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Abstract

In this paper, the new generalized classes of (p, g)-starlike and (p, g)-convex functions are
introduced by using the (p, g)-derivative operator. Also, the (p, ¢)-Bernardi integral operator
for analytic function is defined in the open unit disc U = {z € C : |z| < 1}. Our aim for these
classes is to investigate the Fekete-Szego inequalities. Moreover, Some special cases of the
established results are discussed. Further, certain applications of the main results are obtained
by applying the (p, g¢)-Bernardi integral operator.

Keywords (p, g)-starlike functions - (p, ¢)-convex functions - Fekete-Szego inequality -
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Mathematics Subject Classification 30C45 - 30C50

1 Introduction

The g-analysis is a generalization of the ordinary analysis without using the limit notation.
The first application and usage of the g-calculus was introduced by Jacksonin [11] and [12].
Moreover, several applications in various fields of Mathematics and Physics (see for details
[22,26]). Recently, there is an extension of g-calculus, denoted by (p, g)-calculus which
is obtained by substituting g by ¢g/p in g-calculus. The (p, ¢)-integer was considered by
Chakrabarti and Jagannathan in [5]. There are further results to this also in [2,3,20] . The two
important geometric properties of analytic functions are starlikeness and convexity. We have
seen many publications in Geometric Function Theory by using the g-differential operator. A
generalization of starlike functions §* was investigated by Ismail et al. in [10]. Furthermore,
close-to-convexity of certain families of g-Mittag-Leffler functions were studied in [27].
We have also seen the coefficient inequality of g-starlike functions discussed by [30]. More
recently, coefficient estimates of g-starlike and g-convex functions were studied in [21].
There has also been a new subclasses of analytic functions associated with g-differential
operators introduced and discussed in many works [1,9,16,17,23,24,30]. Motivated by an
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emerging idea of (p, g)-analysis as a generalization of g-analysis, in this paper, we extend
the idea of g-starlikeness and g-convexity to (p, g)-starlikeness and (p, g)-convexity. From
this, we will obtain the Fekete-Szegd inequalities for these classes, we also apply these results
on the newly introduced (p, g)-Bernardi integral operator as given applications of our results
here.

1.1 Background

We recall some basic notations and definitions from (p, ¢)-calculus, which are predominantly
in this paper.
The (p, q)-derivative of the function f is defined as in [29]:

f(pz) — f(q2)

Dpgf@)=—" (z#0:0<g<p=1: (1.1)
(P—q)z
From Eq. 1.1, it is clear that if f and g are the two functions, then
Dy g (f(2)+8(2) = Dpqf(2)+ Dpqg(z) (1.2)
and
Dy y (cf(2)) =cDpq f(2), (1.3)

where c is constant.

We note that D, 4 f(z) — f'(z) as p = 1 and ¢ — 1—, where f’ is the ordinary
derivative of the function f.

In particular, using Eq. 1.1, the (p, g)-derivative of the function & (z) = z" is as follows:

Dp,qh(z) = [n]p,qzn_l, (14)
where [n], , denotes the (p, g)-number and is given as:
P —q"
(n]p.g = O<g<p=<1. (1.5)
P—9q

Since, we note that [n], ;, —> n as p = 1 and ¢ —> 1—, therefore in view of Eq. 1.4,
Dy 4h(z) —> h'(z) as p = 1 and ¢ — 1—, where /’(z) denotes the ordinary derivative of
the function 4 (z) with respect to z.

Also, the (p, ¢q)-integral of the function f on [0, z] is defined as in [14] :

k k

/Z F)dp at = (P—q)ziqf<qz>,
0 P pkH17 \ ph+l

k=0

<land0<g<p<l.

where ‘ 1

14
In particular, the (p, ¢)-integral of the function i (z) = z" is given by

z Zn+1
h(t)d, 3t = ———, 1.6
/0 (Ndp.a CEST (1.6)

where n # —1 and [.], 4 is given by Eq. 1.5.

Again, since [n + 1], 4 —> n+1as p = 1 and ¢ —> 1—, therefore for the same

n+1

choices of p and ¢, Eq. 1.6 reduces to foz h(t)dt = Z+ 1
n

the function 4 (z) on [0, z].

, which is the ordinary integral of
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In this paper, we consider the class A consisting of functions of the following form:

f@ =2+ a" (1.7)

n=2

and analytic in the open unitdisc U= {z € C : |z] < 1}.
Also, using Egs. 1.2, 1.3 and 1.4, we get the (p, g)-derivative of the function f, given by
Eq. 1.7 as:

Dyqgf(@) =1+ Z[n]p,qanz”_] O<g=<p<l (1.8)
n=2

where [n], 4 is given by Eq. 1.5.
For the analytic functions f and g in U, we say that the function g is subordinate to f in
U [18], and write

g(@) < f(x)org < f,
if there exists a Schwarz function w, which is analytic in U with
w(0) =0and lw(z)| < 1,

such that
g@)=fwk) (el (1.9)

Ma-Minda defined the classes of starlike and convex functions, denoted by S*(¢) and C(¢),
respectively, by using the subordination principle between certain analytic functions [15]
These subclasses are defined as follows:

S*(¢) = :f eA: Z;((Zz)) < d)(z)} (1.10)
and ,
C@) = {f cA: (1 + Z;(i?) < ¢(z)}, (1.11)

where the function ¢ (z) is analytic in U with %(¢(z)) > 0, ¢(0) = 1 and ¢’(0) > 0. It is
clear that S*(¢) and C(¢) are the subclasses of A.

The classes of g-starlike and g-convex functions, denoted by S; (¢) and C,(¢), respec-
tively, are defined by using the subordination principle as in [4]:

. C Dyf@@)
Sy () = {f eA:z ;(Z) <¢(z)} (1.12)
e Dy (zDy f (2))
- . Pal2lq T2
Cy(p) = {f €A: D,/ <¢(z)}, (1.13)

where the function ¢ (z) is analytic in U with R(¢(z)) > 0, ¢(0) = 1 and ¢’(0) > 0. These
classes are the subclasses of A.

The Feteke-Szego problem is to find the coefficients estimates for second and third coeffi-
cients of functions in any class of analytic function having a specified geometric property [7].
In this paper, we introduce the classes of (p, ¢g)-starlike and (p, g)-convex functions by using
the (p, g)-derivative in terms of the subordination principle. Also, we find the Fekete-Szego
inequalities which is obtained by the maximizing the absolute value of the coefficient |a3 —a% |
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for the functions belonging to these classes, as in [6,8,13,25,28]. Furthermore, the (p, q)-
Bernardi integral operator for analytic functions, is defined in the open unit disc U to discuss
the application of the results established in this paper.

2 Main results

First, we define the classes of (p, ¢g)-starlike functions and (p, g)-convex functions, denoted
by S,’;’ ¢(®) and C), 4(9), respectively, in terms of the subordination principle by taking the
(p, q)-derivative in place of g-derivative in the respective definitions of the classes of g-
starlike and g-convex functions.

The respective definitions of the classes S;“,, q (¢) and C), 4 (¢) are as follows:

Definition 2.1 The function f € A is said to be (p, g)-starlike if it satisfies the following
subordination:
2Dy 4 f(2)

f@
where the function ¢ (z) is analytic in U with R(¢(z)) > 0, ¢(0) = 1 and ¢'(0) > 0.

<¢@) O<g<p=1, 2.D

Definition 2.2 The function f € A is said to be (p, g)-convex if it satisfies the following
subordination:

Dy 4 (ZDP,qf(Z))
Dp,qf(z)

where the function ¢ (z) is analytic in U with (¢ (z)) > 0, ¢(0) = 1 and ¢’(0) > 0 (Figs.
1,2).

< ¢() O<g<p=D, 2.2)

Remark 2.1 We note that, for p = 1 the classes S;‘;’ q (¢) and C), 4 (), reduce to the classes
S;(qb) and C4 (), which are defined by Eqs. 1.12 and 1.13, respectively. Again, for p = 1

and ¢ —> 1—, the classes S; q(¢) and C, 4(¢) reduce to the classes S*(¢), defined by

Eq. 1.10 and C(¢), defined by Eq. 1.11, respectively.

First of all, we need to mention the following lemma originally defined in [15]:
Lemma21 Ifp(z) =1+4+ci1z+ czE 4 s a function with R(p(z)) > 0and n € C, then
ez — pef] < 2max {1; (2 — 1]} .

The result is sharp for giving two choices of the function p(z) as follows:

1+ 2 I+z
p(@) = 5 and p(z) = :
l—z -z

Now, we investigate the Feteke-Szego inequality of the class Sy ,(¢) in the following
result:

Theorem 2.1 Let ¢(z) = 1 + b1z 4 byz? - - -, with by # 0. If f, given by Eq. 1.7, belongs to
b
las — pa3| < ﬂmax{l;

the class Sz’q (@), then
by by [3]17,q - 1) '}
—t |- , 2.3
[3]F~L] -1 by * [Z]p,q -1 ( [2]]7# —1 ® (2.3)

where by, b, --- € R, u € Cand 0 < q < p < 1. The result is sharp.
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Fig. 1 The class 88‘2 05 (—1 + Z) for the complex number z = x +iy, x,yeR
.2,0. s

column

1
Fig.2 The class Cp 2 0.5 (#) for the complex number z = x +iy, x,y € R
-z

Proof Let f € S;’ q (¢), then in view of Definition 2.1, the function f satisfies the Subordi-
nation 2.1. Thus, by using Eq. 1.9, there is a Schwarz function w such that

z2Dp 4 f(2)

= . 2.4
@ ¢ (w(z)) (2.4)
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We define the function
p@)=1+ciz+cz+-- 2.5)

in terms of the function w(z) as :

@) = 1+ w(z)
p2) = T—w (@)
which gives
pz) —1
= . 2.
w(z) ) +1 (2.6)

Using Egs. 2.5 and 2.6, we get

_ c1z+caz? 4
¢(w(Z)) _¢<2+C11+C2Z2+"'>

3
=¢ (; [clz—l— <cz— %ﬁ)zz—i- <C3 —cie2+ Cl) 23+"'i|)~ 2.7

Since ¢p(z) =1+ b1z + byz? - - -, therefore, Eq. 2.7 gives

2 b 2
<1>(w(z))=1+blclz+[bl (cz—cl>+zcl}z2+---. 2.8)

N

2 2 2 4

Now, using Egs. 1.7 and 1.8, we get

ZDp,qf(Z) z+ Zgiz[n]p,qanzn
f@ 24 Y ol an?" + (2lp.q azz

+<([3]p,q — Daz — ([z]p,q - l)a%>z2 + (2.9

Using Eqs. 2.8 and 2.9 in Eq. 2.4, then comparing the coefficients of z and z? from the
both sides of the resultant equation and simplifying, we get

blcl
=22, — D 2.10
2 ARlpy - (2.10)
and , 1 . )
e - (2% 2
as = 2(131pg — 1) [cz 2 (1 b 2l = 1>c1] . (2.11)

Next, for u € C, using Egs. 2.10 and 2.11, we have

o, h U b b (Bl )2
T ET ) [” 2(1 b mp,q—l(l Rlpg —1" >>Cl]'

(2.12)
If we take | ) ) 3 .
u:7<1—i— ! <1—[]”’q_ M)) (2.13)
2 b [2lpg —1 2]pq — 1
then, from Eq. 2.12, we get
D1 2
la3 — pas| = leo — ve?). (2.14)
2T 2Bl — D !
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Hence, by applying Lemma 2.1, Eq. 2.14, gives the Feteke-Szego inequality, given by
Eq. 2.3, for the class S;’q (®).

1
Further, our result is sharp. That is, the equality holds, when p(z) = pi(z) = 1 Tz =
-z
14274272+ --- and Eq. 2.4, gives
2Dy f(2) (Pl(Z)—1> 2
— o = | =@ =1+biz+ bz (2.15)
f (@) p1(@) +1

Then, by comparing Egs. 2.8 and 2.15, we have ¢; = 2 and ¢, = 2, then Eq. 2.12 gives

the equality sign in the place of inequality in Assertion 2.3.
2

1
Similarly, for p(z) = pa(z) = % =1+2z>+---,Eq. 2.4 gives
-z

ZDp,qf(Z) _ (PZ(Z) -1

=¢(z2) =1 24, 2.1
7@ pz(z)+1> ¢ (z7) + b1z + (2.16)

Then, by comparing Eqs. 2.8 and 2.16, we have ¢; = 0 and ¢, = 2 and hence Eq.2.12
gives the equality sign in the place of inequality in Assertion 2.3. O

Taking p = 1 and ¢ — 1— in Theorem 2.1, we get the following corollary originally
shown in [4]:

Corollary 2.1 Let ¢(z) = 1+ byz + byz? - -, with by # 0. If f given by Eq. 1.7 belongs to
the class S*(¢p), then

|b1]

b
|as —Ma%| = Tmax{h -2

by

+Dby (1 —ZM)H,
where by, b>, --- € Rand v € C. The result is sharp.

Remark 2.2 For p = 1, Inequality 2.3, gives the Feteke-Szeg6 inequality from [4] for the
class S:; ().

Next, we investigate the Feteke-Szeg6 inequality for the class C;, ,(¢) in the following
result:

Theorem 2.2 Let ¢(z) = 1 + biz + baz? ... withby # 0. If f, given by Eq. 1.7, belongs to
the class Cp 4(¢), then
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3570 H. M. Srivastava et al.

by b [31.4 (31— )
2y - ,
b Ryl < 22, (2], —1)> g H

2.17)

b
|ag—;w%|§—| 1 max 3 1;
[3]p,q([3]p,q - 1)

where by, by, ... € R, u e Cand0 < q < p < 1. The result is sharp.

Proof Let f € Cp 4(¢), then in view of Definition 2.2 the function f satisfies the Subordi-
nation 2.2, thus, by using Eq. 1.9, there exists a Schwarz function w such that
Dp’q (ZDpyq f(Z))
Dp,q f@)
where w is given by Eq. 2.6 and ¢ (w(z)) is given by Eq. 2.8.
Using Egs. 1.7 and 1.8, we obtain
DpgDygf(2) 2+ 3,20, jand"
Dpqf(2) 2+ Y olnlp ganz"

=1 + [2]p,q([2]p,q - 1)a2Z + <[3]p,q([3]p,q - 1)&3 - [2]%),11([2]]7,(] — 1)a%>zz 4.

(2.19)
Comparing the coefficients of z and z? in Egs. 2.8 and 2.19 and simplifying them, we
obtain

= ¢ w(2)), (2.18)

bicy
a = (2.20)
2T 220 (2Dpg — D
and b 1 b b
a3 = ! |:cz - (1 2 7‘) c’f‘] . 2.21)
2[3]p,q([3]p,q - 1) 2 bl [2]p,q -1
Next, for u € C, Egs. 2.20 and 2.21, gives
2 b [ 1 ( by
az — pa, = o—=(1-——
2[3]p,q([3]p,q - 1) 2 bl
b 3 3 —1
E— - ]g’q([ o =D V)2 (2.22)
2]pq —1 (215,,(2]pg — D
If we take
1 b b 3 3 -1
v=-[1- 72 . 1 1— [ ]g,q([ ]p,q ),U. i (223)
2 by [2]pg—1 (215 4, (2]p,g — D
then using Eqs. 2.22 and 2.23, we get
b
las — pad| = b1l lea — vel. (2.24)

2[31p.¢([Blpg = D

Now, by applying Lemma 2.1, Eq. 2.24 gives the Feteke-Szego inequality, given by
Eq. 2.17 for the class Cp 4 ().

1
Further, our result is sharp, when p(z) = p1(z) = 1 te = 14+274+2z2+--- and
-z
Eq. 2.18, gives
qu(Zquf(Z)) <P1(Z)_1> 2
el haing Al LA — ) =¢@) =1+biz+byz".... (2.25)
Dy g f(2) pi(@)+1
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Then, by comparing Eqgs. 2.8 and 2.25, we have ¢; = 2 and ¢ = 2 and hence Eq. 2.22
gives the equality sign in the place of inequality in Assertion 2.17.

+ 22

Similarly, when p(z) = p2(z) = —— =1+ 272 4+ -, Eq. 2.18 gives
z

1—
D, ,(zD b4 z7)—1
paeDpa /@) _ <p2() >=¢(z2)=1+b122+-~, (2.26)
Dp,qf(Z) p2(2) + 1
then, by comparing Eqs. 2.26 and 2.8, we have ¢; = 0 and ¢; = 2 and hence Eq. 2.22 gives
the equality sign in the place of inequality in Assertion 2.17. O

Taking p = 1 and ¢ —> 1— in Theorem 2.2, we get the following corollary [4]:

Corollary 2.2 Let ¢(z) = 1 4+ b1z + baz?% ..., with by # 0. If f given by Eq. 1.7) belongs to

the class C(¢), then
by 3
—+b[1-= , 2.27
by o ( 2M>H @27

b
las — paj3| < %max {1;
where by, by, -+ € R and u € C. The result is sharp.

Remark 2.3 For p = 1, Inequality 2.17 gives the Feteke-Szego inequality for the class C, (¢)
from [4].

In the next section, we discuss the coefficient bounds of the first and third coefficients of
the functions belonging to the classes S;, q (¢) and Cp 4 ().

3 Coefficient bounds

In this section, we estimate the coefficient bounds for the coefficients of z and z2 of (p, q)-
starlike and (p, g)-convex functions.
First, we need to mention the following lemma originally given in [15]:

Lemma3.1 If p(z) =1+ciz+ 2 4. s a function with X(p(z)) > O, then

—4v+2,if v=<0;
lea —vet| < 1 2, if 0<v=<lI; 3.D
4v—-2, if v=>1.

Also, the above upper bound is sharp, and it can be improved as follows when 0 < v < 1:
2 2 1
lco —vepl +vler|” <2 0<v§§ 3.2)

and .
|cz—vc%|+(1—v)|cl|2§2 <§§v< 1). 3.3)

Now, we establish the following result for estimation of the coefficient bound for the functions
belonging to the class Sy, (¢):
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Theorem 3.1 Let ¢(z) = 1 4+ b1z + baz% ... withb; > 0 and by > 0. Let

([2]pq - 1)b2 + ([2]p q — 1) (by — bl)

34

(Blp.g — Db oy

_ (21p.q = Db} + (2.4 —21) (b + b1) 3.5)
(131p.g — Db

_ @lpg = Db+ 21pg = D2 3.6)

(31,4 — Db
If f, given by Eq. 1.7, belongs to the class S;yq (¢), then

b b? 1
2+ ! < Sp—— ) if n<orn;
[3]p,q -1 [2]1),q -1 [3]p,q -1 [Z]p,q -1
by
— g2 - ] < <oy
laz — pas| < Blyg — R if o1 <p <o
—b b? 1
2 L < — o ) Jif u> oo,
[3]p,q -1 [z]p,q -1 [3]p,q -1 [2]p,q -1

3.7

Further, if o1 < n < 03, then

2, (@lpg—1? by ( [31p.q — 1 ) > bi

— a3+ ——Ld by — - <
laz — paj| Blpg — D52 1—b2 2lpq =1 2lpg - T laz|” | < Blpg =1
3.8)

and if o3 < | < o0y, then
PR [ U} PSP (1 ST 1#) [ <
) 2 (Blp.g — Db} 2lp.q — 2lp.qg —1 T Blpg -1
3.9)

Proof For v < 0, Eq. (2.13) gives

_ lpg = Db + (21 — D*(b2 — b1)
- (1B1p.q — Db '

([2]pq — Dbi + (121p.q — D*(b2 — b1)

(13] 1 b = o1, then from the above relation, we have
p.q

n=oi.

Let p(z) be a function, given by Eq. 2.5, with i (p(z)) > 0 and f(z), given by Eq. 1.7,
be a member of the class S;",’q (¢), then Eq. 2.14 holds. Thus using Lemma 3.1 for v < 0 in
Eq. 2.14, we get

by

T 2(Blpg =D

which on making use of Eq. 2.13, gives

laz — pa3| < (—4v +2),
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by (bz by ( 31,0 — 1 >)
2 P9
az — pas| £ —— | — + 1-— , 3.10
a3 = | [Blpg —1 \ b1 [2]pq — 1 (21p.q — IM ( )

where u < o7.

Simplifying the right hand side of Inequality 3.10, we get the first inequality of Asser-
tion 3.7.

Again, if we take 0 < v < 1, then Eq. 2.13, gives

_ ([2lpg = DB + (2pg — (b2 +b1)
- (Blp.q — Db

o = U

3

where o7 is given by Eq. 3.4.
(121p.q — 1) b} + (12159 — D*(b2 — b1)

Let 3
([3]p,q - l)bl

= 09, then from the above relation, we

have o1 < u < o».

Now, using Lemma 3.1 for 0 < v < 1 in Eq. 2.14, we obtain
by
Blpg — 1

which gives the second inequality of Assertion 3.7.

Next, if we take v > 1, then Eq. 2.13, gives that u > o».
Now, using Lemma 3.1, for v > 1 in Eq. 2.14, we get

2
las — pay| <

3

a3 — padl < —— @y —2)
2T 2(131pg - D ’
which on using Eq. 2.13, gives
b b b 3 —1
las — pad| < 7‘(——2— - (1— By M)) 3.11)
Blpg—1\ b1 [Rlpg—1 2lpg — 1

Inequality 3.11 gives the third inequality of Assertion 3.7.
Further, if 0 < v < > then using Eq. 2.13, we have

1 —_
0<7(1—@— bi (1—[3]p"’ 1#))51,
2 by [2lpg—1 2lpq — 1 2

which on simplifying, gives

= R2lpg = Db} + 2]y — 1)*b2
- (1Blp.q — DT

, (3.12)

o < K

where o is given by Eq. 3.4.
([21pq = DB + (21pg — 1’2
([Blp.q — DT

Let = o3, then from Relation 3.12, we have 0] < u <

03.
Now, using Eqgs. 2.10 and 3.4, we get
las — pa3| + (u — on)las)” = |as — pa3|

([21p.q — b7 + (12159 — D*(b2 — by) bileil? (3.13)
+ M= 2 20
([3]]7,(] - l)bl 4([2]p,q - 1)
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which on using Eq. 2.14, we get

a3 — a3l + (1 — onlasP = 2 (jer —ved 4 2 (1= 2
3 — puay| + (n—o1)laz 2Bl —1) 2 i+ by
b 3 —1
b (o Bha =AY ). (3.14)
[z]p,q -1 [2]17,q -1
Using Eq. 2.13 in equation Eq. 3.14, we obtain
2 2 by 1 2 2
laz — paz| + (n —oplazl” = BLo—1\2 (Iea —veql +vlerl?) )
P

which in view of Inequality 3.2, gives
2 2 b1
laz — pay| + (n —oplaz|” = —. (3.15)
Blpg —1

Now, using inequality 3.15 in Eq. 3.13, we get

_ @l = Db+ (2Dpg = D2 b)) o b
(Bl — Db? T Blpg -1

las — paz| + (M
where 07 < u < 03.
Simplifying the above inequality, we obtain the Assertion 3.8.
Similarly, if 3 < v < 1, then using Eq. 2.13, we get 03 < u < o2, where 07 and 03 are
given by Eqgs. 3.5 and 3.6, respectively.
Now, using Egs. 2.10 and 3.5, we get
las — pa3| + (02 — wlaz|* = las — pa3|
L ((@log = DB+ @21 = D22+ b)) b}ler? (3.16)
([31p.q — Db? 4(21pq — D?
Using Egs. 2.14 in 3.16, we obtain

bl 2 1 b2
laz — pas| + (o3 — wlas)* = ————— (ICz —vet| + = (1 + =
g 2(131pg — 1) A
b 3 —1
— (1 — ”Lu)) |c1|2) , (3.17)
[21p4 — 1 2pg — 1
which, on using Eq. 2.13 gives
by 1
las — na3] + (02 — wlaz* = ———( 5 (Il —vefl + A =v)|erl’) ). B.18)
[B1pg — 1 \2

1
Now, since 5 < v < 1, therefore using Inequality 3.3 of Lemma 3.1, Eq. 3.18 gives

b
jas — ua3| + (02 — wlas? < ————. (3.19)
[3]p,q -1
Using Inequality 3.19 in Eq. 3.16, we get
([21p.g — DbT + ([21p.q — D3 (b2 + b1) b
las — pad| + [ =g LT — )l < ——
([3]]2,4 - l)bl [3]1),11 -1
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where 03 < u < 03.
Finally, on simplifying the above inequality, we obtain the Assertion 3.9. O

Taking p = 1 in Theorem 3.1, we get the following corollary for the class Sy ():

Corollary 3.1 Let ¢(z) = 1 4+ b1z + baz® ... withby > 0 and by > 0. Let

(12 — Db 4 (1215 — D*(b2 — by)

a (131 — Db}

(12 — Db 4 (1215 — D2(b2 + b1)

B (131, — Hb?

gy = 21y = Db} + (2l - D%s (3.22)
(1315 — Vb3

If f, given by Eq. 1.7, belongs to the class S;‘ (¢), then

(3.20)

o1

)

o (3.21)

)

by b? ( 1 © ) ,
+ - , <oi;
Bl =1 2L \By, =1 o, =)=
a3 —pad < | =24 if o <p <oy
PTRRIE B, -1 —heT
—by b% ( 1 “w > )
_ _ > X
Bl —1 2L,—i\BL, =1 ,=1) " #=n

(3.23)

Further, if o1 < u < o3, then

BTN (C P Vel P (1- B =) | <
s =l G, T on [bl I EPE G T b Rl R e
(3.24)

and if o3 < | < 0y, then

(121, = 12 b? ( (3l — 1 ) 2 by
_ —4 " |p b 1— .
= ra i e [P o U 1) e S, o

(3.25)

Next, we obtain the coefficient bound for the functions belonging to the class Cp, ,(¢):

Theorem 3.2 Let ¢(z) = 1 4+ b1z + baz% ... withb; > 0and by > 0. Let

oy = P @lng = DB+ (21pgl21pq = D22 — b)
! [31p.4([31p.q — Db?
oy 2021 — Db+ @yl - Dbz + b0 (3.27)
[3]p,q([3]p,q - l)bl
[215,4(121p.q — DB} + (121p,4[21p.q — D*D2

[31p.q (31, — DB?

, (3.26)

(3.28)

p3 =
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If f, given by Eq. 1.7, belongs to the class C) 4(¢), then

by b?
_|_
Blp.q(Blpg—1D  [2lpg—1
! - 2 - ) i w = p1s
BlpgBlpg =1 [21542p.g — D
laz — pa3| < B]([I;ﬁ, if p1<wp=<p
p.q p.q —
—by b
Blp.gBlpg =1 [lpg—1
1 %

BlpgBlpg =1 214(121p.g - 1)) ?

(3.29)

Further, if p1 < u < p3, then

213, (12]p.q — 1? "
Blpg(Blpg — DB

b [31p.4(Blp.g — 1) 2 by
— — : : < - 3.30
21p.q — 1 ( 2R, @ - 0" ) | = 6L, G, - O

and if p3 < | < p2, then

laz — paj| + — byl

21,2154 — D?

— pa3| + (b +by 1
laz — pas| 310 (31,4 — P2 1+b2
b [B1p.q([3lpg — D 2 by
-+ : . <—— (331
[z]p,q -1 ([2]%7[1([2]%(1 - 1)M |a2| - [3]p,q([3]p,q - 1) ( )

Proof For v < 0, Eq. 2.23 gives
B 212 ,(21p.q — DbT + (1204120 p.g — D> (b2 — b
- [31p.q (31, — DB?
Lot 212 ,(121p.q — DbT + (12154121 p.g — D*(b2 — b1)
[31p.q(31p.g — DB?

= p1, then from the above relation

we have u < py.

Let p(z) be a function given by Eq. 2.5 with i (p(z)) > O and f(z), given by Eq. 1.7, be
amember of the class C, 4 (¢), from this Eq. 2.24 holds. Thus, using Lemma 3.1, for v < 0,
in Eq. 2.24, we get

laz — paj| < b (—4v +2),
= 231, (Blpg — D

which on using Eq. 2.23, gives

) b by b [31p.4 (35— 1)
- —= 1— , 3.32
= G Bl D) (b1 T2yl ( 212,21y — D" )) G52

where © < py.
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Inequality 3.32 gives the first inequality of Assertion 3.29.
Again, if we take 0 < v < 1, then Eq. 2.23 gives

B 212, (121p.q — DB + (121p4[2]p.g — D* (b2 + b1)
- [31p.q([31p.g — Db? ‘

1= M

Lot 212 ,(121p.q — DbT + (1204121 p.g — D (b2 + b1)

[31p.¢ (131p.q — Db}
where p; is given by Eq. 3.26.

Now, using Lemma 3.1, for 0 < v < 1, in Eq. 2.24, we get

= p2, then p; < p < po,

by
Blp.g(Blpg — 1’
which gives the second inequality of Assertion 3.29.

Next, if we take v > 1, then Eq. 2.23 gives that u > p».
Now, using Lemma 3.1, for v > 1 in Eq. 2.24, we get

2
las — pa;| <

2 1Dy ]
_ 4y — 2),
laz — paz| < 2800 Blye 1)( v—2)

which on using Eq. 2.23 gives

2 bl b2 bl [3]p,q([3]p,q - 1)
- B P b A B
R © I ( bl [2pg 1 ( 212, (20pg - D" )
(3.33)

where © > p3.

Simplifying the right hand side of Inequality 3.33, we get the third inequality of Asser-
tion 3.29.

1
Further, if 0 < v < 3 then using Eq. 2.23, we have

o<1 _h 1- Bla g 2D 1) ]
2 by 21,4 —1 212 ,(21pq — D 2

which on simplifying, gives

(213, (121p.g — DB} + (1215412150 — 1)?b2

(3.34)
[31p.q (31,9 — Db?

prL<p<

Lo 250 (@lpg = DB + (21 21y = D2

(B1p.4([31p.q — Db}
have p; < u < p3, where pj is given by Eq. 3.26.

Now, using Egs. 2.20 and 3.26, we get

= p3, then from Inequality 3.34, we

las — pa3| + (u — p)laz|* = las — pa3|
- (213, (121p.g — DB? + ([21p.g[21p.g — D?(b2 — by) b2l |2
412]

[31.4(3lp.q — Db? 5.q(21pq — D
(3.35)
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which on using Eq. 2.24, we obtain

las — pad| + (u — p1)lazl?
by

1
2
— ¢!
(|02 veyl 2(

©2B1p,g(Blpg — D (3.36)
b b B31p.g(Blpg — D
—2 o (1= SRR ) e )
by [2]pg —1 [215,4(2]pg — D
Again, using Eqs. 2.23 in 3.36, we have
las — a3+ (u = polasf = — <1<|cz —veil + v|c1|2)> :
[3]1),(1([3]17,(1 - 1) 2
which in view of Inequality 3.2 gives

2 2 b

jas — pad| + (n — plar? < (3.37)

~ Blpg(Blpg — D
Now, using Eq. 2.20 and Inequality 3.37 in Eq. 3.35, we get

212 ,(121p.g — Db] + (12154 [2]p.g — D> (b2 — b1) o
[31p.4([31p.q — Db} ?

o + (-
b
< -\
[3]p,q ([3]]7,(] - 1)
Simplifying the above inequality, we obtain the Assertion 3.30.

1
Similarly, if — < v < 1, then using Eq. 2.23, we get p3 < u < p2.
Now, using Eqgs. 2.20 and 3.27, we get

las — pa3| + (p2 — wlaz|?
(21}, (21p.g = VBT + (120pg[2lp.g = D02+ b1)
[31p,4(13]p.g — Db} (3.38)

=|a3—/w§|+<

b3|ci|?
4212 ,(120pq — D’

Using Egs. 2.24 in 3.38 and then simplifying, we obtain

las — pa3| + (02 — Wlaz |

by <| zl + 1 <1 + by
= cy) — UC — —
20315, ([Blpg — 1) 2 by

by [3]p,q([3]p,q - 1) 2
+ 1— : '
2lpg —1 ( [2]%741([2]1"‘1 - DM) ! ))

which on using Egs. 2.23, gives

b 1
las — pas| + (p2 — wlaz|* = m (5 (lea —vefl + (1 — v)|c1|2)) .
P-4 P-4
(3.39)

@ Springer



Fekete-Szego inequality for classes of (p, g)-Starlike ... 3579

1
Now, since 3 < v < 1, therefore using Inequality 3.3 of Lemma 3.1 in Eq. 3.39, we get

2 2 L
) i b 3.40
las — paz| + (02 — Wlaz|” = [31p.q(Blpg = D -

Using Inequality 3.40 in Eq. 3.38, gives

212 ,(121p.q — Db + (121p.4[21p.g — D* (b2 + b1) 5
— ] lazl

las — na3| +
: [31p.4([31p.g — Db?
by

B —
- [3]p,q([3]p,q - 1)

where p3 < u < pa2.
Finally, on simplifying the above inequality, we obtain Assertion 3.31. O

’

For p = 1, Theorem 2.2, gives the following corollary for the class C, (¢):
Corollary 3.2 Let ¢(z) = 1 + b1z + byz*... withby > 0 and by > 0. Let

2321 = Db + (1214[21g = 1)*(b2 — b1)

, 3.41
P [314 (1314 — Db o
212(121, — Hb? + (121,121, — D*(b2 + b
gy — Ha(2la = Db; + (211 ]‘12 AR ON (3.42)
[31¢([31g — Dby
212(121g — Db? + (214121 — 1)?b
m:[]q([ lg = Dby + (1214 [2)g — D76 (3.43)

[31p.4 (3] — Db
If f, given by Eq. 1.7, belongs to the class Cy(¢), then
b b?
2 + 1
Bly(3ly — D [2lg —1

1 _ "
31,31, =D 21212l — 1)

),if w = pt;

by

las — pa3| < R if pL=p=py (344
q q
—by _ b%
Blg(B3ly =D [2]g -1
1 "

BlL G, — ) 2B, - 1))”f =

Further, if p1 < u < p3, then

[212(12], — 1)? b2 31,131, — D)
— a2 94 b1 — by — 1 | — —ale ) 2
las — paz| + 31, (Bl — D2 [ 1— b 21, —1 222, - 1)M laz|

by
<
T [3l,(31, - D

(3.45)
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and if p3 < 1 < p2, then

[212(12], — 1)? b2 131,131, — D
_ 2 + B S by + by + 1 | — —ale ) 2
las — pas| 31,1, — Dp? 1+b2 21, —1 2E(2), 1)M |az|

by
< -
[B1;(Bl; — 1
In the next section, we discuss some applications of the results, established in Sects. 1 and 2.

(3.46)

4 Applications
We recall that the Bernardi integral operator F. is given in [2] as:

Fe(f(2) = ! . ~tc“f(r)dr (feA c>—1).

Now, in view of above equation, we introduce the (p, ¢)-Bernardi integral operator £(z)
as:

1 Z
L(2) = Fepqg(f(2)) = [t#/o T fOdpgt c=0,1,2,3,.... (41

Let f € A, then using Eqgs. 1.6 and 1.8, we obtain the following power series for the
function £ in the open unitdisc U= {z € C: |z| < 1}:

[1
E(z)—z+2 +C ,,z” (c=1,2,3,...; 0<g<p=<1; feAd. 2

It is clear that £(z) is analytic in open disc U.
We note that, by taking p = 1 in Eq. 4.1, we get g-Bernardi integral operator as originally
prescribed in [19] .
Let
Ln - [1 + C]p,q

Cntclpy’

Now, applying Theorem 2.1 to the function £(z), defined by Eq. 4.2, we get the following
application of the theorem itself:
Let ¢(z) = 1 4+ bz + baz? ..., with by # 0. If £, given by Eq. 4.2, belongs to the class
b
lay — pna3| < ¢max {1;

Sy 4 (@), then
by, b (1_[3]%[1“_1)“”’
[Blp.qLs —1 by [2]pgLl2—1 [21p,qL2 — 1

where L, and L3 are given by Eq. 4.3, b1,b2,--- e R, u e C,0<g < p < 1.

Next, applying the Theorem 2.2 to the function £(z), defined by Eq. 4.2, we get the
following application of the theorem:

Let ¢(z) = 1 4 b1z + bpz? ..., with by # 0. If £, given by Eq. 4.2, belongs to the class
Cp,q(#), then

n>1. 4.3)

b b
laz — pa3| < 121] max{l; 2

[3]p,qL3([3]p,qL3 -1 by

bl [3]p.qL3([3]p,qL3 - 1) }
+7L 11— )
Rlpg—1" ( 212, La(12]p gL — 1)) : ’
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where L, and L3 are given by Eq. 4.3,b1,b02,... e R, ueC,0<g<p<1.

Further, applying the Theorem 3.1 to the function £(z), defined by Eq. 4.2, we get the
following application of the theorem:

Let¢(z) = 1 +biz + brz>... withbh; > 0and by > 0. Let

oy = pgla = Dbt + (2pgLa = (b2 = br)
(131p.4L3 — Db}

oy = PlpgLa = Db} + (21pgL2 = D22 +b)
(131p.4L3 — Db} ’

_ (2lpgLa = Db + (12]p4L2 — 1)*hs

- (I31p.q L3 — b3 '

’

03

If £, given by Eq. 4.2, belongs to the class S;;’q (¢), then

b b? 1
2 + L < — K’ ) Jif uw <o
Blpg =1 R2lpg—1\Blpg—1 [2lpg—1
las — pa3| < L if o1 <u <oy
27 Bl -1 -
—b b? 1
: L < — Kk ) Jif u>oo.
Blpg =1 Rlpg —1\Blpg—1 [2lpq—1

(4.4)

Further, if oy < u < 03, then

—1)? 2 —
|a3_wg|+<l2mm1>[bl_b2_[2] (1 Bleal 1M)|a2|2}

([31p.qL3 — b2 pal2—1 2lpqLla—1
P
[3]p,qL3 -1

and if 03 < u < o, then

21,.0Ly — 1?2 b? 31,0L3 — 1
jay — pad| + Leal2 = D7y B <1—[]p"’ : u) jazl?
([31p.gL3 — 1)b? [2]pqLl2—1 [2]pqL2— 1

by
S
[3]p,qL3 -1

where L, and L3 are given by Eq. 4.3.
Finally, applying Theorem 3.1 to the function £(z), defined by Eq. 4.2, we get the following
application of the theorem:
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Let¢(z) = 1 4+ b1z + brz%... withhy > 0and by > 0. Let

_ 215, (21 L2 = DB} + (121p L2l2lpg L2 = 1*(b2 = b1)
[S]P,qLS([3]p,qL3 — l)b%
oy — 212, L2(121p.g Lo — DB? + [213 , Lo([2] Lo — 12 (b2 + by)
[31p.gL3([3]p.q L3 — l)b%
(21).4 La((2pg Lo = DB} + (21} 4 La(2)p g L2 — 1?2
[81p.gL3(3]p.qL3 — l)b%

If £, given by Eq. 4.2, belongs to the class Cp, 4(¢), then

P1

)

)

p3 =

by n
[3]p,q L; ([3]17,(] L3 —1)
b2

7
[2]p gLz —1

1 _ % if -
BlpgLsBlpgls — ) 2B, La2qL— D) T =00

by
[3][),q L3([3]p,qL3 ) '

laz — pa3| < if p1=p=p2;
—by
[3]p,qL3([3]p,qL3 - 1)
b2
7t
[2]pqgL2—1

! - - if w=p
BlpgLsBlpgls =1 28 La2lpgla—1 )~ -
4.5)

Further, if p; < u < p3, then

213, L2(12]p g Lo — 1)?
[3]p,qL3([3]p,qL3 - l)b%
2 —
[bl b0 (1 Bl La@lpaLs 1>M> |a2|2}
[2]Ps‘1L2 -1 [2]p,qL2([2]p,qL2 -1
by
< .
- [3]p,qL3([3]p,qL3 - 1)

and if p3 < u < po, then
212, La([21pg L2 — 1)?
[3]p,qL3([3]p,qL3 - l)b%

b% 1_[3]p.qL3([3]p,qL3_])M |a2|2 < by
21 4L2—1 212 ,L2([2]p.qgL2— 1) T BlpgL3BlpgLs—1)’

las — pna3| +

las — pa3| +

|:b1 +br+
where L, and L3 are given by Eq. 4.3.
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5 Conclusion

Inourresults, by using the (p, g)-derivative operator, the generalized classes of (p, ¢)-starlike
and (p, g)-convex functions were introduced which are a generalization of the known starlike
and convex functions, respectively. Moreover, the Fekete-Szeg6 inequalities of the analytic
function belonging to these introduced classes were investigated. We also defined the (p, g)-
Bernardi integral operator for analytic functions in the open unitdisc U = {z € C : |z| < 1}.
Further, the validity of our results can be applicable for the (p, ¢)-Bernardi integral operator
we introduce here in this paper. There are some special cases of the results that we were
also able to show. Lastly, certain applications of the main results for the (p, ¢g)-starlike and
(p, g)-convex functions were obtained by applying the (p, ¢)-Bernardi integral operator.
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