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Abstract
In this paper, we deal with an extra-gradient iterative method for finding a common solution
to a generalized mixed equilibrium problem and fixed point problems for a nonexpansive
mapping and for a finite family of k-strict pseudo-contraction mappings in Hilbert space. We
prove a strong convergence theorem for the extra-gradient iterative method under some mild
conditions. Further, we give a numerical example to illustrate the main result.
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1 Introduction

LetC be a nonempty, closed and convex subset of a real Hilbert space H .LetG : C×C → R

and φ : C × C → R be nonlinear bifunctions, where R is the set of all real numbers and let
A : C → H be a nonlinear mapping. In 1994, Blum and Oettli [2] introduced and studied
the following equilibrium problem (in short, EP): Find x ∈ C such that

G(x, y) ≥ 0, ∀y ∈ C . (1.1)

The solution set ofEP(1.1) is denoted bySol(EP(1.1)).An important generalization ofEP(1.1)
is the mixed equilibrium problem (in short, MEP) introduced and studied by Moudafi and
Thera [15] which is of finding x ∈ C such that

G(x, y) + 〈Ax, y − x〉 ≥ 0, ∀y ∈ C . (1.2)

For application of MEP(1.2), see Moudafi and Thera [15].
It is well known that the equilibrium problems have a great impact and influence in the

development of several topics of science and engineering. It turned out that many well known
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problems could be fitted into the equilibrium problems. It has been shown that the theory of
equilibrium problems provides a natural, novel and unified framework for several problems
arising in nonlinear analysis, optimization, economics, finance, game theory and engineer-
ing. The equilibrium problem includes many mathematical problems as particular cases,
for example, mathematical programming problem, variational inclusion problem, variational
inequality problem, complementary problem, saddle point problem, Nash equilibrium prob-
lem in noncooperative games, minimax inequality problem, minimization problem and fixed
point problem, see [2,5,14].

Nowwe consider the following generalizedmixed equilibrium problem (in short, GMEP):
Find x ∈ C such that

G(x, y) + 〈Ax, y − x〉 + φ(y, x) − φ(x, x) ≥ 0, ∀y ∈ C . (1.3)

The solution set of GMEP(1.3) is denoted by Sol(GMEP(1.3)).
If we set G(x, y) = 0, ∀x, y ∈ C , GMEP(1.3) reduces to the following important

class of variational inequalities which represents the boundary value problem arising in the
formulation of Signorini problem: Find x ∈ C such that

〈Ax, y − x〉 + φ(y, x) − φ(x, x) ≥ 0, ∀y ∈ C . (1.4)

Problem (1.4) was discussed in Duvaut and Lions [8] and Kikuchi and Oden [11]. For
physical and mathematical formulation of the inequality (1.4), see for example Oden and
Pires [19]. For related work, see also Baiocchi and Capelo [1].

If we set G(x, y) = 0 and φ(x, y) = 0, ∀x, y ∈ C , GMEP(1.3) reduces to the classical
variational inequality problem (in short, VIP): Find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C, (1.5)

which was introduced and studied by Hartmann and Stampacchia [9]. The solution set of
VIP(1.5) is denoted by Sol(VIP(1.5)).

Let S be a nonlinear mapping defined on C , the fixed point problem (in short, FPP) for
the mapping S is to find x ∈ C such that

x = Sx . (1.6)

F(S) denote the fixed point set of S and is given by {x ∈ C |x = Sx}.
In 1976, Korpelevich [12] introduced the following iterative algorithm which is known as

extra-gradient iterative method for VIP(1.5):

x0 ∈ C,

yn = PC (xn − λAxn),
xn+1 = PC (xn − λAyn),

⎫
⎬

⎭
(1.7)

where λ > 0 and n ≥ 0, A is a monotone and Lipschitz continuous mapping and PC is the
metric projection of H onto C .

In 2006,Nadezkhina andTakahashi [16] proved that the sequences {xn} and {yn} generated
by the following modified version of extra-gradient iterative method (1.7):

x0 ∈ C,

yn = PC (xn − λn Axn),
xn+1 = αnxn + (1 − αn)SPC (xn − λn Ayn),

⎫
⎬

⎭
(1.8)

where λn, αn ∈ (0, 1) for n ≥ 0, converge weakly to a common solution to VIP(1.5) and
FPP(1.6) for a nonexpansive mapping S.

123



Common solution to generalized mixed equilibrium problem. . . 3701

In 2006, by combining a hybrid iterative method [18] with an extra-gradient iterative
method (1.8), Nadezhkina and Takahashi [17] introduced the following hybrid extra-gradient
iterative method for approximating a common solution of FPP(1.6) for a nonexpansive map-
ping S and VIP(1.5) for a monotone and Lipschitz continuous mapping A:

x0 ∈ C,

yn = PC (xn − λn Axn),
zn = βnxn + (1 − βn)SPC (xn − λn Ayn),
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn x0,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.9)

for n ≥ 0, and proved a strong convergence theorem.
In 2013, Djafari-Rouhani et al. [6] initiated the study of the following system of unrelated

mixed equilibrium problems (in short, SUMEP);more precisely, for each i = 1, 2, . . . , N , let
Ci be a nonempty, closed and convex subset of a real Hilbert space H with

⋂N
i=1 Ci 
= ∅; let

Gi : Ci ×Ci → R be a bifunction such that Gi (xi , xi ) = 0, ∀xi ∈ Ci and let Ai : H → H
be a monotone and Lipschitz continuous mapping, then SUMEP is to find x ∈ ⋂N

i=1 Ci such
that

Gi (x, yi ) + 〈Ai x, yi − x〉 ≥ 0, ∀yi ∈ Ci , i = 1, 2, . . . , N . (1.10)

We note that for each i = 1, 2, . . . ., N , the mixed equilibrium problem (MEP) is to find
xi ∈ Ci such that

Gi (xi , yi ) + 〈Ai xi , yi − xi 〉 ≥ 0, ∀yi ∈ Ci , i = 1, 2, . . . , N . (1.11)

We denote by Sol(MEP(1.11)), the solution set of MEP(1.11) corresponding to the
mappings Gi , Ai and the set Ci . Then the solution set of SUMEP(1.10) is given by
⋂N

i=1 Sol(MEP(1.11)). If N = 1 then SUMEP(1.10) is the mixed equilibrium problem
MEP(1.2). They proved a strong convergence theorem for the following new hybrid extra-
gradient iterative method which can be seen as an important extension of iterative method
(1.9) given by Nadezhkina and Takahashi [17], for solving SUMEP(1.10) under some mild
conditions: The iterative sequences {xn}, {yni } and {zni } be generated by the iterative schemes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H ,

yni = Trni (xn − rni Ai xn),
zni = αn

i x
n + (1 − αn

i )Si Trni (xn − rni Ai yni ),

Cn
i = {z ∈ H : ‖zni − z‖2 ≤ ‖xn − z‖2},

Cn = ⋂N
i=1 C

n
i ,

Qn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn x0,

(1.12)

for n ≥ 0 and for each i = 1, 2, . . . , N , where {rni }, {αn
i } are control sequences. For the

further related work, see [10].
It is worth to mention that none of the strong convergence theorems established for the

extra-gradient iterative methods presented so far, other than hybrid extra-gradient iterative
method (1.12), for approximating a common solution toMEP (1.2), where A is monotone and
Lipschitz continuous mapping, and fixed point problem for nonlinear mappings. Therefore,
our main focus is to propose an extra-gradient iterative method which is not hybrid type, for
solving MEP (1.2), where A is monotone and Lipschitz continuous mapping, and fixed point
problems for nonlinear mappings and to establish a strong convergence theorem.
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Recall that a nonself mapping T : C → H is called k-strict pseudo-contraction if there
exists a constant k ∈ [0, 1) such that

‖T x − T y‖2 ≤ ‖x − y‖2 + k‖(I − T )x − (I − T )y‖2, ∀x, y ∈ C . (1.13)

Set k = 0 in (1.13), T is said to be nonexpansive and if we set k = 1 in (1.13), T is
said to be pseudo-contractive. T is said to be strongly pseudo-contractive if there exists
a constant λ ∈ (0, 1) such that T − λI is pseudo-contractive. Clearly, the class of k-strict
pseudo-contractions falls into the one between classes of nonexpansivemappings and pseudo-
contraction mappings. We note that the class of strongly pseudo-contractive mappings is
independent of the class of k-strict pseudo-contraction mappings (see, e.g. [3,4]). In a real
Hilbert space H , (1.13) is equivalent to

〈T x − T y, x − y〉 ≤ ‖x − y‖2 − 1 − k

2
‖(x − T x) − (y − T y)‖2, ∀x, y ∈ C .

(1.14)

T is pseudo-contractive if and only if

〈T x − T y, x − y〉 ≤ ‖x − y‖2, ∀x, y ∈ C . (1.15)

T is strongly pseudo-contractive if and only if there exists a positive constant λ ∈ (0, 1) such
that

〈T x − T y, x − y〉 ≤ (1 − λ)‖x − y‖2, ∀x, y ∈ C . (1.16)

Further, we note that the iterative methods for strict pseudo-contractions are far less
developed than those for nonexpansivemappings though Browder and Petryshyn [4] initiated
theirwork in 1967; the reason is probably that the second term appearing in the right-hand side
of (1.13) impedes the convergence analysis for iterative algorithms used to find a fixed point
of the strict pseudo-contraction T . However, on the other hand, strict pseudo-contractions
havemore powerful applications than nonexpansivemappings do in solving inverse problems
(see, Scherzer [21]). Therefore it is interesting to develop the iterative methods for finding a
common solution to GMEP(1.3) and fixed point problems for a nonexpansive mapping and
for a finite family of k-strict pseudo-contraction mappings. For further work, see for example
[13,22,25] and the references therein.

Motivated by the recentwork [6,10,24], in this paper,wepropose an extra-gradient iterative
method for approximating a common solution to GMEP(1.3) and fixed point problems for
a nonexpansive mapping and for a finite family of k-strict pseudo-contraction mappings
in Hilbert space. Further, we prove that the sequences generated by the proposed iterative
method converge strongly to the common solution to GMEP(1.3) and fixed point problems
for a nonexpansive mapping and for a finite family of k-strict pseudo-contraction mappings.
Further, we give a theoretical numerical example to illustrate the strong convergence theorem.

2 Preliminaries

We recall some concepts and results which are required for the presentation of the work. Let
symbols → and ⇀ denote strong and weak convergence, respectively. It is well known that
every Hilbert space satisfies the Opial condition, i.e., for any sequence {xn} with xn⇀x , the
inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖, (2.1)
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holds for every y ∈ H with y 
= x .
For every point x ∈ H , there exists a unique nearest point in C denoted by PCx such that

‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C .

The mapping PC is called the metric projection of H onto C . It is well known that PC is
nonexpansive and satisfies

〈x − y, PCx − PC y〉 ≥ ‖PCx − PC y‖2, ∀x ∈ H . (2.2)

Moreover, PCx is characterized by the fact PCx ∈ C and

〈x − PCx, y − PCx〉 ≤ 0, ∀y ∈ C (2.3)

which implies

‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2, ∀x ∈ H , y ∈ C . (2.4)

Definition 2.1 A mapping A : H → H is said to be:

(i) Monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ H ;
(ii) λ-Lipschitz continuous if there exists a constant λ > 0 such that

‖Ax − Ay‖ ≤ λ‖x − y‖, ∀x, y ∈ H .

Lemma 2.1 [25] If T : C → H is a k strict pseudo-contraction, then T is Lipschitz contin-
uous with Lipschitz constant 3−k

1−k .

Lemma 2.2 [25] If T : C → H is a k-strict pseudo-contraction, then the fixed point set
F(T ) is closed convex so that the projection PF(T ) is well defined.

Lemma 2.3 [25] If T : C → H is a k-strict pseudo-contraction with F(T ) 
= ∅. Then
F(PCT ) = F(T ).

Lemma 2.4 [25] If T : C → H is a k-strict pseudo-contraction and let for λ ∈ [k, 1), define
a mapping S : C → H by Sx = λx + (1 − λ)T x for all x ∈ C . Then S is nonexpansive
mapping such that F(S) = F(T ).

Lemma 2.5 [23] Given an integer N ≥ 1, for each i = 1, 2, . . . , N, let Ti : C → H
be a ki -strictly pseudo-contraction for some 0 ≤ ki < 1 and max1≤i≤N ki < 1 such that
⋂N

i=1 F(Ti ) 
= ∅. Assume that {ηi }Ni=1 is a positive sequence such that
∑N

i=1 ηni = 1. Then
∑N

i=1 ηi Ti : C → H is a k-strictly pseudo-contraction with coefficient k = max1≤i≤N ki
and F(

∑N
i=1 ηi Ti ) = ⋂N

i=1 F(Ti ).

Lemma 2.6 [20] For any x, y, z ∈ H and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx+β y+γ z‖2=α‖x‖2 + β‖y‖2 + γ ‖z‖2 − αβ‖x − y‖2 − αγ ‖x − z‖2 − βγ ‖y − z‖2.
Lemma 2.7 [24] Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1 − an)sn + anbn + cn, n ≥ 0,

where the sequences {an}, {bn}, {cn} satisfy the conditions: (i) {an} ⊂ [0, 1]with∑∞
n=0 an =

∞, (ii) cn ≥ 0 for all n ≥ 0 with
∑∞

n=0 cn < ∞, and (iii) lim supn→∞ bn ≤ 0. Then
limn→∞ sn = 0.
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Lemma 2.8 [24] Let {sk} be a sequence of real numbers that does not decrease at infinity in
the sense that there exists a subsequence {sk j } of {sk} such that sk j < sk j+1 for all j ≥ 0.
Define an integer sequence {mk}k≥k0 as

mk = max{k0 ≤ l ≤ k : sl < sl+1},
then mk → ∞ as k → ∞ and for all k ≥ k0 we have max{smk , sk} ≤ smk+1 .

Assumption 2.1 The bifunctionsG : C×C −→ R and φ : C×C → R satisfy the following
assumptions:

(i) G(x, x) = 0, ∀x ∈ C;
(ii) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0, ∀x, y ∈ C;
(iii) For each y ∈ C , x → G(x, y) is weakly upper-semicontinuous;
(iv) For each x ∈ C , y → G(x, y) is convex and lower semicontinuous.
(v) φ(., .) is weakly continuous and φ(., y) is convex;
(vi) φ is skew symmetric, i.e.,

φ(x, x) − φ(x, y) + φ(y, y) − φ(y, x) ≥ 0, ∀x, y ∈ C;
(vii) for each z ∈ H and for each x ∈ C , there exists a bounded subset Dx ⊆ C and zx ∈ C

such that for any y ∈ C \ Dx ,
G(y, zx ) + φ(zx , y) − φ(y, y) + 1

r 〈zx − y, y − z〉 < 0.

Assumption 2.2 The bifunction G : C × C −→ R is 2-monotone, i.e.,

G(x, y) + G(y, z) + G(z, x) ≤ 0, ∀x, y, z ∈ C . (2.5)

By taking y = z, it is clear that 2-monotone bifunction is amonotone bifunction. For example,
if G(x, y) = x(y − x), then G is a 2-monotone bifunction.

Now, we give the concept of 2-skew-symmetric bifunction.

Definition 2.2 The bifunction φ : C × C → R is said to be 2-skew-symmetric if

φ(x, x) − φ(x, y) + φ(y, y) − φ(y, z) + φ(z, z) − φ(z, x) ≥ 0, ∀x, y, z ∈ C . (2.6)

We remark that if set z = x or x = y or y = z in (2.6) then 2-skew-symmetric bifunction
becomes skew-symmetric bifunction.

Theorem 2.1 [7] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
the bifunctions G : C ×C −→ R and φ : C ×C → R satisfying Assumption 2.1. For r > 0
and z ∈ H, define a mapping Tr : H → C as follows:

Tr (z) = {x ∈ C : G(x, y) + φ(y, x) − φ(x, x) + 1

r
〈y − x, x − z〉 ≥ 0, ∀y ∈ C},

for all z ∈ H. Then the following conclusions hold:

(a) Tr (z) is nonempty for each z ∈ H ;
(b) Tr is single valued;
(c) Tr is firmly nonexpansive mapping, i.e., for all z1, z2 ∈ H ,

‖Tr z1 − Tr z2‖2 ≤ 〈Tr z1 − Tr z2, z1 − z2〉;
(d) G(Tr) = Sol(GMEP(1.3));
(e) Sol(GMEP(1.3)) is closed and convex.
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Remark 2.1 It follows from Theorem 2.1(a)–(b) that

rG(Tr x, y) + rφ(y, Tr (x)) − rφ(Tr (x), Tr (x)) + 〈Tr (x) − x, y − Tr (x)〉
≥ 0, ∀y ∈ C, x ∈ H . (2.7)

Further Theorem 2.1(c) implies the nonexpansivity of Tr , i.e.,

‖Tr (x) − Tr (y) ≤ ‖x − y‖, ∀x, y ∈ H . (2.8)

Furthermore (2.7) implies the following inequality

‖Tr (x) − y‖2 ≤ ‖x − y‖2 − ‖Tr (x) − x‖2 + 2rG(Tr (x), y)

+2r [φ(y, Tr (x)) − φ(Tr (x), Tr (x))], ∀y ∈ C, x ∈ H . (2.9)

3 Main result

We prove a strong convergence theorem for finding a common solution to GMEP(1.3) and
fixed point problems for a nonexpansive mapping and for a finite family of k-strict pseudo-
contraction mappings.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let the
bifunction G : C×C −→ R satisfy Assumption 2.1(i), (iii), (v), (vii) and Assumption 2.2; let
the bifunction φ : C×C → R be 2-skew-symmetric and satisfy Assumption 2.1 (v), (vii) and
let f : C → C be a ρ-contraction mapping. Let S : C → H be a nonexpansive mapping and
let A : C → H be a monotone and Lipschitz continuous mapping with Lipschitz constant
λ. For each i = 1, 2 . . . , N, let Ti : C → H be a ki -strict pseudo-contraction mapping and
let {ηni }Ni=1 be a finite sequence of positive numbers such that

∑N
i=1 ηni = 1 for all n ≥ 0.

Assume that 
 = Sol(GMEP(1.3))
⋂

F(S)
⋂

(
⋂N

i=1 F(Ti )) 
= ∅. Let the sequence {xn} be
generated by the iterative scheme:

x0 ∈ C,

yn = Trn (xn − rn Axn),

xn+1 = σn f (xn) + (1 − σn)PC
[
αnxn + βn STrn (xn − rn Ayn) + γn

∑N
i=1 ηni Ti xn

]
,

⎫
⎪⎬

⎪⎭

(3.1)

for n ≥ 0, where {rn} ⊂ [a, b] ⊂ (0, λ−1) and {σn}, {αn}, {βn}, {γn} are the sequences in
(0, 1) satisfying the following conditions:

(i) αn + βn + γn = 1, lim infn→∞ βn > 0 and lim infn→∞ γn > 0;
(ii) 0 ≤ ki ≤ αn ≤ l < 1, limn→∞ αn = l;
(iii) limn→∞ σn = 0 and

∑∞
n=0 σn = ∞;

(iv)
∑∞

n=1
∑N

i=1 |ηni − ηn−1
i | < ∞.

Then {xn} converges strongly to a point x̂ ∈ 
, where x̂ = P
 f (x̂).

Proof Setting un := Trn (xn − rn Ayn) and zn := αnxn + βn STrn (xn − rn Ayn) +
γn

∑N
i=1 ηni Ti xn , then we have zn := αnxn + βn Sun + γn

∑N
i=1 ηni Ti xn . Let p ∈ 
, we

have

‖Sun − p‖2 ≤ ‖un − p‖2. (3.2)
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Further, using Remark 2.1, we have

‖un − p‖2 = ‖Trn (xn − rn Ayn) − p‖2
≤ ‖xn − rn Ayn − p‖2 − ‖xn − rn Ayn − un‖2

+ 2rnG(un, p) + 2rn[φ(p, un) − φ(un, un)]
≤ ‖xn − p‖2 − ‖xn − un‖2 + 2rn〈Ayn, p − un〉 + 2rnG(un, p)

+ 2rn[φ(p, un) − φ(un, un)]
≤ ‖xn − p‖2 − ‖xn − un‖2 + 2rn〈Ayn − Ap, p − yn〉 + 2rn〈Ap, p − yn〉

+ 2rn〈Ayn, yn − un〉 + 2rnG(un, p) + 2rn[φ(p, un) − φ(un, un)]. (3.3)

Since A is monotone and Lipschitz continuous. Since p ∈ Sol(GMEP(1.3)) and yn ∈ C , we
have

G(p, yn) + 〈Ap, yn − p〉 + φ(yn, p) − φ(p, p) ≥ 0, ∀yn ∈ C,

and hence by using above inequality and monotonicity of A in (3.3), we obtain

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2 + 2rn〈Ayn , yn − un〉 + 2rn [G(p, yn) + G(un , p)]
+ 2rn [φ(p, un) − φ(un , un) + φ(yn , p) − φ(p, p)]

≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − un‖2 − 2〈xn − yn , yn − un〉
+ 2rn〈Ayn , yn − un〉
+ 2rn [G(p, yn) + G(un , p)] + 2rn [φ(p, un) − φ(un , un)

+φ(yn , p) − φ(p, p)]
≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − un‖2 − 2〈yn − (xn − rn Axn), un − yn〉

+ 2rn〈Axn − Ayn , un − yn〉
+ 2rn [G(p, yn) + G(un , p)] + 2rn [φ(p, un) − φ(un , un) + φ(yn , p) − φ(p, p)]

≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − un‖2 + 2rn [G(yn , un) + φ(un , yn) − φ(yn , yn)]
+ 2rn〈Axn − Ayn , un − yn〉 + 2rn [G(p, yn) + G(un , p)]
+ 2rn [φ(p, un) − φ(un , un) + φ(yn , p) − φ(p, p)]

≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − un‖2 + 2rn〈Axn − Ayn , un − yn〉
+ 2rn [G(p, yn) + G(yn , yn) + G(un , p)] + 2rn [φ(p, un) − φ(un , un)

+φ(yn , p) − φ(p, p) + φ(un , yn) − φ(yn , yn)]. (3.4)

Since G is 2-monotone and φ is 2-skew-symmetric then (3.4) implies that

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − un‖2 + 2rn〈Axn − Ayn, un − yn〉
≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − un‖2 + 2rn‖Axn − Ayn‖‖un − yn‖
≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − un‖2 + 2rnλ‖xn − yn‖‖un − yn‖
≤ ‖xn − p‖2 − (1 − rnλ)‖xn − yn‖2 − (1 − rnλ)‖yn − un‖2. (3.5)

Next by using Lemma 2.6, we estimate

‖xn+1 − p‖ = ‖σn f (xn) + (1 − σn)PCzn − p‖
= ‖σn( f (xn) − p) + (1 − σn)(PCzn − p)‖
≤ σn‖ f (xn) − p‖ + (1 − σn)‖PCzn − p‖
≤ σn‖ f (xn) − p‖ + (1 − σn)‖zn − p‖. (3.6)
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Now,
‖ f (xn) − p‖ = ‖ f (xn) − f (p) + f (p) − p‖

≤ ‖ f (xn) − f (p)‖ + ‖ f (p) − p‖
≤ ρ‖xn − p‖ + ‖ f (p) − p‖. (3.7)

Denote Wn = ∑N
i=1 ηni Ti , it follows from Lemma 2.5 that the mapping Wn : C → H

is k-strict pseudo-contraction with k = max1≤i≤N ki and F(Wn) = ⋂N
i=1 F(Ti ) and hence

using Lemma 2.6 and (3.5), we have

‖zn − p‖2 = ‖αnxn + βn Sun + γnWnxn − p‖2
= ‖αn(xn − p) + βn(Sun − p) + γn(Wnxn − p)‖2
= αn‖xn − p‖2 + βn‖Sun − p‖2 + γn‖Wnxn − p‖2 − αnβn‖xn − Sun‖2

−αnγn‖xn − Wnxn‖2 − βnγn‖Sun − Wnxn‖2
= αn‖xn − p‖2 + βn‖un − p‖2 + γn(‖xn − p‖2 + k‖xn − Wnxn‖2)

−αnβn‖xn − Sun‖2 − αnγn‖xn − Wnxn‖2 − βnγn‖Sun − Wnxn‖2
≤ (αn + βn + γn)‖xn − p‖2 − (1 − rnλ)βn‖xn − yn‖2

− (1 − rnλ)βn‖yn − un‖2 + γnk‖xn − Wnxn‖2 − αnβn‖xn − Sun‖2
−αnγn‖xn − Wnxn‖2 − βnγn‖Sun − Wnxn‖2

≤ ‖xn − p‖2 − γn(αn − k)‖xn − Wnxn‖2 − (1 − rnλ)βn‖xn − yn‖2
− (1 − rnλ)βn‖yn − un‖2
−αnβn‖xn − Sun‖2 − βnγn‖Sun − Wnxn‖2, (3.8)

which implies

‖zn − p‖ ≤ ‖xn − p‖. (3.9)

Hence, it follows from (3.6), (3.7) and (3.9) that

‖xn+1 − p‖ ≤ σn[ρ‖xn − p‖ + ‖ f (p) − p‖] + (1 − σn)‖xn − p‖
≤ [1 − σn(1 − ρ)]‖xn − p‖ + σn‖ f (p) − p‖. (3.10)

Since 1 − ρ > 0 for ρ ∈ (0, 1), it follows from mathematical induction that

‖xn+1 − p‖ ≤ max

{

‖x0 − p‖, 1

(1 − ρ)
‖ f (p) − p‖

}

, (3.11)

for all n ≥ 0. Further, it follows from (3.11), (3.9) and (3.5) that the sequences {xn}, {zn} and
{un} are bounded. Again, we estimate ‖xn+1 − x̂‖2 with x̂ = P0f (Ox). Since x̂ ∈ 
 ⊂ C , we
have

‖xn+1 − x̂‖2 = ‖σn( f (xn) − x̂) + (1 − σn)(PCzn − x̂)‖2
≤ (1 − σn)‖PCzn − x̂‖2 + 2〈σn( f (xn) − x̂), xn+1 − x̂〉
≤ (1 − σn)‖zn − x̂‖2 + 2σn〈 f (xn) − x̂, xn+1 − x̂〉. (3.12)

Now,

〈 f (xn) − x̂, xn+1 − x̂〉 = 〈 f (xn) − x̂, xn − x̂〉 + 〈 f (xn) − x̂, xn+1 − xn〉
≤ ‖ f (xn)− f (x̂)‖‖xn− x̂‖+ K

2
‖xn+1 − xn‖+〈 f (x̂) − x̂, xn − x̂〉

≤ ρ‖xn − x̂‖2 + K

2
‖xn+1 − xn‖ + 〈 f (x̂) − x̂, xn − x̂〉, (3.13)
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where K = sup
n

2‖ f (xn) − x̂‖. It follows from (3.12), (3.13) and (3.8) with x̂ in the place of

p, that

‖xn+1 − x̂‖2 ≤ (1 − σn(1 − 2ρ))‖xn − x̂‖2 + σnK‖xn+1 − xn‖ + 2σn〈 f (x̂) − x̂, xn − x̂〉
− (1 − σn)βn[(1 − rnλ)[‖xn − yn‖2 + ‖yn − un‖2] + αn‖xn − Sun‖2]
− (1 − σn)γn[(αn − k)‖xn − Wnxn‖2 + βn‖Sun − Wnxn‖2], (3.14)

‖xn+1 − x̂‖2 ≤ (1 − σn(1 − 2ρ))‖xn − x̂‖2 + σnK‖xn+1 − xn‖
+ 2σn〈 f (x̂) − x̂, xn − x̂〉. (3.15)

Now, we consider two cases on sn := ‖xn − x̂‖2.
Case 1. Let the sequence {sn} be decreasing for all n ≥ n0 (n0 ∈ N), then it is convergent.
Since {rn} ⊂ [a, b] ⊂ (0, λ−1), limn→∞ σn = 0, {αn}, {βn}, {γn} are the sequences in (0, 1)
such that lim infn→∞ βn > 0 and lim infn→∞ γn > 0 and k ≤ αn ∀n, then (3.14) implies

0 = lim
n→∞ ‖Sun − Wnxn‖ = lim

n→∞ ‖xn − yn‖ = lim
n→∞ ‖yn − un‖ = lim

n→∞ ‖xn − Sun‖.
(3.16)

This implies that

lim
n→∞ ‖xn − un‖ ≤ lim

n→∞ ‖xn − yn‖ + lim
n→∞ ‖yn − un‖ = 0. (3.17)

It follows from (3.16), (3.17), inequality

‖xn − Wnxn‖ ≤ ‖xn − Sun‖ + ‖Sun − Wnxn‖
and

‖xn − Snxn‖ ≤ ‖un − xn‖ + ‖xn − Sun‖
that

lim
n→∞ ‖xn − Wnxn‖ = 0 (3.18)

and

lim
n→∞ ‖un − Sun‖ = 0. (3.19)

Since {xn} ⊂ C is bounded, there is a subsequence {xnk } of {xn} such that xnk⇀q in C
and satisfying

lim sup
n→∞

〈 f (x̂) − x̂, xn − x̂〉 = lim
k→∞〈 f (x̂) − x̂, xnk − x̂〉. (3.20)

Now, for each n, define a mapping Vnx = αnx + (1−αn)Wnx, ∀x ∈ C and αn ∈ [k, 1).
Then by Lemma 2.4, Vn : C → H is nonexpansive. Further, we have

‖xn − Vnxn‖ = ‖xn − (αnxn + (1 − αn)Wnxn)‖
= ‖(αn + (1 − αn)xn) − (αnxn + (1 − αn)Wnxn)‖
= (1 − αn)‖xn − Wnxn‖. (3.21)

Taking limit n → ∞ and using (3.18), we get

lim
n→∞ ‖xn − Vnxn‖ = 0. (3.22)
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Now, by Condition (iv), we may assume that ηni → ηi as n → ∞ for every 1 ≤ i ≤ N .

It is easy to observe that each ηi > 0 and
∑N

i=1 ηi = 1. It follows from Lemma 2.5 that
the mapping W : C → H defined by Wx = (

∑N
i=1 ηi Ti )x , ∀x ∈ C is a k-strict pseudo-

contraction and F(W ) = ⋂N
i=1 F(Ti ). Since {xn} is bounded, it follows from Lemma 2.2,

condition (iv) and

‖xn − Wxn‖ ≤ ‖xn − Wnxn‖ + ‖Wnxn − Wxn‖

≤ ‖xn − Wnxn‖ +
N∑

i=1

|ηni − ηi |‖Ti xn‖ (3.23)

that

lim
n→∞ ‖xn − Wxn‖ = 0. (3.24)

Since

‖Wnxn − Wxn‖ ≤ ‖Wnxn − xn‖ + ‖xn − Wxn‖, (3.25)

it follows from (3.18) and (3.24) that

lim
n→∞ ‖Wnxn − Wxn‖ = 0. (3.26)

Again, we observe that the mapping V : C → H defined by V x = lx + (1 − l)Wx , for all
x ∈ C and αn ∈ [k, 1), is nonexpansive and F(V ) = F(W ). Hence, we have

‖xn − V xn‖ ≤ ‖xn − Vnxn‖ + ‖Vnxn − V xn‖
≤ ‖xn − Vnxn‖ + ‖αnxn + (1 − αn)Wnxn − lxn − (1 − l)Wxn‖
≤ ‖xn − Vnxn‖ + |αn − l|‖xn − Wxn‖ + (1 − αn)‖Wnxn − Wxn‖.

(3.27)

It follows from (3.22), (3.24) and (3.26) that

lim
n→∞ ‖xn − V xn‖ = 0. (3.28)

Now, we prove q ∈ F(V ) = F(W ) = F(Wn) = ⋂N
i=1 F(Ti ). Assume that q /∈ F(V ).

Since xnk⇀q and q 
= Vq , from Opial condition, we have

lim inf
k→∞ ‖xnk − q‖ < lim inf

k→∞ ‖xnk − Vq‖
≤ lim inf

k→∞ ‖xnk − V xnk‖ + ‖V xnk − Vq‖
≤ lim inf

k→∞ ‖xnk − q‖, (3.29)

which is a contradiction. Thus, we get q ∈ F(V ) = F(W ) = F(Wn) = ⋂N
i=1 F(Ti ). It

follows from (3.17) that the sequences {xn} and {un} both have the same asymptotic behaviour
and hence there is a subsequence {unk } of {un} such that unk⇀q. Further, it follows from
(3.17) and opial condition that q ∈ F(S). Next, we show that q ∈ Sol(GMEP(1.3)).

It follows from (3.16) that sequences {xn} and {yn} both have the same asymptotic
behaviour. Therefore, there exists a subsequence {ynk } of {yn} such that ynk⇀q. Now, the
relation yn = Trn (xn − rn Axn) implies
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G(yn, y) + 〈Axnk , ynk − y〉 + φ(y, yn) − φ(yn, yn)

+ 1

rn
〈y − yn, yn − (xn − rn Axn)〉 ≥ 0, ∀y ∈ C

which implies that

φ(y, yn) − φ(yn, yn) + 1

rn
〈y − yn, yn − (xn − rn Axn)〉 ≥ G(y, yn) + 〈Axnk , ynk − y〉.

Hence,

φ(y, ynk ) − φ(ynk , ynk ) +
〈

y − ynk ,
ynk − xnk

rnk

〉

≥ G(y, ynk ) + 〈Axnk , ynk − y〉, ∀y ∈ C .

For t , with 0 ≤ t ≤ 1, let yt := t y + (1 − t)q ∈ C and rn ≥ a, ∀n, then we have

0 ≥ −φ(yt , ynk ) + φ(ynk , ynk ) −
〈

y − ynk ,
ynk − xnk

rnk

〉

+G(yt , ynk ) + 〈Axnk , ynk − yt 〉
= −〈y − ynk ,

ynk − xnk
rnk

〉 − φ(yt , ynk ) + φ(ynk , ynk )

+G(yt , ynk ) + 〈Axnk , ynk − yt 〉
= −φ(yt , q) + φ(q, q) + G(yt , q) + 〈Aq, q − yt 〉, (3.30)

which implies, on taking limit k → ∞, that

φ(yt , q) − φ(q, q) ≥ G(yt , q) + 〈Aq, q − yt 〉.
Now,

0 = G(yt , yt )

≤ tG(yt , y) + (1 − t)G(yt , q)

≤ tG(yt , y) + (1 − t)φ(yt , q) − (1 − t)φ(q, q) + (1 − t)〈Aq, yt − q〉
≤ tG(yt , y) + (1 − t)[φ(yt , q) − φ(q, q) + 〈Aq, yt − q〉]
≤ tG(yt , y) + (1 − t)t[φ(y, q) − φ(q, q)] + (1 − t)t〈Aq, y − q〉
≤ G(yt , y) + (1 − t)[φ(y, q) − φ(q, q)] + (1 − t)〈Aq, y − q〉.

Letting t → 0+ and for each y ∈ C , we have

G(q, y) + φ(y, q) − φ(q, q) + 〈Aq, y − q〉 ≥ 0,

which implies q ∈ Sol(GMEP(1.3)). Thus q ∈ 
. Now, it follows from (2.8) and (3.20) that

lim sup
n→∞

〈 f (x̂) − x̂, xn − x̂〉 = 〈 f (x̂) − x̂, q − x̂〉 ≤ 0. (3.31)

Since xn ∈ C , we have

‖xn+1 − xn‖ ≤ σn‖ f (xn) − xn‖ + (1 − σn)[βn‖Sun − xn‖ + γn‖xn − Wnxn‖],
and hence using limn→∞ σn = 0, (3.16), (3.18), we have

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.32)

Now, it follows from
∑∞

n=0 σn = ∞, (3.15), (3.31), (3.32) and Lemma 2.7 that limn→∞ sn =
0. Thus {xn} converges strongly to x̂ = P
 f (x̂).
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Case 2. Let there be a subsequence {ski } of {sk} such that ski < ski+1 ∀i ≥ 0. Then according
to Lemma 2.8, we can define a nondecreasing sequence {mk} ⊂ N such that mk → ∞
as k → ∞ and max{smk , sk} ≤ smk+1 ∀k. Since {rk} ∈ [a, b] ⊂ (0, λ−1), ∀k ≥ 0 and
{αk}, {βk}, {γk} are the sequences in (0, 1) with conditions (i)–(ii), it follows from (3.14)
that

lim
k→∞ ‖Sumk − Wmk xmk‖ = lim

k→∞ ‖xmk − ymk‖ = lim
k→∞ ‖ymk − umk‖

= lim
k→∞ ‖xmk − Sumk‖ = 0. (3.33)

Further, following similar steps as in Case 1, we obtain

lim sup
k→∞

〈 f (x̂) − x̂, xmk − x̂〉 ≤ 0.

Since {xk} is bounded and limk→∞ σk = 0, it follows from (3.17), (3.18) and inequality

‖xmk+1 − xmk‖ ≤ σmk‖ f (xmk ) − xmk‖ + βmk‖umk − xmk‖ + γmk‖xmk − Wmk xmk‖,
that

lim
k→∞ ‖xmk+1 − xmk‖ = 0. (3.34)

Since smk ≤ smk+1 ∀k, it follows from (3.15) that

(1 − 2ρ)smk+1 ≤ K‖xmk+1 − xmk‖ + 2〈 f (x̂) − x̂, xmk − x̂〉.
Now taking limits as k → ∞, we obtain smk+1 → 0 as k → ∞. Since sk ≤ sk+1 ∀k, it
follows that sk → 0 as k → ∞. Hence xk → x̂ as k → ∞. Thus, we have shown that the
sequence {xn} generated by iterative algorithm (3.1) converges strongly to x̂ = P
 f (x̂). ��

We give the following corollary which is an immediate consequence of Theorem 3.1.

Corollary 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let the
bifunction G : C × C −→ R satisfy Assumption 2.1 (i), (iii), (v), (vii) and Assumption 2.2;
let the bifunction φ : C × C → R be 2-skew-symmetric and satisfy Assumption 2.1 (v),
(vii) and let f : C → C be a ρ-contraction mapping. Let A : C → H be a monotone
and Lipschitz continuous mapping with Lipschitz constant λ. For each i = 1, 2 . . . , N,
let Ti : C → H be a finite family of nonexpansive mappings and let {ηni }Ni=1 be a finite

sequence of positive numbers such that
∑N

i=1 ηni = 1 for all n ≥ 0. Assume that 
1 =
Sol(GMEP(1.3))

⋂
(
⋂N

i=1 F(Ti )) 
= ∅. Let the sequence {xn} be generated by the iterative
scheme:

x0 ∈ C,

yn = Trn (xn − rn Axn),
xn+1 = σn f (xn) + (1 − σn)PC [αnxn + βnTrn (xn − rn Ayn)

+ γn
∑N

i=1 ηni Ti xn],

⎫
⎪⎪⎬

⎪⎪⎭

(3.35)

for n ≥ 0 where {rn} ⊂ [a, b] ⊂ (0, λ−1) and {σn}, {αn}, {βn}, {γn} are the sequences in
(0, 1) satisfying the following conditions:

(i) αn + βn + γn = 1, lim infn→∞ βn > 0 and lim infn→∞ γn > 0;
(ii) limn→∞ σn = 0 and

∑∞
n=0 σn = ∞;
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(iii)
∑∞

n=1
∑N

i=1 |ηni − ηn−1
i | < ∞.

Then {xn} converges strongly to a point x̂ ∈ 
1, where x̂ = P
1 f (x̂).

Proof Set S = I , the identity mapping onC , and ki = 0 for i = 1, 2, . . . , N in Theorem 3.1,
we get the desired result. ��

4 Numerical example

We give a theoretical numerical example which justifies Theorem 3.1.

Example 4.1 Let H = R, C = [−1, 1] and i = 1, 2, 3. Define G : C × C −→ R and
φ : C × C → R by G(x, y) = x(y − x) and φ(x, y) = y − x ; let the mapping f : C → C
be defined by f (x) = x

5 ,∀x ∈ C ; let the mapping A : C → H be defined by A(x) =
3x + 1,∀x ∈ C ; let the mapping Ti : C → H be defined by Ti x = −(1 + i)x for each
i = 1, 2, 3, and let the mapping S : C → H be defined by Sx = x

4 ,∀x ∈ C . Setting
αn = 1

10n and rn = 1
5 , ∀n ≥ 0, and η1 = η2 = η3 = 1

3 . Then the sequence {xn} in C
generated by the iterative schemes:

yn = Trn
(
xn − 1

5 (3x + 1)xn
) ;

un = Trn (xn − rn Ayn) = 5xn−3yn
6 ;

zn = αnxn + βn
( un
4

) + γn[η1T1xn + η2T2xn + η3T3xn];
xn+1 = xn

50n + (
1 − 1

10n

)
zn, n ≥ 0,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4.1)

converges to a point x̂ = {0} ∈ 
.

Proof It is easy to prove that the bifunctions G and φ satisfy Assumption 2.1 (i), (iii), (v),
(vii) and Assumption 2.2, and Assumption 2.1 (v), (vii) respectively. Choose αn = 0.7+ 0.1

n2
,

βn = 0.2 − 0.2
n2

and γn = 0.1 + 0.1
n2

for all n ≥ 0, then it is easy to observe that the
sequences {αn}, {βn}, {γn} are in (0, 1) such that αn +βn +γn = 1 and satisfy the conditions
lim infn→∞ βn > 0 and lim infn→∞ γn > 0. Further, for each i , it is easy to prove that Ti are
ki strict pseudo-contraction mappings with k1 = 1

3 , k2 = 1
2 and k3 = 3

5 and F(Ti ) = {0}.
Therefore k = max{k1, k2, k3} = 3

5 . Also S is nonexpansive mapping with F(S) = {0}.
Hence Sol(GMEP(1.1))= {0}. Thus
 = Sol(GMEP(1.3))

⋂
F(S)

⋂
(
⋂N

i=1 F(Ti )) = {0} 
=
∅. After simplification, iterative schemes (4.1) are reduced to the following:

yn = 1
3 xn;

un = 5xn−3yn
6 ;

zn =
(
0.7 + 0.1

n2

)
xn +

(
0.2 − 0.2

n2

)
un
4 − 3

(
0.1 + 0.1

n2

)
xn;

xn+1 = xn
50n + (1 − 1

10n )zn, n ≥ 0.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.2)

Next, using the software Matlab 7.8, we have following figure and table which show that
{xn} converges to x̂ = {0}.
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0 5 10 15 20 25

number of iterations

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x n

Convergence of {xn} with initial values x1= 1, -1

Convergence of {xn}
No. of
iterations

xn
x1 = −1

No. of
iterations

xn
x1 = −1

No. of
iterations

xn
x1 = 1

No. of
iterations

xn
x1 = 1

1 −0.600000 14 −0.000784 1 0.600000 14 0.000784
2 −0.360000 15 −0.000470 2 0.360000 15 0.000470
3 −0.216000 16 −0.000282 3 0.216000 16 0.000282
4 −0.129600 17 −0.000169 4 0.129600 17 0.000169
5 −0.077760 18 −0.000102 5 0.077760 18 0.000102
6 −0.046656 19 −0.000061 6 0.046656 19 0.000061
7 −0.027994 20 −0.000037 7 0.027994 20 0.000037
8 −0.016796 21 −0.000022 8 0.016796 21 0.000022
9 −0.010078 22 −0.000013 9 0.010078 22 0.000013
10 −0.006047 23 −0.000008 10 0.006047 23 0.000008
11 −0.003628 24 −0.000005 11 0.003628 24 0.000005
12 −0.002177 25 −0.000003 12 0.002177 25 0.000003
13 −0.001306 26 −0.000002 13 0.001306 26 0.000002

This completes the proof. ��

5 Conclusion

We introduced an extra-gradient iterative method for finding a common solution to a gener-
alized mixed equilibrium problem and fixed point problems for a nonexpansive mapping and
for a finite family of k-strict pseudo-contraction mappings in Hilbert space and proved the
strong convergence of the sequences generated by iterative method. A theoretical numerical
example is given to illustrate the Theorem 3.1. It is of further research effort to extend the
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iterative method presented in this paper for solving these problems in Banach spaces, and for
the case when A is multi-valued mapping.

Acknowledgements Authors are very grateful to the anonymous referees for their critical comments which
led to substantial improvements in the original version of the manuscript.
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