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Abstract

In this paper, we deal with an extra-gradient iterative method for finding a common solution
to a generalized mixed equilibrium problem and fixed point problems for a nonexpansive
mapping and for a finite family of k-strict pseudo-contraction mappings in Hilbert space. We
prove a strong convergence theorem for the extra-gradient iterative method under some mild
conditions. Further, we give a numerical example to illustrate the main result.
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1 Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H.Let G : CxC — R
and ¢ : C x C — R be nonlinear bifunctions, where R is the set of all real numbers and let
A : C — H be a nonlinear mapping. In 1994, Blum and Oettli [2] introduced and studied
the following equilibrium problem (in short, EP): Find x € C such that

G(x,y) >0, VyecC. (1.1)

The solution set of EP(1.1) is denoted by Sol(EP(1.1)). Animportant generalization of EP(1.1)
is the mixed equilibrium problem (in short, MEP) introduced and studied by Moudafi and
Thera [15] which is of finding x € C such that

Gx,y)+ (Ax,y—x) >0, VyeC. (1.2)

For application of MEP(1.2), see Moudafi and Thera [15].
It is well known that the equilibrium problems have a great impact and influence in the
development of several topics of science and engineering. It turned out that many well known
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problems could be fitted into the equilibrium problems. It has been shown that the theory of
equilibrium problems provides a natural, novel and unified framework for several problems
arising in nonlinear analysis, optimization, economics, finance, game theory and engineer-
ing. The equilibrium problem includes many mathematical problems as particular cases,
for example, mathematical programming problem, variational inclusion problem, variational
inequality problem, complementary problem, saddle point problem, Nash equilibrium prob-
lem in noncooperative games, minimax inequality problem, minimization problem and fixed
point problem, see [2,5,14].

Now we consider the following generalized mixed equilibrium problem (in short, GMEP):
Find x € C such that

Gx,y)+(Ax,y—x)+¢(y,x) —¢p(x,x) >0, VyeC. (1.3)

The solution set of GMEP(1.3) is denoted by Sol(GMEP(1.3)).

If we set G(x,y) = 0, Vx,y € C, GMEP(1.3) reduces to the following important
class of variational inequalities which represents the boundary value problem arising in the
formulation of Signorini problem: Find x € C such that

(Ax,y —x)+¢d(y,x) —p(x,x) >0, VyeC. (1.4)

Problem (1.4) was discussed in Duvaut and Lions [8] and Kikuchi and Oden [11]. For
physical and mathematical formulation of the inequality (1.4), see for example Oden and
Pires [19]. For related work, see also Baiocchi and Capelo [1].

Ifweset G(x,y) =0and ¢(x,y) =0, Vx,y € C, GMEP(1.3) reduces to the classical
variational inequality problem (in short, VIP): Find x € C such that

(Ax,y —x) >0, VyeC, (1.5)

which was introduced and studied by Hartmann and Stampacchia [9]. The solution set of
VIP(1.5) is denoted by Sol(VIP(1.5)).

Let S be a nonlinear mapping defined on C, the fixed point problem (in short, FPP) for
the mapping S is to find x € C such that

x = Sx. (1.6)

F(S) denote the fixed point set of S and is given by {x € C|x = Sx}.
In 1976, Korpelevich [12] introduced the following iterative algorithm which is known as
extra-gradient iterative method for VIP(1.5):

xo € C,
yn = Pc(xp — AAx,), (L.7)
X1 = Pc(xy — AAyy),

where A > 0 and n > 0, A is a monotone and Lipschitz continuous mapping and Pc is the
metric projection of H onto C.

In 2006, Nadezkhina and Takahashi [16] proved that the sequences {x, } and {y, } generated
by the following modified version of extra-gradient iterative method (1.7):

xo € C,
Yn = Pc(xp — Ay Axy), (1.8)
Xp1 = ApXp + (1 — ) SPc(xy — Ay Ayy),

where A, @, € (0, 1) for n > 0, converge weakly to a common solution to VIP(1.5) and
FPP(1.6) for a nonexpansive mapping S.
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In 2006, by combining a hybrid iterative method [18] with an extra-gradient iterative
method (1.8), Nadezhkina and Takahashi [17] introduced the following hybrid extra-gradient
iterative method for approximating a common solution of FPP(1.6) for a nonexpansive map-
ping S and VIP(1.5) for a monotone and Lipschitz continuous mapping A:

xo € C,

Yn = Pc(xp — Ay Axy),

Zn = Buxn + (1 = B)SPc(xn — Ay Ayn),
Co={z€Ctllzn—2l® < lon — 27},
Qn :{Z eC: (Xn—z,x—xn) ZO},
Xn+1 = PC,,ﬂQnXO,

(1.9)

for n > 0, and proved a strong convergence theorem.

In 2013, Djafari-Rouhani et al. [6] initiated the study of the following system of unrelated
mixed equilibrium problems (in short, SUMEP); more precisely, foreachi = 1,2, ..., N,let
C; be a nonempty, closed and convex subset of a real Hilbert space H with ﬂlNzl C; # 0;let
G; : C; x C; — R be abifunction such that G; (x;, x;) =0, Vx; € C;andletA; : H > H
be a monotone and Lipschitz continuous mapping, then SUMEP is to find x € ﬂlN: 1 Ci such
that

Gi(x,yi) +(Aix,yi —x) 20, VyieCi, i=12,...,N. (1.10)

We note that foreachi = 1,2, ...., N, the mixed equilibrium problem (MEP) is to find
x; € C; such that

Gi(xi,yi) +(Aixi,yi —x;) 20, Vy; €Ci, i=1,2,...,N. (1.1D)

We denote by Sol(MEP(1.11)), the solution set of MEP(1.11) corresponding to the
mappings G;, A; and the set C;. Then the solution set of SUMEP(1.10) is given by
ﬂ,N:l Sol(MEP(1.11)). If N = 1 then SUMEP(1.10) is the mixed equilibrium problem
MEP(1.2). They proved a strong convergence theorem for the following new hybrid extra-
gradient iterative method which can be seen as an important extension of iterative method
(1.9) given by Nadezhkina and Takahashi [17], for solving SUMEP(1.10) under some mild
conditions: The iterative sequences {x"}, {y;'} and {z] } be generated by the iterative schemes

xVe H,

yi =T (" —ri'Aix"),

i =aix" + (1 =) ST (X" — 1" Aiy}),

Cl={zeH: |z} —z|* < |x" — 2%}, (1.12)
" =i ¢,

Q"={zeH:(x"—z,x—x") >0},

X" = Pen gnxo,

forn > 0 and foreachi = 1,2,..., N, where {rl”}, {a;’} are control sequences. For the
further related work, see [10].

It is worth to mention that none of the strong convergence theorems established for the
extra-gradient iterative methods presented so far, other than hybrid extra-gradient iterative
method (1.12), for approximating a common solution to MEP (1.2), where A is monotone and
Lipschitz continuous mapping, and fixed point problem for nonlinear mappings. Therefore,
our main focus is to propose an extra-gradient iterative method which is not hybrid type, for
solving MEP (1.2), where A is monotone and Lipschitz continuous mapping, and fixed point
problems for nonlinear mappings and to establish a strong convergence theorem.
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Recall that a nonself mapping 7 : C — H is called k-strict pseudo-contraction if there
exists a constant £ € [0, 1) such that

ITx —Ty|? < llx = ylI> + k(I = T)x — (I = T)y|?>, Vx,yeC.  (1.13)

Set k = 0 in (1.13), T is said to be nonexpansive and if we set k = 1 in (1.13), T is
said to be pseudo-contractive. T is said to be strongly pseudo-contractive if there exists
a constant A € (0, 1) such that T — Al is pseudo-contractive. Clearly, the class of k-strict
pseudo-contractions falls into the one between classes of nonexpansive mappings and pseudo-
contraction mappings. We note that the class of strongly pseudo-contractive mappings is
independent of the class of k-strict pseudo-contraction mappings (see, e.g. [3,4]). In a real
Hilbert space H, (1.13) is equivalent to

(Tx = Ty.x —y) < lx = yl* - 1%‘”@ —Tx) = (y=TyI% VayeC.
(1.14)
T is pseudo-contractive if and only if
(Tx —Ty,x —y) < ||x—y||2, Vx,y e C. (1.15)

T is strongly pseudo-contractive if and only if there exists a positive constant A € (0, 1) such
that

(Tx =Ty, x —y) < (1= M|x —ylI*>, Vx,yeC. (1.16)

Further, we note that the iterative methods for strict pseudo-contractions are far less
developed than those for nonexpansive mappings though Browder and Petryshyn [4] initiated
their work in 1967, the reason is probably that the second term appearing in the right-hand side
of (1.13) impedes the convergence analysis for iterative algorithms used to find a fixed point
of the strict pseudo-contraction 7. However, on the other hand, strict pseudo-contractions
have more powerful applications than nonexpansive mappings do in solving inverse problems
(see, Scherzer [21]). Therefore it is interesting to develop the iterative methods for finding a
common solution to GMEP(1.3) and fixed point problems for a nonexpansive mapping and
for a finite family of k-strict pseudo-contraction mappings. For further work, see for example
[13,22,25] and the references therein.

Motivated by the recent work [6,10,24], in this paper, we propose an extra-gradient iterative
method for approximating a common solution to GMEP(1.3) and fixed point problems for
a nonexpansive mapping and for a finite family of k-strict pseudo-contraction mappings
in Hilbert space. Further, we prove that the sequences generated by the proposed iterative
method converge strongly to the common solution to GMEP(1.3) and fixed point problems
for a nonexpansive mapping and for a finite family of k-strict pseudo-contraction mappings.
Further, we give a theoretical numerical example to illustrate the strong convergence theorem.

2 Preliminaries

We recall some concepts and results which are required for the presentation of the work. Let
symbols — and — denote strong and weak convergence, respectively. It is well known that
every Hilbert space satisfies the Opial condition, i.e., for any sequence {x,} with x,—x, the
inequality

liminf ||x, — x| < liminf ||x, — y||, 2.1
n—o0 n—o0
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holds for every y € H with y # x.
For every point x € H, there exists a unique nearest point in C denoted by Pcx such that

lx = Pex|l < [lx = yll, VyeC.

The mapping Pc is called the metric projection of H onto C. It is well known that Pc is
nonexpansive and satisfies

(x =y, Pcx — Pcy) = | Pex — Pey|®, Vx € H. (2.2)
Moreover, Pcx is characterized by the fact Pcx € C and
(x — Pcx,y — Pcx) <0, VyeC 2.3)
which implies
e = yII* = llx = Pex[> + Ily = Pex|’, Vxe H, yeC. 2.4)
Definition 2.1 A mapping A : H — H is said to be:
(i) Monotone if
(Ax — Ay, x —y) >0, Vx,ye€H;
(ii) A-Lipschitz continuous if there exists a constant A > 0 such that
[Ax — Ayl < Allx —yll, Vx,ye€H.

Lemma2.1 [25]1IfT : C — H is a k strict pseudo-contraction, then T is Lipschitz contin-

uous with Lipschitz constant %

Lemma22 [25] If T : C — H is a k-strict pseudo-contraction, then the fixed point set
F(T) is closed convex so that the projection Pr(r) is well defined.

Lemma23 [25]1 If T : C — H is a k-strict pseudo-contraction with F(T) # (. Then
F(PcT) = F(T).

Lemma 24 [25]IfT : C — H is a k-strict pseudo-contraction and let for A € [k, 1), define
a mapping S : C — H by Sx = Ax + (1 — M)Tx forall x € C. Then S is nonexpansive
mapping such that F(S) = F(T).

Lemma 2.5 [23] Given an integer N > 1, foreachi = 1,2,...,N,letT; : C - H
be a k;-strictly pseudo-contraction for some 0 < k; < 1 and maxj<;<y k; < 1 such that
ﬂlNzl F(T;) # (. Assume that {m}lNzl is a positive sequence such that Z;N:] nt = 1. Then
ZlN:l n;T; : C — H is a k-strictly pseudo-contraction with coefficient k = maxi<;j<n k;
and F(Y) niTy) = /Ly F(T)).
Lemma 2.6 [20] Foranyx,y,z € Handa, B,y € [0, 1]witha + B+ y = 1, we have
lax+By+yzll =alxl® + BlIyl* + Izl — aBllx — yI> —aylx -z = Bylly — zII*.
Lemma 2.7 [24] Let {s,,} be a sequence of non-negative real numbers satisfying

Sp+1 = (1 - an)sn +anb, +cy, n >0,

where the sequences {a,}, {b,}, {c,} satisfy the conditions: (i) {a,} C [0, 1] with Z;O:o a, =
o0, (ii) ¢, > 0 for all n > 0 with ZZO:O cp < 00, and (iii) limsup,,_, .o b, < 0. Then
limy 00 5, = 0.
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Lemma 2.8 [24] Let {si} be a sequence of real numbers that does not decrease at infinity in
the sense that there exists a subsequence {si;} of {si} such that si; < si;,, forall j > 0.
Define an integer sequence {my}i>k, as

my =maxiko <1 < k:s <s111},
then my — oo as k — oo and for all k > ko we have max{sy, , sy} < S,
Assumption 2.1 The bifunctions G : C xC — Rand ¢ : C x C — R satisfy the following
assumptions:

(i) G(x,x) =0, Vx e C;

(i) G is monotone, i.e., G(x,y) + G(y,x) <0, Vx,y € C;
(iii) Foreachy € C,x — G(x, y) is weakly upper-semicontinuous;
(iv) Foreachx € C,y — G(x, y) is convex and lower semicontinuous.
(v) ¢(.,.) is weakly continuous and ¢ (., y) is convex;
(vi) ¢ is skew symmetric, i.e.,

Px,x) —P(x, y) + (v, y) —¢(y,x) =0, Vx,y e C;
(vii) foreach z € H and for each x € C, there exists a bounded subset D, C C and z, € C
such that for any y € C \ Dy,

G(y.ze) + ¢z, y) — (. y) + Lz — v,y —2) <0.
Assumption 2.2 The bifunction G : C x C — R is 2-monotone, i.e.,
Gx,y)+G(y,2)+G(z,x) =0, Vx,y,z€C. (2.5)

By taking y = z, itis clear that 2-monotone bifunction is a monotone bifunction. For example,
if G(x, y) = x(y — x), then G is a 2-monotone bifunction.

Now, we give the concept of 2-skew-symmetric bifunction.

Definition 2.2 The bifunction ¢ : C x C — R is said to be 2-skew-symmetric if
¢x,x) =P, ) + oy, y) —d(y.2) +¢(2,2) —¢(2,x) 20, Vx,y,z€C. (2.6)

We remark that if set 7 = x orx = y or y = z in (2.6) then 2-skew-symmetric bifunction
becomes skew-symmetric bifunction.

Theorem 2.1 [7] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
the bifunctions G : C x C —> Rand ¢ : C x C — R satisfying Assumption 2.1. Forr > 0
and z € H, define a mapping T, : H — C as follows:

T(z) =fxeC:Gx,y) + (. x) —¢(x,X)+%(y—xsx—Z) >0, Vy e C},

forall z € H. Then the following conclusions hold:

(a) T,(z) is nonempty for each z € H;
(b) T is single valued;
(¢) T is firmly nonexpansive mapping, i.e., forall z1,z> € H,

2 )
ITrz1 — Ty 221" < (Trz1 — Ty 22, 21 — 22);

(d) G(T,) = Sol(GMEP(1.3));
(e) Sol(GMEP(1.3)) is closed and convex.
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Remark 2.1 It follows from Theorem 2.1(a)—(b) that

rG(Trx,y) +ré(y, Tr(x)) — r¢(Tr(x), T (x)) + (T (x) — x, y = T, (x))
>0, VyeC, xe H. (2.7)

Further Theorem 2.1(c) implies the nonexpansivity of 7, i.e.,
IT-(x) =T, (y) < lx = yll. Vx,ye€H. (2.8)
Furthermore (2.7) implies the following inequality

1T (x) = ylI* < llx = ylI* = 1T (x) — x[1* + 2rG(T,(x), y)
+2r[p(y, Tr(x)) — ¢(Tr(x), T,(x))], Yy eC,x e H.  (2.9)

3 Main result

We prove a strong convergence theorem for finding a common solution to GMEP(1.3) and
fixed point problems for a nonexpansive mapping and for a finite family of k-strict pseudo-
contraction mappings.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let the
bifunction G : C x C —> R satisfy Assumption 2.1(1), (iii), (v), (vii) and Assumption 2.2, let
the bifunction ¢ : C x C — R be 2-skew-symmetric and satisfy Assumption 2.1 (v), (vii) and
let f : C — C bea p-contraction mapping. Let S : C — H be a nonexpansive mapping and
let A : C — H be a monotone and Lipschitz continuous mapping with Lipschitz constant
A Foreachi =1,2...,N, let T; : C — H be a k;i-strict pseudo-contraction mapping and
let {n;‘}f\’:] be a finite sequence of positive numbers such that ZlNzl nt =1 foralln > 0.
Assume that T' = Sol(GMEP(1.3))( F(S) ﬂ(ﬂ,N:l F(T;)) # 0. Let the sequence {x,} be
generated by the iterative scheme:

xo € C,
Yn =T, (Xn — rnAxy),
St = 0 f () + (1= 00 Pe [t + BuSTy, (on — rAva) + v I 1 Tixa |
3.1
forn = 0, where {r,} C [a,b] C (0, .71 and {0,}, {an}, {Bu}, {yn} are the sequences in
(0, 1) satisfying the following conditions:

() op + B + vn = 1, liminf,_ o B > 0 and liminf,_ o y» > 0;
() 0<ki <o, <l <l lim, 00, =1;
(iii) limy—eo ?v" =0and Y 02 0p = 00;
(V) Y02y Xisy Inf —nf ) < oo

Then {x,} converges strongly to a point X € I', where X = Pr f ().

Proof Setting u, := T,,(x, — r,Ay,) and z, = Xy, + BnST, (Xn — raAy,) +
Y ZIN:1 ni Tixy, then we have z, 1= X, + BpSuy + v ZzNzl n'Tix,. Let p € T, we
have

ISun — pII* < llun — pl*. 3.2)
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Further, using Remark 2.1, we have

lun = plII* = 1T, n — raAya) — plI*
< 1% = rnAyn — pI* — %0 — rnAyn — unl?
+ 200G, p) + 28 (@ (P, ) — ¢ (i, )]
< llxn = pI* = %0 — wn 1> + 270 (Ayn, p — tn) + 2ra G utn, p)
+ 25 (P, Un) — Pt )]
< l1xn = Pl = %0 — wn > + 2ru(Ayn — Ap, p — yu) + 21 (Ap, p — yn)
+ 275 (AYns Yo — tn) + 20 G (un, p) + 209 [d (P, ) — G lutn, un)l.  (3.3)

Since A is monotone and Lipschitz continuous. Since p € Sol(GMEP(1.3)) and y, € C, we
have

G(p.yn) + (AP, yn = P) + ¢ (n, p) —P(p. p) 20, Vy, €C,
and hence by using above inequality and monotonicity of A in (3.3), we obtain
ltn = I < 1w = pIF = I = nll* + 2 (Ayn, yu = un) + 2ra[G(p, yn) + G (tn, p)]

+2rp[¢p(p, un) — ¢(un, un) + ¢(yn, p) — ¢(p, p)l

Ixn — I = %0 — yull> = llyn — unll® = 20xn — yn, yn — un)

IA

+27 (Ayn, yn — ttn)

+2r[G(p, yn) + Gun, P)1+ 2rnld(p, un) — ¢ (un, un)

+¢n, p) — & (p, p)l

xn = pI% = 160 = Yall* = lyn — nll® = 2(yn — Gin — ra Axn), tn — yn)

IA

+2rn{Axpn — Ayn, n — Yn)

+2ra[G(p. yn) + Gun. )]+ 2rn[d(p. tn) — ¢ (. tn) + ¢ (yn. p) — $(p. p)]

Ixn = PI? = 0 = Yyl = 130 — unll® + 2rn[G . tn) + Gt Yn) — ¢ (¥n ¥n)]
+2rn (Axp — Ayn, up — yn) + 2raG(p, yn) + G(un, p)]

+2rpl@(p, un) — ¢(un, un) + ¢(yn, p) — ¢(p, p)l

Ixn =PI = %0 = Yall* = lyn — unll® + 2 (Axn — Ayn. ttn — yn)

+2r[G(p, yn) + G(yn, yn) + G(un, p)1 + 2rule(p, un) — ¢ (un, un)

+¢(Gn. p) — G (p. p) + GG, yn) — S, yn)l- 34

IA

IA

Since G is 2-monotone and ¢ is 2-skew-symmetric then (3.4) implies that

lun — pI* < Ixn =PI = 10 — Yall? = Iyn — tnll* + 27 (Axy — Ayn, tty — )
< lxn =PI = 10 — yull® = 0 — tnl* + 27| Axy — Ayullllttn — vl
< lxa = pI? = %0 = Yull* = lyn — wnll* + 20kl — Yulllln — vl
< lxn = pI* = A = 1) 1xn — yaull* = (A = ra )y — nll*. 3.5)
Next by using Lemma 2.6, we estimate
%041 — Pl = llow f (xn) + (1 — 0) Pezn — pll
”on(f(xn) - P) + (1 —o0n)(Pczy — P)||

onll f(xn) — pll + (A — o)l Pczn — pll
onll f(xn) — pl+ A —on)lzn — pl. (3.6)

IAIA
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Now,
IfCen) = pll = 11fGn) = f(p)+ f(p)— Pl
ILf ) = fF(NI+1F(p) = pl
pllxn = pll+1L.f (p) — plI. (3.7
Denote W,, = Z,N=1 niT;, it follows from Lemma 2.5 that the mapping W, : C — H

is k-strict pseudo-contraction with k = maxj<;<y k; and F(W,,) = ﬂ,N:  F(T;) and hence
using Lemma 2.6 and (3.5), we have

IA

IA

Iza = PI* = llatnxn + BuSttn + Yo Waxa — plI
= llatn(en = p) + Bu(Sutn — p) + va(Woxw — p)II?
= opllxn — pI* + BullSun — PI* + Yl Waxn — pI* — ctnBullxn — Sunll®
— anYullXn — Waxall> = Buvall St — Waxa |1?
= apllxn — pII* + Bullun — PI* + va(llxn — pI* + kllxn — Woxall*)
— o Bullxn — Sunl®> = anVullxn — Waxall* = Buvall Sty — Wy |12
< (@ + Bu + v lxn — pI* = (1= rad) Bullxn — yall®
— (L= Bullyn — unll* + yukllxn — Waxnll* = ctnBullxn — Sunl?
—atnYullXn — Waxnll* = Buull Sun — Wyxy |12
< Ixn = PI* = Vu(an — O)llxn — Wxall> — (1 = 1 2)Bullxn — yull®
— (1 =12 Bullyn — unl?
— o Bullxn — Sunll* = Bu¥ull Sty — Wuxn |12, (3.8)
which implies
Iza = pIl < llxa — pII. (3.9)
Hence, it follows from (3.6), (3.7) and (3.9) that
X041 — Pl < oulpllxn — pl + 1£(p) — P+ (1 = o)llxn — pll
< [1—0u(1 = p)lllxa — pll +0ull £ () = pl. (3.10)

Since 1 — p > 0 for p € (0, 1), it follows from mathematical induction that

1
[*n+1 = pll < max {HXO —rll, =—If(p) - pll}, (G.11)
(I—-p)

for all n > 0. Further, it follows from (3.11), (3.9) and (3.5) that the sequences {x,}, {z,} and
{u,} are bounded. Again, we estimate ||x,; — £||> with £ = Pof @). Since £ € I' C C, we
have

Ixn41 — 217 = llow(f (n) — £) + (1 — 0) (Pezn — DI
< (1= o) Pezn — 21 +2(00(f (xn) — £), Xns1 — £)
< (I =o)llzn — £ + 200 (f (xn) — £, xnp1 — £). (3.12)
Now,

(fxn) =X, xpq1 — X) = (f(xn) — X, x5 — %) + (f(xn) — X, X1 — Xn)

K
= IIf(xn)—f(f)ll||xn—)?||+3||xn+1 = Xnll+(f (&) = %, xp — X)

. K . . .
< plxa — 21* + 5 Pt = xall + (fE) = &0 =8, B13)
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where K = sup 2|| f (x,) — x||. It follows from (3.12), (3.13) and (3.8) with X in the place of
n
p, that
1 — 217 < (1= 0 (1 = 2p) x5 — RN + 0K X041 — Xnll + 200 (f (&) — £, x4 — )
— (1= 0) Bl (1 = ra )0 = yu > + 10 — a|1*] + [l 0 — Sty |1°]

— (1 = o) ynllo —K)llx, — ‘}Vn-xn”2 + BullSup — ann”z]v (3.14)
a1 = 217 < (1= 0 (1 = 20)) %0 — £1* + 0 K [|Xnp1 — Xl

+20,(f(X) — X, x, — %). (3.15)
Now, we consider two cases on s, = ||x, — £ ||%.

Case 1. Let the sequence {s,,} be decreasing for all n > ng (ng € N), then it is convergent.
Since {r,} C [a, b] C (0, A1), limy— oo 0, = 0, {n}, {Bn}, {¥u} are the sequences in (0, 1)
such that lim inf,,_, oo B, > 0 and liminf,,_, o ¥, > 0 and k < «, Vn, then (3.14) implies

0= lim [|Su, — Wyxull = lim ||x; — yull = lim |ly, —upll = lim |lx, — Su,l.
n—00 n— 00 n—00 n— 00
(3.16)
This implies that
lim [x, —upll < lim [lxy — yull + lim [y, — uull = 0. (3.17)
n—o00 n—o00 n—oo
It follows from (3.16), (3.17), inequality

X0 = Waxall < llxn — Sunll 4 [IStn — Woxa||

and
lxn = Suxull < llun — xpll + llx0 — Sugll
that
lim [[x, — Wyx,|| =0 (3.18)
n—00
and
lim |lu, — Suy| = 0. (3.19)
n—00

Since {x,} C C is bounded, there is a subsequence {x,, } of {x,} such that x,, —~¢ in C
and satisfying

lim sup(f(X) — X, x, — X) = lim (f(X) — X, x, — X). (3.20)

n—o00 k— o0

Now, for each n, define a mapping V,x = oyx + (1 — ) Wyx, Vx € Cand oy, € [k, 1).
Then by Lemma 2.4, V,, : C — H is nonexpansive. Further, we have

lxn — Vaxull = llxn — (X + (1 — o) Wyxp) ||
= [[(oty + (I = ap)xp) — (@pxp + (1 — ) Wpxp) |l
= (1 — o) llxn — Wpxnll. (3.21)

Taking limit n — oo and using (3.18), we get

lim |lx, — Vyx,|| = 0. (3.22)
n—0o0o
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Now, by Condition (iv), we may assume that nl’.’ — njasn — ooforevery 1 <i < N.
It is easy to observe that each n; > 0 and Z,N: 1 ni = 1. It follows from Lemma 2.5 that
the mapping W : C — H defined by Wx = (ZlNzl n;T;)x, VYx € C is a k-strict pseudo-
contraction and F(W) = ﬂN

i=1 F(T}). Since {x,} is bounded, it follows from Lemma 2.2,
condition (iv) and

lxn — Wxull < llxn — Wuxull + [|Wyxp — Wiyl

N
< ot — Wakall + Y 0} = mill| Tixa | (3.23)
i=1
that
lim ||x, — Wx,| =0. (3.24)
n—o0
Since
IWaxn — Wxnll < |Waxn — xnll + llX0 — Waxall, (3.25)
it follows from (3.18) and (3.24) that
lim ||W,x, — Wx,| = 0. (3.26)
n—o0

Again, we observe that the mapping V : C — H defined by Vx =[x + (1 — ) Wx, for all
x € C and o, € [k, 1), is nonexpansive and F (V) = F(W). Hence, we have

lxn = Vxull < llxn — Vaxull + | Vaxn — Vxu|l
< Mxn = Vaxull + llanxn, + (1 — ) Wpxy, — Ixy — (1 = DWx, ||
< lxn = Vaxull + law = Ullxn — Waxnll + (1 — @) [[Wpxn — W |l
(3.27)
It follows from (3.22), (3.24) and (3.26) that

lim X, — Vaull = 0. (3.28)
n—oo

Now, we prove g € F(V) = F(W) = F(W,) = ﬂlN:l F(T;). Assume that g ¢ F(V).
Since x,, —~¢ and g # V¢, from Opial condition, we have

liminf ||lx,, —¢| < liminf ||x,, — Vgl
k—00 k—00
< liminf [lx;, — Vxp, || + |Vxn, — Vall
k— 00

< liminf ||x,, — g, (3.29)
k—o00

which is a contradiction. Thus, we get ¢ € F(V) = F(W) = F(W,) = ﬂlNzl F(T;). It
follows from (3.17) that the sequences {x,, } and {u, } both have the same asymptotic behaviour
and hence there is a subsequence {uy,,} of {u,} such that u,, —¢. Further, it follows from
(3.17) and opial condition that g € F(S). Next, we show that g € Sol(GMEP(1.3)).

It follows from (3.16) that sequences {x,} and {y,} both have the same asymptotic
behaviour. Therefore, there exists a subsequence {yy,, } of {y,} such that y,, —¢. Now, the
relation y, = T, (x, — rp, Ax,) implies
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Gn, y) + {Axn, Y — ¥) + 0, yn) — s yn)

1
+7<y — Yns Yn — Xy — 1 Axy)) =20, Vy € C

n

which implies that

1
O, Yn) — Oy Yn) + —Y — Y, Yn — (X — 1 Axy)) = G(y, yu) + (Axnkv Ynp — y).

n

Hence,

y — X,
¢w»m>—¢@mywr+@—waﬂ7—ﬂ>zG@Jm>+uumdm—y»Vyec
n

Fort, withO <t <1,lety; :=ty+ (1 —t)q € C and r;, > a, Vn, then we have

y — X
0= =i Yue) + & Ongr Yni) — <y — Yne» %>
ng

+ G(yl‘a yl’lk) + (Axnkv Ynp — yl‘)
y — X,
l%—lb—¢@hnu+¢owmm>

Nk

+ Gty Yny) + {AXngs Y — Y1)
=—¢i.q)+¢(q,.q9) +GOr.q) +(Aq. q — 1), (3.30)

which implies, on taking limit k — oo, that

o(i,q9) —d(q,q9) = G(yi,q) +(Ag,q — ).

= _(y - Yngo

Now,
0= Gy, y)
<tGQy,y) + A —=0G, q)
<tGy, )+ A =0¢0r,q) — A =0¢(g,q) + (1 —1){Aq, yr — q)
<tGQnLy) + A =0lo0r q) —¢(q. q) + (Aq, yr — q)]
<tG(y, y) + A =0t (y,q) — (g, 1+ (1 — N)t{Ag, y — q)
<G, +A=0Dld0k,q) —¢g, 1+ 1A —1){Aq,y — q).

Letting t — 0" and for each y € C, we have
G )+ ¢, q) —blq,9) +(Aq,y —q) = 0,
which implies g € Sol(GMEP(1.3)). Thus g € I'. Now, it follows from (2.8) and (3.20) that
lim sup(f(x) — X, x, —X) = (f(x) —x,g —x) <0. (3.31)

n— oo

Since x, € C, we have

1xpe1 — xnll < onll f () — X0l + (A — o) [BullSun — xull + Vullxn — Waxulll,
and hence using lim,, ~ 0, = 0, (3.16), (3.18), we have

lim |lx,4+1 — x|l =0. (3.32)
n—oo

Now, it follows from ZZO:O 0, = 00, (3.15),(3.31), (3.32) and Lemma 2.7 that lim,, oo 5,, =
0. Thus {x,} converges strongly to X = Pr f(X).
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Case 2. Let there be a subsequence {sy; } of {s¢} such that sy, < sy, Vi > 0. Then according
to Lemma 2.8, we can define a nondecreasing sequence {m;} C N such that my — oo
as k — oo and max{sy,, S} < Sm,,, Vk.Since {rx} € [a,b] C (0, A~1, Vk > 0 and
{or}, {Bk}, {yx} are the sequences in (0, 1) with conditions (i)—(ii), it follows from (3.14)
that

Lim (|Sum, — Wiy Xy | = 1im 1 Xp, — Y Il = 1m ||y, — s |l
k—o00 k— 00 k— 00
= lim [|xp, — Supm |l =0. (3.33)
k— 00

Further, following similar steps as in Case 1, we obtain

lim sup(f(£) — £, xpn, — X) <0.
k— 00

Since {xi} is bounded and limj_, o, 0 = 0, it follows from (3.17), (3.18) and inequality

”xmkH - ka ” f O'mk “f(xmk) - xmk ” + ﬂmk ”umk - xmk ” + mG ”ka - kaxmk ”s
that

kli>nolo ”xmk+1 — Xmy [ =0. (3.34)

Since Sy < Smy,, Yk, it follows from (3.15) that

(r— zp)smk+1 = K||xmk+1 — X |l + 2(f(x) — £7xmk —X).

Now taking limits as k — oo, we obtain s,,,,, — 0 as k — oo. Since sp < sgy1 Vk, it
follows that sy — 0 as k — oo. Hence x; — X as k — oo. Thus, we have shown that the
sequence {x,} generated by iterative algorithm (3.1) converges strongly to x = Pr f(x). O

We give the following corollary which is an immediate consequence of Theorem 3.1.

Corollary 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let the
bifunction G : C x C —> R satisfy Assumption 2.1 (1), (iii), (v), (vii) and Assumption 2.2;
let the bifunction ¢ : C x C — R be 2-skew-symmetric and satisfy Assumption 2.1 (v),
(vii) and let f : C — C be a p-contraction mapping. Let A : C — H be a monotone
and Lipschitz continuous mapping with Lipschitz constant A. For eachi = 1,2..., N,
let T; : C — H be a finite family of nonexpansive mappings and let {r];'}f\':l be a finite

sequence of positive numbers such that ZlN:l nt =1 foralln > 0. Assume that 'y =

Sol(GMEP(1.3))ﬂ(ﬂf»vz1 F(T;)) # (. Let the sequence {x,} be generated by the iterative
scheme:
xg € C,
yn =T, (xp — 1 Axy),
Xn1 = o f(xn) + (1 — 0y) Pclanxy + Bu Ty, (Xn — 1 Ayn)
+ ¥ Ly 0 Tixal,

for n > 0 where {r,} C [a,b] C (0, 2N and {0,), {on), {Bn}. {yn} are the sequences in
(0, 1) satisfying the following conditions:

(3.35)

() an+ By + yn = 1, liminf,, » B, > 0 and liminf,_, » y, > 0O;
(i) lim,_ o 0, = 0 and ZZO=0 0y = 00;
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N —1
(ii1) Zf,il Zi=1 |77;1 - 77? | < o0.
Then {x,} converges strongly to a point X € I'1, where X = Pr, f(X).

Proof Set S = I, the identity mapping on C,andk; = 0fori = 1,2,..., N in Theorem 3.1,
we get the desired result. O

4 Numerical example

We give a theoretical numerical example which justifies Theorem 3.1.

Example4.1 Let H = R, C = [—1,1]andi = 1,2,3. Define G : C x C —> R and
¢:CxC—->RbyG(x,y)=x(y—x)and ¢(x,y) =y — x; let the mapping f : C — C
be defined by f(x) = 5,Vx € C; let the mapping A : C — H be defined by A(x) =
3x + 1,V¥x € C; let the mapping T; : C — H be defined by T;jx = —(1 + i)x for each
i = 1,2,3, and let the mapping S : C — H be defined by Sx = %,Vx € C. Setting
o, = ﬁ and r, = é Vn >0,andny =n =n3 = % Then the sequence {x,} in C
generated by the iterative schemes:

yn =Ty, (xn - ’(3)5 + l)xn)
up =Ty, (Xn — rnAyn) = @;
Zn = nXn + B () + valm Tixn + mToxy + m3T3x,];

X, 1
X1 = 505 + (1= 157) 20 m 2 0,

4.1)

converges to a point ¥ = {0} € I'.

Proof 1t is easy to prove that the bifunctions G and ¢ satisfy Assumption 2.1 (i), (iii), (v),
(vii) and Assumption 2.2, and Assumption 2.1 (v), (vii) respectively. Choose «t;, = 0.7+ 0'21 ,
Bn = 0.2 — —2 and y, = 0.1 + &L for all n > 0, then it is easy to observe that the
sequences {an} {Bn}, {yn} arein (O, 1) such that o, + B, + ¥, = 1 and satisfy the conditions
liminf,_, By > 0 andliminf,_, » y, > 0. Further, for each i, it is easy to prove that 7; are
k; strict pseudo-contraction mappings with k1 = % ky = % and k3 = % and F(T;) = {0}.
Therefore k = max{ky, k2, k3} = % Also S is nonexpansive mapping with F(S) = {0}.
Hence Sol(GMEP(1.1))= {0}. Thus I' = Sol(GMEP(1.3))(") F(S) ﬂ(ﬂlNzl F(T))) = {0} #
. After simplification, iterative schemes (4.1) are reduced to the following:

1. .
Yn = 3Xn;

-3
u, = anﬁ }’n;

w=(07+% ) x+ (02 22) % =3 (0.1 + %) s

X, 1
Xnt1 = 58y + (1 — 15)20, 1 = 0.

4.2)

Next, using the software Matlab 7.8, we have following figure and table which show that
{x,,} converges to x = {0}.
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Convergence of (xn} with initial values x, = 1,1
06 T T T T

04r 1

06 . . . .
0 5 10 15 20 25

number of iterations

Convergence of {x,}

No. of Xn No. of Xn No. of Xn No. of Xn
iterations x1 =-—1 iterations xp =-—1 iterations xy =1 iterations xp =1

1 —0.600000 14 —0.000784 1 0.600000 14 0.000784
2 —0.360000 15 —0.000470 2 0.360000 15 0.000470
3 —0.216000 16 —0.000282 3 0.216000 16 0.000282
4 —0.129600 17 —0.000169 4 0.129600 17 0.000169
5 —0.077760 18 —0.000102 5 0.077760 18 0.000102
6 —0.046656 19 —0.000061 6 0.046656 19 0.000061
7 —0.027994 20 —0.000037 7 0.027994 20 0.000037
8 —0.016796 21 —0.000022 8 0.016796 21 0.000022
9 —0.010078 22 —0.000013 9 0.010078 22 0.000013
10 —0.006047 23 —0.000008 10 0.006047 23 0.000008
11 —0.003628 24 —0.000005 11 0.003628 24 0.000005
12 —0.002177 25 —0.000003 12 0.002177 25 0.000003
13 —0.001306 26 —0.000002 13 0.001306 26 0.000002

This completes the proof. O

5 Conclusion

We introduced an extra-gradient iterative method for finding a common solution to a gener-
alized mixed equilibrium problem and fixed point problems for a nonexpansive mapping and
for a finite family of k-strict pseudo-contraction mappings in Hilbert space and proved the
strong convergence of the sequences generated by iterative method. A theoretical numerical
example is given to illustrate the Theorem 3.1. It is of further research effort to extend the
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iterative method presented in this paper for solving these problems in Banach spaces, and for
the case when A is multi-valued mapping.

Acknowledgements Authors are very grateful to the anonymous referees for their critical comments which
led to substantial improvements in the original version of the manuscript.
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