can say
that, in 2017, the authors of [1] proved the maximal dense-lineability in LN

0 of the family
of sequences ( fn)n ∈ LN

0 such that fn → 0 in measure but ( fn)n does not converges
a.e. in [0, 1]. In the next result we show that this family is also large in an algebraic sense.
Let us represent each N -tuple (r1, . . . , rN ) ∈ R

N by r, and set |r| := r1 + · · · + rN and
r · s := r1s1 + · · · + rN sN .

Theorem 2.2 The family of classes of sequences ( fn)n ∈ LN

0 such that fn → 0 in measure
but ( fn)n does not converge (to zero) a.e. in [0, 1] is strongly c-algebrable.

Proof Let H ⊂ (0,+∞) be a linearly Q-independent set (where Q will denote the set
of all rational numbers) with card (H) = c. For each c ∈ H , we define the sequence
F(c) = (F(c, n))n by

F(c, n)(x) := e−cx · Tn(x),

where (Tn)n is the Typewriter sequence defined in (1).
Let B be the algebra generated by the family of sequences {F(c) : c ∈ H}, that is,

B is the family of all sequences (Fn)n for which there exist N ∈ N, mutually different
c1, . . . , cN ∈ H and a nonzero polynomial P in N real variables without constant term such
that Fn = P(F(c1, n), . . . , F(cN , n)) for every n ∈ N. Therefore, there exist a nonempty
finite set J ⊂ N

N
0 \{(0, (N ). . ., 0)} and scalars αj ∈ R\{0}, for j ∈ J , such that, for all x ∈ R,

Fn(x) =
∑
j∈J

αj F(c1, n)(x) j1 · · · F(cN , n)(x) jN

=
∑
j∈J

αje
−(c·j)x Tn(x)|j| =

⎛
⎝∑

j∈J

αje
−(c·j)x

⎞
⎠ Tn(x), (2)

where in the last equality the fact that Tn(x) is an indicator function (so Tn(x)β = Tn(x) for
any β > 0) is crucial.

Put ϕc,J (x) := ∑
j∈J αje−(c·j)x . Because H is a Q-linearly independent set, all numbers

{c · j : j ∈ J } are mutually distinct, so {e−(c·j)x : j ∈ J } is a linearly independent set of
functions and, by (2), Fn is always non-null and the algebra B is a free algebra.

Moreover, the sequence (Fn)n = (ϕc,J (x)Tn(x))n converges to zero in measure because,
for any ε > 0,

{x ∈ [0, 1] : |ϕc,J (x)Tn(x)| > ε} ⊂ {x ∈ [0, 1] : Tn(x) �= 0},
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and the measures of the lasts sets go to zero when n → ∞, as pointed out at the beginning of
the section. Finally, as (Tn)n does not converge to 0 pointwise a.e. in [0, 1] and ϕc,J (x) = 0
for finitely many points (specifically, at most card(J ) − 1 points), (2) also gives us that any
non-zero member of B does not converge to 0 pointwise a.e. in [0, 1]. 
�

If we take into account the topological structure of LN

0 , we can also extend the mentioned
result by Araújo et al. to get spaceability for the set of sequences of functions converging to
zero in measure but not pointwise convergent a.e. in [0, 1].

Theorem 2.3 The family of classes of sequences ( fn)n ∈ LN

0 such that fn → 0 in measure
but ( fn)n does not converge (to zero) a.e. in [0, 1] is spaceable in LN

0 .

Proof Firstly, let us divide N into infinitely many strictly increasing pairwise disjoint subse-
quences {(i(k, n))n : k ∈ N} (for instance, i(k, n) = k(k+1)

2 + (n − 1)k). For each k ∈ N,
define the sequence T (k) = (T (k, n))n as follows:

T (k, n) =
{

χ[ j2−i(k,m),( j+1)2−i(k,m)] if n = j + 2i(k,m), 0 ≤ j < 2i(k,m)

0 elsewhere.

Roughly speaking, for fixed k ∈ N, we preserve every term of the Typewriter sequence
where the support has length 2−i(k,m) (m ∈ N) and change the rest to be 0. Similarly as the
Typewriter sequence, it is straightforward that every sequence T (k) is convergent to zero in
measure. Moreover, by construction, given any x ∈ [0, 1], there are infinitely many terms of
T (k) where the sequence takes the value 1 and infinitely many terms where it takes the value
0; so the sequence (T (k, n)(x))n cannot be convergent (to zero).

By construction, if (k, n) �= (k′, n′), then T (k, n) and T (k′, n′) cannot be both nonzero.
So if we take a linear combination

λ1T (k1) + · · · + λN T (kN )

for any 1 ≤ j0 ≤ N we always can find n j0 ∈ N such that T (k j0 , n j0) is nonzero but
T (k j , n j0) = 0 for j �= j0. So, writing the linear combination at the n j0 -coordinate, we get
that λ j0T (k j0 , n j0) = 0, whence λ j0 = 0 and we get that the set {T (k) : k ∈ N} is linearly
independent.

Now let M := span{T (k) : k ∈ N}. It is clear that M is a closed infinite dimensional
subspace of LN

0 . In addition, it is straightforward that every member of M is a sequence
converging to zero in measure (in fact, using a standard topological argument it is easy to
show that the whole vector space of sequences converging to zero in measure is closed in
LN

0 ).
It remains to prove the non pointwise convergence to zero. For that purpose, observe that

every nonzero member of M is a finite or infinite linear combination of sequences T (k), to
be more precise, since the interiors of the supports of all functions in {T (k) : k ∈ N} are
pairwise disjoint, if F ∈ M\{0}, there exist J ⊂ N and λν ∈ R\{0} for every ν ∈ J , such that
F = ∑

ν∈J λ j T (kν). Fix ν0 ∈ J and let J0 := {2i(kν0 ,m) + j : m ∈ N, 0 ≤ j < 2i(kν0 ,m)}.
By construction, Fn = λν0T (kν0 , n) for every n ∈ J0; hence, for fixed x ∈ [0, 1] there are
infinitelymanynatural numbersn (at least every number in J0) such that Fn(x) = λν0 �= 0 and
infinitely many natural numbers n such that Fn(x) = 0. Hence (Fn(x))n is never convergent
(so (Fn) is not a.e. convergent) to zero. 
�

123



18 Page 6 of 12 M. C. Calderón-Moreno et al.

3 Pointwise vs uniformly convergence

In this section we concentrate on pointwise convergence and uniform convergence in [0, 1].
It is an easy exercise to find examples of sequences which converge to zero pointwise but not
uniformly: take, for instance, the sequence

Sn := χ[ 1
n+1 , 1n ]. (3)

Observe that, in particular,
⋂∞

n=1
⋃∞

m=n

[
1

m+1 ,
1
m

]
= ∅. In fact, this property “character-

izes” in some sense those sequences of scalar multiples of indicators functions pointwise
convergent to zero but not uniformly convergent. We include the proof to be self-contained.
Recall that, for a sequence (En)n of sets, it is defined

lim sup En :=
⋂
n≥1

⋃
m≥n

Em .

Proposition 3.1 Let (X ,M, μ) be a measure space, and (αn)n be a sequence of nonzero real
numbers such that either (αn)n converges to 0 or there exists M > 0 such that |αn | > M for
n large enough. Let En ∈ M\{∅} and fn = αnχEn (n ∈ N). Then:

(a) fn → 0 pointwise on X if and only if αn → 0 or lim sup En = ∅.

(b) fn → 0 a.e. pointwise on X if and only if αn → 0 or μ (lim sup En) = 0.
(c) fn → 0 uniformly on X if and only if αn → 0.

Proof (a) Suppose that fn → 0 pointwise on X and lim sup En �= ∅. Let x0 ∈ X such
that for every n ∈ N there exists mn ∈ N with mn ≥ n and x0 ∈ Emn . Then

|αmn | = | fmn (x0)| → 0 (n → ∞), (4)

so (αn)n must converge to 0.
Conversely, for any x ∈ X , | fn(x)| = |αn |χEn (x) ≤ |αn |. So, if αn → 0, then
fn(x) → 0. On the other hand, if lim sup En = ∅, then there is n0 ∈ N such that
x /∈ En for all n ≥ n0; hence, fn(x) = 0 for all n ≥ n0 and we are done.

(b) Assume that fn → 0 a.e. in X and μ (lim sup En) > 0. Then, we always can find
x0 ∈ lim sup En such that fn(x0) converges to zero and we can finish as in the previous
part.
For the reciprocal, following the proof of (a), it is straightforward that fn(x) = 0 for
all n large enough and all x /∈ lim sup En , which is a set of measure zero.

(c) Suppose that fn → 0 uniformly on X . Assume, by way of contradiction, that αn �→ 0.
Then there exist M > 0 and n0 ∈ N such that |αn | > M > 0 for all n ≥ n0. But
the uniform convergence of fn allows us to get m ≥ n0 such that | fn(x)| < M

2 for all
x ∈ X and n ≥ m. Therefore, fn = 0 and En = ∅ for all n ≥ m, which is impossible
by hypothesis.
The reciprocal is immediate because of the fact that | fn(x)| ≤ |αn | for all n ∈ N and
every x ∈ X . 
�

Remark 3.2 Observe that similarly as in part (a) of the above proposition, it can be proved
that, given any sequence (ϕn)n ofmeasurable functions, if lim sup En = ∅, then the sequence
ϕn · χEn → 0 pointwise on X .
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Lineability and modes of convergence Page 7 of 12 18

The above proposition provides us with many sequences of measurable functions with
pointwise but not uniform convergence. Let us see that the amount of these sequences in
LN

0 is huge in both linear and algebraic senses. In fact, we deal with “stronger” types of
convergence than the pointwise one.

Given ( fn)n ∈ LN

0 and f ∈ L0, we say that fn → f almost uniformly on [0, 1] if for
every ε > 0 there exists a set E ∈ [0, 1] with m(E) ≤ ε such that fn → f uniformly
on [0, 1]\E ; and fn → f uniformly a.e. if there is E ⊂ [0, 1] with m(E) = 0 such that
fn → f uniformly on [0, 1]\E . Uniformly a.e. convergence can be trivially adapted to LN

0 ,
but almost uniformly convergence should be slightly adapted to classes of functions. Recall
that given f ∈ L0 and A ⊂ [0, 1], the essential supremum of f at A is defined by

ess sup
x∈A

f := inf{α ∈ R : m({x ∈ A : f (x) > α}) = 0}.

Definition 3.1 A sequence of measurable functions ( fn : [0, 1] → R)n is said to belong to
the family NU P([0, 1]), whenever it enjoys the next properties:
(A) fn → 0 pointwise a.e. in [0, 1],
(B) for any ε > 0 there is a measurable set E ⊂ [0, 1] such that m(E) < ε and

ess sup[0,1]\E | fn | → 0,
(C) ( fn)n does not converge uniformly a.e. in [0, 1].
Theorem 3.3 The family NU P([0, 1]) is strongly c-algebrable.

Proof As in the proof of Theorem 2.2, let H ⊂ (0,+∞) a Q-linearly independent set with
card(H) = c. For each c ∈ H we define the sequence F(c) = (F(c, n))n by

F(c, n)(x) := e−cn[(n+1)x−1] · Sn(x),

where (Sn)n is the sequence defined in (3).
Let B be the algebra generated by the family of sequences {F(c) : c ∈ H}. Now, because

each Sn is an indicator function, any nonzero member (Fn)n of B is of the form

Fn(x) =
⎛
⎝∑

j∈J

αje
−(c·j)n[(n+1)x−1]

⎞
⎠ Sn(x), (5)

where, for some N ∈ N, J ⊂ N
N
0 \{(0, 0, . . . , 0)} is a nonempty finite set, αj ∈ R\{0} for

j ∈ J and c ∈ H N .
From (5), Remark 3.2 and the definition of Sn(x), it follows that Fn(x) is pointwise

convergent to zero. Moreover, condition (B) of Definition 3.1 also holds because, for every
ε > 0, Fn(x) = Sn(x) = 0 for any n > 1/ε and x ∈ (ε, 1].

Finally, observe that for fixed n ∈ N, we have that x ∈
[

1
n+1 ,

1
n

]
if and only if w :=

n[(n + 1)x − 1] ∈ [0, 1]. From this fact, together with the definition of Sn(x), we have that

ess sup
0≤x≤1

|Fn(x)| = sup
1

n+1≤x≤ 1
n

|Fn(x)| = sup
1

n+1≤x≤ 1
n

∣∣∣∣∣∣
∑
j∈J

αje
−(c·j)n[(n+1)x−1]

∣∣∣∣∣∣

= sup
0≤w≤1

∣∣∣∣∣∣
∑
j∈J

αje
−(c·j)w

∣∣∣∣∣∣ .
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But this last amount does not depend on n and, in addition, it is positive, because theQ-linearly
independence of H implies the linear independence of the set {e−(c·j)x : c ∈ H , j ∈ J }.
Thus, (Fn)n does not converge (to zero) uniformly a.e. in [0, 1] and the proof is finished. 
�

As pointed out in the previous section, Egorov’s Theorem guarantees that every member
of the algebra B of the proof of the above theorem, including the sequence (Sn)n defined in
(3), is also convergent to zero in measure. So, it is natural to ask about the spaceability of
the family of sequences of Theorem 3.3, when LN

0 is endowed with the product topology
inherited from the convergence in measure and its metric defined in Lemma 2.1.

Theorem 3.4 The family NU P([0, 1]) is spaceable in LN

0 .

Proof Let En :=
[

1
n+1 ,

1
n

]
. Let us divide N into infinitely many pairwise disjoint subse-

quences {(i(k, n))n : k ∈ N}, such that i(k, n) < i(k′, n) for k < k′ (again, as in the proof
of Theorem 2.3, i(k, n) := k(k + 1)/2 + (n − 1)k does the job). For each k ∈ N, define the
sequence S(k) = (S(k, n))n := (χEi(k,n)

)n .
First of all, we are going to prove that {S(k) : k ∈ N} is a linearly independent set. Indeed,

let λ1, . . . , λN ∈ R and pairwise different k1, . . . , kN ∈ N such that
∑N

j=1 λ j S(k j ) is the
null sequence. Then, for every n ∈ N and every x ∈ [0, 1], we have

λ1χEi(kN ,n)
(x) + · · · + λN χEi(kN ,n)

(x) = 0. (6)

But, by construction, if (k, n) �= (k′, n′) then i(k, n) �= i(k′, n′), so Ei(k,n) ∩ Ei(k′,n′) is either
empty or a singleton. Then, for 1 ≤ j ≤ N we always can find

x j ∈ Ei(k j ,n)\
⋂

1≤ν≤N
ν �= j

Ei(kν ,n)

and applying (6) at x = x j , we get that λ j = 0 for 1 ≤ j ≤ N .
Let M := span{S(k) : k ∈ N}. It is clear that M is an infinite dimensional closed

subspace of LN

0 . We claim that every nonzero member of M enjoys properties (A), (B) and
(C) of Definition 3.1.

Given F = (Fn)n ∈ M\{0}, there exist a strictly increasing sequence (k j ) j ⊂ N and a
sequence (α j ) j ⊂ R (not identically zero), such that F = ∑∞

j=1 α j S(k j ) and, without loss
of generality, we may assume that α1 �= 0.

For every j, n ∈ N, it is clear that 0 < 1
i(k j ,n)

< 1
i(k1,n)

→ 0 (n → ∞). So, for any
x ∈ [0, 1], there is a number n0 ∈ N such that Fn(x) = 0 for all n ≥ n0. Hence, Fn is
convergent to 0 in [0, 1] and we have (A). Moreover, given ε > 0 there is n1 ∈ N such that
Ei(k j ,n) ⊂ [0, ε/2] for every n ≥ n1 and every j ∈ N. Hence, Fn(x) = 0 for every n > n1

and every x ∈ (ε/2, 1], and we get (B).
Finally, (C) holds because, for every n of the form 2i(k1,m) + j for some m ∈ N and

0 ≤ j < 2i(k1,m), we have that

ess sup
0≤x≤1

|Fn(x)| ≥ ess sup
x∈Ei(k1,m)

|Fn(x)| = sup
x∈Ei(k1,m)

|α1S(k1, n)(x)| = |α1| �= 0.

�

Remark 3.5 Observe that, following [6], the above theorem (and Theorem 2.3) can also be
proved by using a general result on spaceability ofKitson andTimoney (see [13, Theorem2.2]
or [2, §7.4]):

If Y is a closed vector subspace of a Fréchet space X , then X\Y is spaceable if and
only if Y has infinite codimension.
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But this technique, at least in the above results, does not shorten the proofs and makes them
less constructive.

It is a direct consequence of both Theorems 3.3 and 3.4 that the family NU P([0, 1]) is
c-lineable. But again bringing up the topological structure of LN

0 , and taking into account
that any complete separable metric topological vector space has dimension at most c, we can
prove also the maximal dense-lineability of this family.

Prior to this, we need an auxiliary, general result about lineability. The following result,
being one of the many existing variants, can be found in [6, Theorem 2.3] (see also [3,
Theorem 2.2 and Remark 2.5] and [2, Section 7.3]).

Lemma 3.6 Assume that Z is a metrizable, separable, topological vector space and that γ

is an infinite cardinal number. Suppose that A and B are subsets of Z such that A + B ⊂ A,
A ∩ B = ∅, B is dense-lineable and A is γ -lineable. Then A is γ -dense-lineable.

Theorem 3.7 The family NU P([0, 1]) is maximal dense-lineable in LN

0 .

Proof Consider the set L00 of eventually null sequences of functions in L0, that is,

L00 := {( fn)n ∈ LN

0 : there exists N ∈ N such that fn = 0 for n ≥ N }.
As LN

0 is endowed with the product topology it is obvious that L00 is a dense vector subspace
of LN

0 , hence dense-lineable.
We know that NU P([0, 1]) is c-lineable. Moreover, NU P([0, 1]) ∩ L00 = ∅, because

every member of L00 is convergent uniformly, and NU P([0, 1]) + L00 ⊂ NU P([0, 1]).
Now, an application of Lemma 3.6 with Z = LN

0 (recall that dim(LN

0 ) = c), A =
NU P([0, 1]), B = L00 and γ = c, finishes the proof. 
�

4 Uniform vs ‖ · ‖L1-norm convergence

In this final section we focus on sequences of measurable functions uniformly convergent
to 0 but not in L1-norm. Unlike what happened in the previous sections, this phenomenon
cannot happen in a finite measure setting. So we will work with measurable functions defined
in [0,+∞).

For every n ∈ N, let Rn : [0,+∞) → R given by

Rn := 1

n
χ[0,n]. (7)

The sequence (Rn)n is a classical example of sequence of functions converging uniformly to
0 but not in L1-norm and is the germ of the proof of all results in this section.

From now on, let Z0 := (L0[0,+∞))N. By ‖ f ‖1 we mean the L1-norm of a measurable
function f : [0,+∞) → R, that is,

‖ f ‖1 =
∫ +∞

0
| f (x)|dx .

Theorem 4.1 The family of sequences ( fn)n ∈ Z0 such that ( fn)n is uniformly convergent
to 0 but not in L1-norm, is strongly c-algebrable.
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Proof Let H ⊂ (0,+∞) be aQ-linearly independent set with dim(H) = c. For every c ∈ H ,
let F(c) := (F(c, n))n ∈ Z0 be the sequence given by

F(c, n) := 1

nc
· χ[0,en ]. (8)

It is clear that |F(c, n)(x)| ≤ 1
nc → 0. In addition, ‖F(c, n)‖1 = en

nc → +∞ for every
c ∈ H . So for any c ∈ H , the sequence F(c) is uniformly convergent to 0 in [0,+∞) but
not in L1-norm.

Let B be the algebra generated by the family {F(c) : c ∈ H}, which is clearly a linearly
independent family. We claim that B is a free algebra such that any non-zero member is a
sequence uniformly convergent to 0 in [0,+∞) but not in L1-norm.

Let F = (Fn)n ∈ B\{0}. Similarly to the proof of Theorems 2.2 and 3.3, there exist a
natural number N ∈ N, a finite set J ⊂ N

N \{(0, (N ). . ., 0)} and scalars αj ∈ R\{0} for any
j ∈ J such that, for every n ∈ N, we have

Fn =
⎛
⎝∑

j∈J

αj
1

nc·j

⎞
⎠χ[0,en). (9)

The Q-linearly independence of H and (9), guarantee that, for any n ∈ N, the real number∑
j∈J αj

1
nc·j can never be zero and, in addition, 1

nc·j → 0. So, the algebra B is free, the
sequence F(c) = (F(c, n))n is uniformly convergent to 0 in [0,+∞) and

‖F(c, n)‖1 =
∣∣∣∣∣∣
∑
j∈J

αj
1

nc·j

∣∣∣∣∣∣ en → +∞, (n → ∞)

which concludes the proof. 
�
Although every non-zero sequence of the algebraB of the previous proof is not convergent

(to zero) in L1-norm, all the functions are, in fact, integrable in [0,+∞). Hence B ⊂ Z1 :=(
L1[0,+∞)

)N
, where L1[0,+∞) denotes the set of (classes of) integrable functions in

[0,+∞). This allows us to endow Z1 with the product topology inherited by the L1 norm,
thus making Z1 a separable, metrizable, topological vector space.

As stated in Section 1, Bernal and Ordóñez [6, § 4.7] considered the space C BLs

of sequences of continuous, bounded and integrable functions fn : R → R such that
‖ fn‖∞ → 0 and supn ‖ fn‖1 < +∞ (which becomes a Banach space with the norm
‖( fn)n‖ := supn ‖ fn‖∞ + supn ‖ fn‖1). They proved that the family F := {( fn)n ∈ C BLs :
‖ fn‖1 �→ 0 as n → ∞} is spaceable in C BLs . It turns out that the family F is smaller than
the family of Theorem 4.1, but the topology of C BLs is finer than those of Z1. Thus, it can-
not be directly derived from [6], the spaceability of the family of functions of Theorem 4.1.
Moreover, in [6] it is also showed that the Banach space C BLs is not separable, so they were
not able to state the maximal dense-lineability. In this setting, taking into account that the
product topology makes Z1 separable, we are able to prove the next result.

Theorem 4.2 The family of sequences ( fn)n ∈ Z1 such that ( fn)n is uniformly convergent
to 0 but not in L1-norm, is maximal dense-lineable and spaceable in Z1.

Proof Both fromBernal and Ordóñez result or directly from Theorem 4.1 (at this moment we
do not care about the topology), we know that the family A of the hypothesis is c-lineable.
Additionally, Z1 is a separable complete topological vector space (so its dimension is c)
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and we can use Lemma 3.6 with Z = Z1, A = A and B = L1
00 the set of eventually null

sequences with nonzero components in L1[0,+∞). Observe that, similarly to L00 in the
proof of Theorem 3.7, this set is a dense vector space of Z1 and has empty intersection with
A, because every sequence in L1

00 is convergent to zero in L1-norm.
It remains to prove the spaceability. For this purpose, let us divide the interval [0,+∞) into

infinitely many sequences of pairwise disjoint intervals (except, possibly, for the extremes).
For every N ∈ N and every M = 1, . . . , N , let

IN ,M :=
⎡
⎣N−1∑

j=1

j(N − j) + M(M − 1)

2
,

N−1∑
j=1

j(N − j) + M(M + 1)

2

⎤
⎦ .

Observe that for each M ∈ N, the interval IN ,M has always length M .
For every k ∈ N, define the sequence G(k) = (G(k, n))n := ( 1

n χIk+n−1,n

)
n . It is straight-

forward that every sequenceG(k) converges to zero uniformly in [0,+∞) but not in L1-norm
(observe that ‖G(k, n)‖1 = 1 for all n ∈ N). Moreover, the family {G(k) : k ∈ N} is linearly
independent because of the disjointness of the (interiors of the) supports of all functions
included in it.

Let X := {( fn)n ∈ Z1 : fn → 0 uniformly in [0,+∞)} (which becomes a Fréchet space
when endowed with the product topology inherited by the L1 norm) and Y := {( fn)n ∈
X : ‖ fn‖1 → 0}, which is trivially a closed subspace of X . By construction, we have that
{G(k) : k ∈ N} ⊂ X\Y , whence Y has infinite codimension. Now a direct application of
Kitson and Timoney criterion for spaceability (see Remark 3.5), gives us the spaceability of
A in X , and hence in Z1. 
�
Remark 4.3 All the sequences of Theorems 4.1 are not convergent (to zero) in L1-norm. In
fact, by construction, given any sequence ( fn)n from the algebra of Theorem 4.1, it holds
that ‖ fn‖1 → +∞ (n → ∞). However, every sequence of the closed vector space given
by the result of Bernal and Ordóñez is uniformly bounded in L1-norm. Thus, it is natural to
ask about the algebraic genericity of the family of sequences of functions ( fn)n ∈ Z1 such
that supn ‖ fn‖1 < +∞, fn → 0 uniformly in [0,+∞) but not in L1-norm. Similarly to [6,
Theorem 4.16], it can be showed the spaceability of this family in Z1. Moreover, a direct
application of Lemma 3.6 with γ = c and B = L1

00, allows us to prove the maximal-dense-
lineability.

In view of the last remark, we want to finish this paper by posing the next open problem.

Problem 1 Consider the family of sequences of functions ( fn)n ∈ (L1[0,+∞))N such that
supn ‖ fn‖1 < +∞, ( fn)n is uniformly convergent to 0 but not in L1-norm. Is this family
strongly c-algebrable?
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