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Abstract
The celebrated Kleene fixed point theorem is crucial in the mathematical modelling of recur-
sive specifications inDenotational Semantics. In this paperwe discusswhether the hypothesis
of the aforementioned result can be weakened. An affirmative answer to the aforesaid inquiry
is provided so that a characterization of those properties that a self-mapping must satisfy in
order to guarantee that its set of fixed points is non-emptywhen no notion of completeness are
assumed to be satisfied by the partially ordered set. Moreover, the case in which the partially
ordered set is coming from a quasi-metric space is treated in depth. Finally, an application of
the exposed theory is obtained. Concretely, a mathematical method to discuss the asymptotic
complexity of those algorithms whose running time of computing fulfills a recurrence equa-
tion is presented.Moreover, the aforesaid method retrieves the fixed point basedmethods that
appear in the literature for asymptotic complexity analysis of algorithms. However, our new
method improves the aforesaid methods because it imposes fewer requirements than those
that have been assumed in the literature and, in addition, it allows to state simultaneously
upper and lower asymptotic bounds for the running time computing.
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1 Introduction

Fixed point theory in partially ordered sets plays a central role in the research activity in
Mathematics and Computer Science [1–5]. In particular, Kleene’s fixed point theorem is one
of the fundamental pillars ofDenotational Semantics (see, for instance, [1,5,6]). The aforesaid
result allows to state the so-called Scott’s induction principle which models the meaning
of recursive specifications in programming languages as the fixed point of non-recursive
monotone self-mappings defined in partially ordered sets, in such a way that the aforesaid
fixed point is the supremum of the sequence of successive iterations of the non-recursive
mapping acting on a distinguished element of the model (see [7,8]). In Scott’s approach,
the non-recursive mapping models the evolution of the program execution and the partial
order encodes some computational information notion so that each iteration of the mapping
matches up with an element of the mathematical model which is greater than (or equal to)
those that are associated to the preceding steps of the computational process. It is assumed
that in each step the computational process gives more information about the meaning of the
denotational specification than the preceding steps. Therefore, the aforementioned fixed point
encodes the total information about the meaning provided by the elements of the increasing
sequence of successive iterations and, in addition, no more information can be extracted by
the fixed point than that provided by each element of such a sequence.

In order to guarantee the existence of fixed point of a monotone self-mapping, Kleene’s
fixed point theorem assumes conditions about the partially ordered set (order-completeness)
and the self-mapping (order-continuity). However, in many real applications one of two con-
ditions can be unfulfilled. Motivated, in part, by this fact a few works have focused their
efforts on generalized versions of Kleene’s fixed point theorem recently (see, for instance,
[9–11]). In the original version of the celebrated Kleene fixed point theorem, and also in the
aforesaid references, the assumed conditions have a global character, i.e., each element of
the partially ordered set (the mathematical model) must satisfy them. However, in the afore-
mentioned real applications, coming, for example, from Denotational Semantics or Logic
Programming, to check the aforesaid conditions for all elements of the partially ordered set
is unnecessary. In fact, the proof of Kleene’s fixed point theorem is based on the construction
of a sequence of iterations from a fixed element and, thus, the global assumed conditions
apply for warranting the desired conclusions. In the view of the preceding remark, it seems
natural to wonder whether the hypothesis in the statement of Kleene’s fixed point theorem
can be weakened in such a way that the new ones are better suited to the demands of the real
problems (with local more than global character) and, at the same time, preserve the spirit of
the original Kleene’s fixed point theorem.

In this paper we provide an affirmative answer to the question posed. Concretely, we
characterize those properties that a self-mapping must satisfy in order to ensure that its set of
fixed points is non-empty when a general partially ordered set is under consideration and no
notion of order-completeness is assumed.Moreover,wederive a fewcharacterizationwhen, in
addition, the partially ordered set is chain complete and the self-mapping is order-continuous.
Special interest is paid to that case in which the partially ordered set is coming from a quasi-
metric space, since such generalized distances have shown to be useful in Denotational
Semantics, Logic Programming and Asymptotic Complexity of algorithms [2,3,12]. Finally,
the developed theory is applied to discuss the asymptotic complexity of those algorithms
whose running time of computing fulfills a recurrence equation. Thus, on the one hand, a
fixed point method for asymptotic complexity is developed in such a way that those fixed
point methods given in [12–14] and that are based on the use of contractive mappings are
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retrieved as a particular case. On the other hand, the aforementioned new fixed point method
captures the essence of that for discussing the asymptotic complexity of Probabilistic Divide
and Conquer algorithms given in [15]. Nonetheless, our new method improves the aforesaid
methods because it imposes fewer requirements than those that have been assumed in the
literature and, in addition, it allows to state simultaneously upper and lower asymptotic
bounds for the running time computing. Besides, the new fixed point method also preserves
the original Scott’s ideas providing a common framework for Denotational Semantics and
Asymptotic Complexity of algorithms.

2 The fixed point theorems

This section is devoted to discern which are the minimal conditions that allow to guarantee
the existence of fixed point for a self-mapping defined in partially ordered sets. In order to
achieve our objective we recall a few pertinent notions.

Following [1], a partially ordered set is a pair (X ,�) such that X is a nonempty set and
� is a binary relation on X which holds, for all x, y, z ∈ X :

(i) x � x (reflexivity),

(ii) x � y and y � x ⇒ x = y (antisymmetry),

(iii) x � y and y � z (transitivity). ⇒ x � z

If (X ,�) is a partially ordered set and Y ⊆ X , then an upper bound for Y in (X ,�) is
an element x ∈ X such that y � x for all y ∈ Y . An element z ∈ Y is the minimum of Y
in (X ,�) provided that z � y for all y ∈ Y . Thus, the supremum of Y in (X ,�), if exists,
is an element x� ∈ X which is an upper bound for Y and, in addition, it is the minimum of
the set (UB(Y ),�), whereUB(Y ) = {u ∈ X : u is an upper bound for Y }. Moreover, fixed
x ∈ X , the sets {y ∈ X : x � y} and {y ∈ X : y � x} will be denoted by ↑� x and ↓� x ,
respectively.

According to [16], a partially ordered set (X ,�) is said to be chain complete provided
that there exists the supremum of every increasing sequence. Of course, a sequence (xn)n∈N�

is said to be increasing whenever xn � xn+1 for all n ∈ N, where N
� denotes the set N ∪ {0}

and N denotes the set of positive integer numbers.
After recalling the above notions on partially ordered sets, we present the well-known

Kleene’s fixed point theorem (see [1,5,6,16]). First, let us recall that a mapping f : X → X
is said to be �-continuous provided that the supremum of the sequence ( f (xn))n∈N� is f (x)
for every increasing sequence (xn)n∈N whose supremum in (X ,�) exists and is x .

Theorem 1 Let (X ,�) be a chain complete partially ordered set and let f : X → X be a
�-continuous mapping. Assume that there exist x0 ∈ X such that x0 � f (x0).

Then, there exist a fixed point x� which is supremum of the sequence ( f n(x0))n∈N� and,
thus, x� ∈↑� x0. Moreover, x� ∈↓� y0 provided that y0 ∈ X such that x0 � y0 and
f (y0) � y0. Furthermore, x� is the minimum fixed point in ↑� x0.

It is well known that each �-continuous mapping is monotone. So, Kleene’s theorem
cannot be applied, at least, to non-monotone mappings. However, the next example shows
that there are self-mappings on a chain complete partially ordered set, which fulfill the
conclusions of the above theorem, but there are not monotone (and consequently, there are
not �-continuous).
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Example 1 Consider the chain complete partially ordered set ([0, 1] ,≤), where ≤ stands for
the usual partial order defined on [0, 1]. Define f : [0, 1] → [0, 1] by

f (x) =
{
1 − x

2 , if x ∈ [0, 1
2 [

1+x
2 , if x ∈ [ 12 , 1]

.

On the one hand, we can observe that f is not monotone on ([0, 1] ,≤), so it is not
≤-continuous. Nevertheless, f has as a fixed point x = 1.

On the other hand, 1
2 ≤ f ( 12 ), since f ( 12 ) = 3

4 . Furthermore, a straightforward compu-
tation shows that the sequence ( f n( 12 ))n∈N� is increasing in ([0, 1],≤) and, in addition, 1 is
its supremum. The rest of conclusions of Theorem 1 are clearly obtained due to the fact that
1 is the supremum of [0, 1].

The preceding example suggests the possibility of providing a more general version of
Kleene’s fixed point theorem where weakener conditions are assumed. To this end, we intro-
duce the following concept related to �-continuity.

Definition 1 Let (X ,�) be a partially ordered set and let x0 ∈ X . A mapping f : X → X
will be said to be orbitally �-continuous at x0 provided that f preserves the supremum of
the sequence ( f n(x0))n∈N� , i.e., f (x) is the supremum of the sequence ( f n+1(x0))n∈N� in
(X ,�), whenever x is the supremum of sequence ( f n(x0))n∈N� .

It is not hard to check that the self-mapping defined in Example 1 is orbitally�-continuous
at 1

2 .
Notice that, initially, there is not a direct relationship between the preceding notion and

the �-continuity. Clearly there are �-continuous self-mappings that are not orbitally �-
continuous such as the next example illustrates.

Example 2 Consider the partially ordered set ([0, 1] ,�1) where �1 is defined for all x, y ∈
[0, 1] as follows:

x �1 y ⇔ x = y or y = 1.

Define f : [0, 1] → [0, 1] by f (x) = x
2 . Clearly f is �1-continuous, since a sequence

(xn)n∈N� is increasing in ([0, 1],�1) provided that xn = xn+1 for all n ∈ N
�. However, f

is not orbitally �1-continuous, for instance, at 1. Indeed, the sequence ( f n(1))n∈N� is given
by

f n(1) =
{
1 if n = 0
1
2n if n ≥ 1

and, thus, it has 1 as the supremum in ([0, 1],�1). Nevertheless, the sequence ( f n+1(1))n∈N�

is given by f n+1(1) = 1
2n+1 for all n ∈ N

� and it has not f (1) as the supremum in ([0, 1],�1).

It must be pointed out that, given a partially ordered set (X ,�) and x0 ∈ X , every �-
continuous self-mapping is orbitally �-continuous at x0 whenever x0 � f (x0).

The next example shows that there are orbitally �-continuous self-mappings that are not
�-continuous.

Example 3 Consider the partially ordered set (X ,�X ) such that X = [0, 1] ∪ {2} and the
partial order �X defined on X as follows:

x �X y ⇔
⎧⎨
⎩
x, y ∈ [0, 1] and y ≤ x
or
x ∈]0, 1] ∪ {2} and y = 2

.
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Define the mapping f (x) = 0 for all x ∈ [0, 1] and f (2) = 2. It is clear that f is not
monotone, since 1 �X 2 but 0 = f (1) �X f (2) = 2. So, it is not �X -continuous. It is clear
that f is orbitally �X -continuous at x0, with x0 ∈ [0, 1] ∪ {2}.

Evenmore, orbitally�-continuity at any x0 does not imply that the sequence ( f n(x0))n∈N�

is increasing, as demonstrates the following example.

Example 4 Consider the chain complete partially ordered set ([0, 1] ,≤) introduced in Exam-
ple 1. Define f : [0, 1] → [0, 1] by f (x) = x

2 . Take x0 ∈ [0, 1]. Then, the sequence
( f n(x0))n∈N� is decreasing, since f n(x0) = x0

2n , for each n ∈ N. Furthermore, x0 is the
supremum of ( f n(x0))n∈N� and x0

2 is the supremum of the sequence ( f n+1(x0))n∈N� . Since
f (x0) = x0

2 we have that f is orbitally ≤-continuous at 1.

Another restrictive condition of Theorem 1 is the assumption of chain completeness of the
partially ordered set. Indeed, the example below shows an instance of self-mapping defined in
a non chain complete partially ordered which has a fixed point satisfying all the conclusions
in the aforesaid theorem.

Example 5 Consider the partially ordered set ([0, 2[,≤), where ≤ stands for the usual par-
tial order defined on [0, 2[. Obviously, ([0, 2[,≤) is not chain complete. The mapping
f : [0, 2[→ [0, 2[ given by f (x) = x+1

2 has 1 as a fixed point. Moreover, the sequence
( f n(0))n∈N� is increasing and f is orbitally�-continuous at 0. Obviously 1 is the supremum
of ( f n(0))n∈N� and 1 ∈↓≤ y such that y ∈ [1, 2[ (notice that f (y) ≤ y ⇔ 1 ≤ y and 0 ≤ y
for all y ∈ [1, 2[).

In order to yield a generalized Kleene’s fixed point theorem, the above exposed facts
suggest the possibility of demanding only conditions on the sequence ( f n(x0))n∈N� , for a
given x0, in order to weaken to the maximum the assumptions in the statement of Kleene’s
fixed point theorem.

The next result shows that such a Kleene type fixed point is possible in the suggested
direction in such a way that it provides two characterizations of those properties that a
self-mappings must satisfy in order to have a fixed point in partially ordered sets (without
order-completeness assumptions). Before stating it, let us point out that, given a partially
ordered set (X ,�) and a mapping f : X → X , we will denote by Fix( f ) the set {x ∈ X :
f (x) = x}.

Theorem 2 Let (X ,�) be a partially ordered set and let f : X → X be a mapping. Then
the following are equivalent:

(1) x� ∈ Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(2.1) The sequence ( f n(x0))n∈N� is increasing in (X ,�),
(2.2) x� is the supremum of ( f n(x0))n∈N� and, thus, x� ∈↑� x0,
(2.3) f is orbitally �-continuous at x0.

(3) There exists z0 ∈ X such that

(3.1) z0 � f (z0) in (X ,�),
(3.2) x� is the supremum of ( f n(z0))n∈N� and, thus, x� ∈↑� z0,
(3.3) f is orbitally �-continuous at z0.
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Proof To show that (1) ⇒ (2) it is sufficient to set x� = x0 with x� ∈ Fix( f ). Furthermore,
it is not hard to check that (2) ⇒ (3). Indeed, if we take z0 = x0, then (3) is satisfied, since
z0 � f (z0), due to the sequence ( f nz0))n∈N� is increasing in (X ,�). So, it remains to prove
that (3) ⇒ (1). To this end, suppose that there exist z0 ∈ X satisfying (3.1), (3.2) and (3.3).
On the one hand, since x� is the supremum of the sequence ( f n(z0))n∈N� in (X ,�) and
z0 � f (z0), then x� is the supremum ( f n+1(z0))n∈N� . On the other hand, since f is orbitally
�-continuous at z0 we have that f (x�) is the supremum of ( f n+1(z0))n∈N� in (X ,�). Hence
f (x�) = x�.

The next example shows that Theorem 2 does not give, in general, the uniqueness of fixed
point.

Example 6 Consider the partially ordered set ([0, 1],≤) introduced in Example 1. Let f :
[0, 1] → [0, 1] be the mapping given by f (x) = x for all x ∈ [0, 1]. It is obvious that the
sequence ( f n(x0))n∈N� is increasing in ([0, 1],≤), for all x0 ∈ [0, 1], and in addition, x0 is
the supremum of ( f n(x0))n∈N� in ([0, 1],≤). Moreover, f is orbitally ≤-continuous at x0,
for all x0 ∈ [0, 1]. Clearly, Fix( f ) = [0, 1].

In the particular case in which the self-mapping is �-continuous we get the following
result.

Corollary 1 Let (X ,�) be a partially ordered set and let f : X → X be a mapping. Assume
that there exists x0 ∈ X such that

(1) x0 � f (x0),
(2) x� is the supremum of ( f n(x0))n∈N� and, thus, x� ∈↑� x0,
(3) f is �-continuous.

Then x� ∈ Fix( f ) = ∅. Moreover, x� ∈↓� y0 provided that y0 ∈ X such that x0 � y0 and
f (y0) � y0. Furthermore, x� is the minimum of Fix( f )∩ ↑� x0 in (X ,�).

Proof Since f is monotone and x0 � f (x0) we have that ( f n(x0))n∈N� is increasing in
(X ,�). Since f is �-continuous and x0 � f (x0) we have that f is orbitally �-continuous
at x0. Hence the existence of x� ∈ X such that x� ∈ Fix( f ) is guaranteed by Theorem 2.

Next we assume that there exists y0 ∈ X such that x0 � y0 and that f (y0) � y0. Then
f n(x0) � f (y0) � y0 for all n ∈ N. It follows that y0 is an upper bound of ( f n(x0))n∈N�

in (X ,�). Moreover, since x� is the supremum of ( f n(x0))n∈N� in (X ,�) we deduce that
x� � y0. Whence we obtain that x� ∈↓� y0.

It remains to prove that x� is the minimum of Fix( f )∩ ↑� x0 in (X ,�). With this aimwe
suppose that there exists y� ∈ Fix( f )∩ ↑� x0. As it was pointed out above f is monotone
and, thus, f n(x0) � y�. So, since x� is the supremum of ( f n(x0))n∈N� we have that x� � y�

as we claimed.

Taking into account Theorem 2 we obtain the next result.

Corollary 2 Let (X ,�) be a chain complete partially ordered set and let f : X → X be a
mapping. Then the following are equivalent:

(1) Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(a) The sequence ( f n(x0))n∈N� is increasing in (X ,�),
(b) f is orbitally �-continuous at x0.
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In addition, there exists x� ∈ Fix( f ) such that x� is the supremum of the sequence
( f n(x0))n∈N� and, thus, x� ↑� x0.

Proof By the same arguments as in Theorem 2 we have that (1) ⇒ (2). To show that
(2) ⇒ (1), assume that there exists x0 ∈ X satisfying (a) and (b). The fact that the partially
ordered set (X ,�) is chain complete provides the existence of x� ∈ X such that x� is the
supremum of ( f n(x0))n∈N� and, thus, x� ↑� x0. By Theorem 2 we obtain that x� ∈ Fix( f )
and, hence, that Fix( f ) = ∅.

Combining Corollaries 1 and 2 we deduce the following one.

Corollary 3 Let (X ,�) be a chain complete partially ordered set and let f : X → X be a
mapping. Assume that there exists x0 ∈ X such that

(1) x0 � f (x0),
(2) f is �-continuous.

Then there exists x� ∈ Fix( f ) = ∅. Moreover, x� ∈↓� y0 provided that y0 ∈ X such that
x0 � y0 and f (y0) � y0. Furthermore, x� is the minimum of Fix( f )∩ ↑� x0 in (X ,�).

When the self-mapping is assumed to be only monotone (not �-continuous), Theorem 2
yields the following results which provide a bit more information about the fixed point than
the aforesaid theorem and improves Corollary 1.

Corollary 4 Let (X ,�) be a partially ordered set and let f : X → X be amonotonemapping.
The following are equivalent:

(1) x� ∈ Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(a) x0 � f (x0),
(b) x� is the supremum of ( f n(x0))n∈N� and, thus, x� ∈↑� x0,
(c) f is orbitally �-continuous at x0.

In addition, x� ∈↓� y0 provided that y0 ∈ X such that y0 ∈↑� x0 and f (y0) � y0.Moreover,
x� is the minimum of Fix( f )∩ ↑� x0 in (X ,�).

Proof (2) ⇒ (1). Since x0 � f (x0) and f is monotone we have that the sequence
( f n(x0))n∈N� is increasing in (X ,�). So all assumptions in the statement of Theorem 2
are hold. Therefore, Theorem 2 gives that there exists x� ∈ Fix( f ) which is the supremum
of ( f n(x0))n∈N� and, thus, x� ∈↑� x0.

The same arguments to those given in the proof of Corollary 1 can be applied to conclude
the remainder assertions in the statement of the result.

To prove that (1) ⇒ (2) it is enough to take x0 = x� with x� ∈ Fix( f ).

The next example shows that we cannot omit the monotony of the self-mapping in the
preceding result in order to guarantee that “x� ∈↓� y0 provided that y0 ∈ X such that
y0 ∈↑� x0 and f (y0) � y0”.

Example 7 Consider the partially ordered set (X ,�X ) and the self-mapping introduced in
Example 3. It is clear that 0 ∈ Fix( f ). Corollary 4 guarantees that there exists x0 ∈ X
(x0 ∈ [0, 1]) such that x0 �X f (x0), 0 is the supremum of ( f n(x0))n∈N� and f is orbitally
�X -continuous at x0. Moreover, it is obvious that f (2) �X 2 and x0 �X 2 for all x0 ∈]0, 1].
However, 0 �X 2.
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The chain completeness of the partially ordered set allows to refine Corollary 4 obtaining
the result below.

Corollary 5 Let (X ,�) be a chain complete partially ordered set and let f : X → X be a
monotone mapping. Then the following are equivalent:

(1) Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(a) x0 � f (x0),
(b) f is orbitally �-continuous at x0.

In addition, there exists x� ∈ Fix( f ) such that x� is the supremum of the sequence
( f n(x0))n∈N� and, thus, x� ↑� x0. Moreover, x� ∈↓� y0 provided that y0 ∈ X such that
x0 � y0 and f (y0) � y0. Furthermore, x� is the minimum of Fix( f )∩ ↑� x0 in (X ,�).

Proof (1) ⇒ (2). It is sufficient to take x� ∈ Fix( f ) and set x0 = x�.
(2) ⇒ (1). Since f is monotone we have that the sequence ( f n(x0))n∈N� is increasing in
(X ,�). The chain completeness of (X ,�) warranties the existence of the supremum x� of
( f n(x0))n∈N� in (X ,�) and so x� ∈↑� x0. Besides, x� ∈ Fix( f ) by Corollary 4.

Similar arguments to those given in Corollary 1 apply to show that x� ∈↓� y0 provided
that y0 ∈ X such that x0 � y0 and f (y0) � y0 and to show that, in addition, x� is the
minimum of Fix( f )∩ ↑� x0 in (X ,�).

Observe that Corollary 5 improves the celebrated Kleene fixed point theorem (see Theo-
rem 1).

Let us recall that some distinguished partially ordered sets which play a central role in
Computer Science are those that come from a quasi-metric space (see, for instance, [2,3]). In
the following we focus our attention on obtaining appropriate versions of the exposed results
in those cases in which the partial order is induced by a quasi-metric. To this end, we recall
a few notions about quasi-metric spaces that we will require later on.

Following [17] (see also [2]), a quasi-metric on a nonempty set X is a functiond : X×X →
R

+ such that for all x, y, z ∈ X :

(i) d(x, y) = d(y, x) = 0 ⇔ x = y,

(ii) d(x, z) ≤ d(x, y) + d(y, z).

Each quasi-metric d on a set X induces a T0 topology τ(d) on X which has as a base the
family of open d-balls {Bd(x, r) : x ∈ X , r > 0}, where Bd(x, r) = {y ∈ X : d(x, y) < r}
for all x ∈ X and r > 0.

A quasi-metric space is a pair (X , d) such that X is a nonempty set and d is a quasi-metric
on X .

If d is a quasi-metric on a set X , then the functions d−1 and ds defined on X × X by
d−1(x, y) = d(y, x) and ds(x, y) = max{d(x, y), d−1(x, y)} for all x, y ∈ X are a quasi-
metric and a metric on X , respectively.

Every quasi-metric space (X , d) becomes a partially ordered set endowed with the spe-
cialization partial order �d . The specialization partial order �d is defined on X as follows:
x �d y ⇔ d(x, y) = 0 (see [2]).

According to [18], a quasi-metric space (X , d) is chain complete provided that the asso-
ciated partially ordered set (X ,�d) is chain complete. Clearly from the preceding results
we get a sequence of corollaries when the partial order is assumed to be the specialization
partial order coming from a quasi-metric. We only stress two of the aforementioned results,
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when the partial order matches up with the specialization one, because they will be of special
interest later on.

Corollary 6 Let (X , d) be a chain complete quasi-metric space and let f : X → X be a
mapping. Then the following are equivalent:

(1) Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(a) The sequence ( f n(x0))n∈N� is increasing in (X ,�d),
(b) f is orbitally �d -continuous at x0.

In addition, there exists x� ∈ Fix( f ) such that x� is the supremum of the sequence
( f n(x0))n∈N� and, thus, x� ↑�d x0.

Notice that the preceding result comes from Corollary 2. If in addition, we demand
monotony on the mapping we obtain the next corollary which is derived from Corollary 5.

Corollary 7 Let (X , d) be a chain complete quasi-metric space and let f : X → X be a
monotone mapping. Then the following are equivalent:

(1) Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(a) x0 �d f (x0),
(b) f is orbitally �d -continuous at x0.

In addition, there exist x� ∈ Fix( f ) such that x� is the supremum of the sequence
( f n(x0))n∈N� and, thus, x� ↑�d x0. Moreover, x� ∈↓�d y0 provided that y0 ∈ X such
that x0 �d y0 and f (y0) �d y0. Furthermore, x� is the minimum of Fix( f )∩ ↑�d x0 in
(X ,�d).

It must be stressed that Corollary 7 improves Theorem 7 in [18], since it gives a charac-
terization about the existence of fixed point. Notice that the aforesaid Theorem 7 only proves
the implication (2) ⇒ (1) when the self-mapping is �d -continuous. Besides, Corollary 7
yields information about the fixed point in the particular case in which there exists “y0 ∈ X
such that x0 �d y0 and f (y0) �d y0” and such an information is not provided by Theorem
7.

It seems natural to wonder whether there are a wide number of examples of chain complete
quasi-metric spaces (X , d), or on the contrary if it is strange to find instances of this type of
spaces. The next results answer the posed question affirmative, i.e., showing that the so-called
�d -complete (in the sense of [18]) provide a wide class of quasi-metric spaces that satisfy the
aforesaid property (see Propositions 1 and 2 below). Before introducing the announced result
let us recall that a quasi-metric space (X , d) is �d -complete provided that each increasing
sequence (xn)n∈N in (X ,�d) converges with respect to τ(ds).

In view of the above introduced notion we show that there are a wide class of quasi-
metric spaces which are �d -complete. To this end, let us recall a few appropriate notions of
completeness that arise in a natural way in the quasi-metric framework.

According to [19], a sequence (xn)n∈N in a quasi-metric space (X , d) is said to be right
(left) K-Cauchy if, given ε > 0, there exists n0 ∈ N such that d(xm, xn) < ε (d(xn, xm) < ε)
for all m ≥ n ≥ n0. A quasi-metric space (X , d) is said to be right K-sequentially complete
provided that every right K-Cauchy sequence converges with respect to τ(d). Following [20]
(see also [21]), a quasi-metric space (X , d) is left (right) Smyth complete provided that every
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left (right) K-Cauchy sequence converges with respect to τ(ds). On account of [22], a quasi-
metric space (X , d) is called weightable provided the existence of a function wd : X → R

+
such that

d(x, y) + wd(x) = d(y, x) + wd(y)

for all x, y ∈ X . Finally, a quasi-metric space (X , d) is said to be bicomplete if the induced
metric space (X , ds) is complete (see, for instance, [17]).

Next we show that all preceding classes of “complete” quasi-metric spaces are instances
of �d -complete quasi-metric spaces. To this end, we count with the help of Lemma 1 whose
proof we omit because it was given in [18].

Lemma 1 Let (X , d) be a quasi-metric space. If x ∈ X and (xn)n∈N is an increasing sequence
in (X ,�d) which converges to x with respect to τ(ds), then x is the supremum of (xn)n∈N in
(X ,�d).

Proposition 1 Let (X , d) be a quasi-metric space such that one of the following assertions
holds:

1. (X , d) is left Smyth complete,
2. (X , d−1) is right Smyth complete,
3. (X , d) is weightable and bicomplete.

Then (X , d) is �d -complete.

Proof 1. Let (xn)n∈N be an increasing sequence in (X ,�d). Then there exists n0 ∈ N such
that d(xn, xm) = 0 for all m ≥ n ≥ n0. Thus d(xn, xm) = 0 for all m ≥ n ≥ n0.
It follows that the sequence (xn)n∈N is left K-Cauchy in (X , d). Since the quasi-metric
space (X , d) is left Smyth complete we deduce the existence of x ∈ X such that (xn)n∈N
converges to x with respect to τ(ds). By Lemma 1 we obtain that x is the supremum of
(xn)n∈N in (X ,�d).

2. Let (xn)n∈N be an increasing sequence in (X ,�d). Then there exists n0 ∈ N such that
d(xn, xm) = 0 for all m ≥ n ≥ n0. Hence we have that d−1(xm, xn) = 0 for all
m ≥ n ≥ n0. Since the quasi-metric space (X , d−1) is right Smyth complete we deduce
the existence of x ∈ X such that (xn)n∈N converges to x with respect to τ(ds). By
Lemma 1 we obtain that x is the supremum of (xn)n∈N in (X ,�d).

3. On account of [17], every weightable bicomplete quasi-metric space is always left Smyth
complete.

The following result states that every quasi-metric, which is complete in any sense of
Proposition 1, is chain complete.

Proposition 2 Let (X , d) be a �d -complete quasi-metric space. Then (X ,�d) is chain com-
plete.

Proof Let (xn)n∈N be an increasing sequence in (X ,�d). Since the quasi-metric space (X , d)

is�d -complete we have that there exists x ∈ X such that (xn)n∈N converges to x with respect
to τ(ds). By Lemma 1 we deduce that x is the supremum of (xn)n∈N in (X ,�d). It follows
that (X ,�d) is chain complete.

From Corollary 6 we deduce the next two results.

Corollary 8 Let (X , d) be a �d -complete quasi-metric space and let f : X → X be a
mapping. Then the following are equivalent:
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(1) Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(a) The sequence ( f n(x0))n∈N� is increasing in (X ,�d),
(b) f is orbitally �d -continuous at x0.

In addition, there exists x� ∈ Fix( f ) such that x� is the supremum of the sequence
( f n(x0))n∈N� and, thus, x� ↑�d x0.

Proof By Proposition 2 we have that the partially ordered set (X ,�d) is chain complete.
Applying Corollary 6 we obtain the desired conclusions.

Corollary 9 Let (X , d) be a quasi-metric space such that one of the following assertions
holds:

1. (X , d) is left Smyth complete,
2. (X , d−1) is right Smyth complete,
3. (X , d) is weightable and bicomplete.

Let f : X → X be a mapping. Then the following are equivalent:

(1) Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(a) The sequence ( f n(x0))n∈N� is increasing in (X ,�d),
(b) f is orbitally �d -continuous at x0.

In addition, there exists x� ∈ Fix( f ) such that x� is the supremum of the sequence
( f n(x0))n∈N� and, thus, x� ↑�d x0.

From Corollaries 7 and 9 we derive the next two results that will play a central role in our
subsequent discussion.

Corollary 10 Let (X , d) be a �d -complete quasi-metric space and let f : X → X be a
monotone mapping. Then the following are equivalent:

(1) Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(a) x0 �d f (x0),
(b) f is orbitally �d -continuous at x0.

In addition, there exists x� ∈ Fix( f ) such that x� is the supremum of the sequence
( f n(x0))n∈N� and, thus, x� ↑�d x0. Moreover, x� ∈↓�d y0 provided that y0 ∈ X such
that x0 �d y0 and f (y0) �d y0. Furthermore, x� is the minimum of Fix( f )∩ ↑�d x0 in
(X ,�d).

Proof By Proposition 2 we have that the partially ordered set (X ,�d) is chain complete.
Applying Corollary 7 we obtain the desired conclusions.

Corollary 11 Let (X , d) be a quasi-metric space such that one of the following assertions
holds:

1. (X , d) is left Smyth complete,
2. (X , d−1) is right Smyth complete,
3. (X , d) is weightable and bicomplete.
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Let f : X → X be a monotone mapping. Then the following are equivalent:

(1) Fix( f ) = ∅.
(2) There exists x0 ∈ X such that

(a) x0 �d f (x0),
(b) f is orbitally �d -continuous at x0.

In addition, there exists x� ∈ Fix( f ) such that x� is the supremum of the sequence
( f n(x0))n∈N� and, thus, x� ↑�d x0. Moreover, x� ∈↓�d y0 provided that y0 ∈ X such
that x0 �d y0 and f (y0) �d y0. Furthermore, x� is the minimum of Fix( f )∩ ↑�d x0 in
(X ,�d).

3 The application

In 1995, Schellekens developed a newmathematical method to provide the asymptotic upper
bounds of those algorithms whose running time of computing satisfies a recurrence equation
(see [12]). This method is based on the use of the so-called complexity space. Let us recall
that the complexity space is the quasi-metric space (C, dC) where

C =
{
f : N → R

+ :
∞∑
n=1

2−n f (n) < ∞
}

and the quasi-metric dC is given by

dC( f , g) =
∞∑
n=1

2−n
(
max

(
1

g(n)
− 1

f (n)
, 0

))
.

On account of [12], each algorithm A can be associated to a function f A ∈ C such that f A(n)

represents the time taken by A to solve the problem for which A has been designed when the
size of input data is n ∈ N. The mappings belonging to C were called complexity functions
in [12].

Observe that the condition “
∑∞

n=1 2
−n f (n) < ∞” which is used to define C is not

restrictive, since it is held by every computable algorithm, i.e., it is fulfilled by all algorithms
B with fB(n) ≤ 2n for all n ∈ N. Moreover, the value dC( f A, fB) can be understood as
the relative progress made in lowering the complexity by replacing any algorithm A with
complexity function f A by any algorithms Bwith complexity function fB . Thus, the condition
dC( f A, fB) = 0 (or, equivalently, f A �dC fB) can be interpreted as the algorithm A is at
least as efficient as the algorithm B, since dC( f A, fB) = 0 ⇔ f A(n) ≤ fB(n) for all n ∈ N.

Notice that, given g ∈ C, dC( f A, g) = 0 implies that f A ∈ O(g), where O(g) = { f ∈
C : there exists c ∈ R

+ and n0 ∈ N with f A(n) ≤ cg(n) for all n ≥ n0}. According to
[23], when the precise information about the running time of computing f A of an algorithm
A is not known, the fact that f A ∈ O(g) yields an asymptotic upper bound of the time
taken by A in order to solve the problem under consideration. It must be stressed that the
condition dC(g, f A) = 0 can be also interpreted as f A ∈ Ω(g), where Ω(g) = { f ∈
C : there exists c ∈ R

+ and n0 ∈ N with cg(n) ≤ f (n) for all n ≥ n0}. Of course, from
a computational viewpoint the fact that f A ∈ Ω(g) provides that the mapping g gives an
asymptotic lower bound of the running time of computing of the algorithm A.

Observe that the asymmetry of dC plays a central role in order to provide information
about the increase in complexity whenever an algorithm is replaced by another one. Clearly,
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a metric would be able to yield information on the increase but it, however, will not reveal
which algorithm is more efficient.

The utility of the complexity space (C, dC) was shown by Schellekens in [12], where he
gave an alternative proof of the fact that theMergesort has optimal asymptotic average running
time of computing, i.e., fM ∈ O( flog) ∩ Ω( flog), where fM represents the running time of
the Mergesort and flog ∈ C such that flog(1) = c (c ∈ R

+) and flog(n) = n log2(n) for all
n ∈ Nwith n > 1. To achieve the mentioned target, Schellekens developed a technique based
on the use of the celebrated Banach fixed point theorem. The aforesaid fixed point technique
was applied to analyze those algorithms whose running time of computing satisfies a Divide
and Conquer recurrence equation. Let us recall briefly that a Divide and Conquer recurrence
equation is given as follows (see [12,23] for a detailed discussion):

T (n) =
{
c if n = 1,
aT ( nb ) + h(n) if n ∈ Nb,

(1)

where Nb = {bk : k ∈ N}, c ∈ R
+, a, b ∈ N with a, b > 1 and h ∈ C with h(n) < ∞ for all

n ∈ N.
Set Cb,c = { f ∈ C : f (1) = c and f (n) = ∞ for all n ∈ N \ Nb with n > 1}. It is clear

that a mapping f ∈ Cb,c is a solution to the recurrence equation (1) if and only if f is a fixed
point of the mappingΦT : Cb,c → Cb,c associated with the recurrence equation (1) and given
by

ΦT ( f )(n) =
⎧⎨
⎩
c if n = 1,
a f ( nb ) + h(n) if n ∈ Nb,

∞ otherwise,
(2)

for all f ∈ Cb,c.
Concretely, the fixed point technique introduced by Schellekens is given by the following

result:

Theorem 3 The quasi-metric space (Cb,c, dC) is left Smyth complete and the mapping ΦT

satisfies that dC(ΦT ( f ),ΦT (g)) ≤ 1
2dC( f , g) for all f , g ∈ Cb,c. Thus, a Divide and

Conquer recurrence of the form (1) has a unique solution fT ∈ Cb,c. Moreover, the following
assertions hold:

1. If there exists g ∈ Cb,c such that g �dC ΦT (g), then fT ∈ Ω(g).
2. If there exists g ∈ Cb,c such that ΦT (g) �dC g, then fT ∈ O(g).

The technique introduced by the above result was tested and illustrated successfully with
the following particular case of the recurrence equation (1):

TM (n) =
{
c if n = 1,
2TM

( n
2

) + n
2 if n ∈ N2,

(3)

where c ∈ R
+. Therefore Schellekens proved that the mapping ΦTM : C2,c → C2,c, defined

by

ΦTM ( f )(n) =
⎧⎨
⎩
c if n = 1,
2 f ( n2 ) + n

2 if n ∈ N2,

∞ otherwise,
(4)
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for all f ∈ C2,c, satisfies the following: g1 �dC ΦTM (g1) and ΦTM (g2) �dC g2 for any
g ∈ C2,c if and only if g1 = g2 and they are defined by

g(n) =
⎧⎨
⎩
c if n = 1,
1
2n log2(n) if n ∈ N2,

∞ otherwise,
(5)

In [13,14], the technique provided by Theorem 3 was extended to those cases in which
the recurrence equation associated to the running time of computing is of the type below:

T (n) =
{
cn if 1 ≤ n ≤ k∑k

i=1 ai T (n − i) + h(n) if n > k
, (6)

where h ∈ C such that h(n) < ∞ for all n ∈ N, k ∈ N, ci , ai ∈ R
+ with ai ≥ 1 for all

1 ≤ i ≤ k.
Observe that the recurrence equations of type (1) can be recovered from those of type (6).

In fact, the former recurrence equations can be transformed into one of the following type

S(m) =
{
c if m = 1
aS(m − 1) + r(m) if m > 1

, (7)

where S(m) = T (bm−1) and r(m) = h(bm−1) for allm ∈ N. (Recall that Nb = {bk : k ∈ N}
with b ∈ N and b > 1).

The asymptotic lower and upper bounds for a few celebrated algorithms, like Quicksort,
Hanoi, Largetwo and Fibonnacci (see [23,24]), whose running time of computing holds the
recurrence equation (6), were discussed by means of appropriate versions of the technique
exposed in Theorem 3 and, thus, by means of the Banach fixed point theorem. Notice that in
such versions the unique thing to be proved, additionally to original Schellekens’ proof, was
the contractive character of the mappingΦT : Cc1...,ck → Cc1...,ck associated to the recurrence
equation (6) and the left Smyth completeness of the subset Cc1...,ck with respect to τ(dsC) ,
where Cc1...,ck = { f ∈ C : f (i) = ci for all 1 ≤ i ≤ k} and

ΦT ( f )(n) =
{
ci if 1 ≤ i ≤ k,∑k

i=1 ai f (n − i) + h(n) if n > k,
(8)

for all f ∈ Cc1...,ck . Thus the technique introduced in Theorem 3 was extended to the new
case as follows:

Theorem 4 The quasi-metric space (Cc1...,ck , dC) is left Smyth complete and the mappingΦT

given by (8) satisfies that

dC(ΦT ( f ),ΦT (g)) ≤
(
max
1≤i≤k

1

ai

) (
2k − 1

2k

)
dC( f , g)

for all f , g ∈ Cc1,...,ck . Thus, an algorithm whose running time of computing holds a recur-
rence equation of the form (6) has a unique solution fT ∈ Cc1...,ck . Moreover, the following
assertions hold:

1. If there exists g ∈ Cc1...,ck such that g �dC ΦT (g), then fT ∈ Ω(g).
2. If there exists g ∈ Cc1...,ck such that ΦT (g) �dC g, then fT ∈ O(g).

Notice that, by means of the transformation given by (7), Theorem 3 can be retrieved from
Theorem 4.
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It must be stressed that the uniqueness of solution to the recurrence equations (or equiv-
alently the uniqueness of fixed point of the mapping ΦT ) under consideration in Theorems
3 and 4 is guaranteed by the left Smyth completeness and the Banach fixed point theorem
(we refer the reader to [12] for a detailed discussion). However, from a complexity anal-
ysis viewpoint, it is not necessary to debate about the uniqueness of the solution because
the theory of finite difference equations provides such a uniqueness for the so-called initial
value problems (see, for instance, Theorem 3.1.1 in [24]). So, the really novel and interesting
about the techniques introduced by Theorems 3 and 4 is exactly the possibility of studying
the asymptotic behavior of the solutions via fixed point arguments which differs from the
classical difference equation approach (see, again, [24]).

Inspired, in part, by the fact already exposed, L.M. García-Raffi, S. Romaguera and
Schellekens provided a mathematical method for asymptotic complexity analysis of algo-
rithms which is not based on the use of the Banach fixed point theorem, or equivalently of
Theorems 3 and 4, in [15]. Concretely they provided, by means of fixed point techniques
and the use of increasing sequences of complexity functions, asymptotic upper bounds for
the running time of computing of the so-called Probabilistic Divide and Conquer algorithms
(see [25] for a detailed discussion of this type of algorithms).

Let us recall that the running time of computing of Probabilistic Divide and Conquer
algorithms satisfies the following recurrence equation:

T (n) =
{
cn if 1 ≤ n < k∑n−1

i=1 vi (n)T (i) + h(n) if n ≥ k
, (9)

where h ∈ C such that h(n) < ∞ for all n ∈ N, k ∈ N such that k ≥ 2 and ci ∈ R
+ for all

1 ≤ i < k. Moreover, (vi )i∈N is a sequence of positive mappings defined on N in such a way
that there exists K ∈ R

+ with K > 0 satisfying that
∑n−1

i=1 vi (n) ≤ K .
To get asymptotic upper bounds of the running time in those cases in which the recurrence

equation (9) is under consideration the next auxiliary result was key and it was proved in
[15].

Proposition 3 Let R ⊆ C such that (R, dC) is left Smyth complete. Let Φ : R → R be a
monotone mapping with respect to �dC . If there exists g ∈ R such that g �dC Φ(g), then
there exists f ∈ R such that the sequence (Φn(g))n∈N� converges to f with respect to τ(dsC)

and, in addition, f is an upper bound of (Φn(g))n∈N� in (X ,�dC ).

A specificmethod to provide the aforementioned asymptotic upper bounds for the solution
to recurrence equations of type (9) was proved using Proposition 3 in [15]. Concretely, it was
given the result below.

Theorem 5 Let k ∈ N with k ≥ 2 and let Cc1,...,ck−1 be the subset of C given by Cc1,...,ck−1 =
{ f ∈ C : f (i) = ci for all 1 ≤ i < k}. Define the mapping ΦT : Cc1,...,ck−1 → Cc1,...,ck−1 by

ΦT ( f )(n) =
{
cn if 1 ≤ n < k∑n−1

i=1 vi (n) f (i) + h(n) if n ≥ k
, (10)

for all f ∈ Cc1,...,ck−1 . Then the following assertions hold:

1. The quasi-metric space (Cc1,...,ck−1 , dC) is left Smyth complete
2. The mapping ΦT is monotone with respect to �dC and there exists fT ∈ Cc1,...,ck−1 such

that Fix(ΦT ) = { fT }. So fT is the unique solution to the recurrence equation (9).
3. If there exists f ∈ Cc1,...,ck−1 such that Φ( f ) �dC f , then fT ∈ O( f ).
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The advantage of the method exposed in the preceding result is given by the fact that
it makes use of the Banach fixed point theorem. However, the aforesaid method has been
designed specifically for Probabilistic Divide and Conquer algorithms. Observe, in addition,
that the uniqueness of solution to the recurrence equation (9) was warrantied by means of
induction techniques in [15], i.e., following the aforesaid classical techniques from finite
difference equations. Motivated by this fact we show that the theory exposed in Sect. 2
provides a general framework for discussing asymptotic bounds (upper and lower) of the
complexity of algorithms in such a way that both mathematical methods for such a purpose
given in Theorems 3–5 can be retrieved as a particular case. In particular we can state the
below method for asymptotic complexity analysis of algorithms. Notice that such a method
does not deal with uniqueness since that’s what the theory of finite difference equation
guarantees.

Theorem 6 LetR ⊆ C such that (R,�dC ) is chain complete. LetΦ : R → R be a monotone
mapping. If there exist f , g ∈ R such that the following assertions hold:

1. g �dC Φ(g) and Φ is orbitally �dC -continuous at g,
2. g �dC f and Φ( f ) �dC f .

Then there exists f � ∈ R such that f � ∈ Fix(Φ) and f � ∈ Ω(g) ∩ O( f ).

Proof By Corollary 7 we deduce that Fix(Φ) = ∅ and that there exists f � ∈ Fix(Φ) such
that f � ∈ Ω(g) ∩ O( f ).

Corollary 12 Let R ⊆ C such that R is closed with respect to τ(dsC). Let Φ : R → R be a
monotone mapping. If there exist f , g ∈ R such that the following assertions hold:

1. g �dC Φ(g) and Φ is orbitally �dC -continuous at g,
2. g �dC f and Φ( f ) �dC f .

Then there exists f � ∈ R such that f � ∈ Fix(Φ) and f � ∈ Ω(g) ∩ O( f ).

Proof IfR is closed with respect to τ(dsC), then (R, dC) is left Smyth complete, since (C, dC)

is left Smyth complete. Proposition 1 ensures that (R, dC) is�dC -complete and, thus, Propo-
sition 2 gives that (R,�dC ) is chain complete. Theorem 6 yields the desired conclusions.

In the following we show that Theorem 3 can be recovered from Theorem 6. To this end,
we need the next sequence of useful results. The proof of the below lemma was given in [18].

Lemma 2 Let (X , d) be a quasi-metric space. If x is an upper bound of a sequence (xn)n∈N in
(X ,�d) and, in addition, (xn)n∈N converges to x with respect to τ(d), then x is the supremum
of (xn)n∈N in (X ,�d).

Taking into account the above result we have the next one.

Proposition 4 Let (X , d) be a �d -complete quasi-metric space and let f : X → X be a
monotone mapping. Assume that there exists x0 ∈ X such that ( f n(x0))n∈N� is increasing in
(X ,�d) and that f is continuous from (X , τ (d)) into itself, then f is orbitally�d -continuous
at x0.

Proof Let x0 ∈ X such that the sequence ( f n(x0))n∈N� is increasing in (X ,�d). Since
the quasi-metric space (X , d) is �d -complete there exists x ∈ X such that the sequence
( f n(x0))n∈N converges to x with respect to τ(ds). By Lemma 1, x is the supremum of
( f n(x0))n∈N.Moreover, the continuity of f gives that ( f n+1(x0))n∈N� converges to f (x)with
respect to τ(d) and the monotony of f provides that f (x) is an upper bound of ( f n(x0))n∈N�

in (X ,�d). By Lemma 2 we have that f (x) is the supremum of ( f n+1(x0))n∈N� . Therefore
f is orbitally �d -continuous at x0.
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From the preceding result we can derive the following one which was proved in [18].

Corollary 13 Let (X , d) be a �d -complete quasi-metric space and let f : X → X be a
mapping. If f is continuous from (X , τ (d)) into itself, then f is �d -continuous.

In addition to the preceding results we have the next one which will be crucial in our
subsequent discussion.

Proposition 5 Let (X , d) be a quasi-metric space and let f : X → X be a mapping. Assume
that there exists c ∈ [0, 1[ such that

d( f (x), f (y)) ≤ cd(x, y)

for all x, y ∈ X. Then the following assertions hold:

1. f is monotone (X ,�d) and continuous from (X , τ (d)) into itself.
2. If there exist v,w ∈ X with v �d f (v) and f (w) �d w, then v � w.

Proof 1. Let x, y ∈ X with x �d y. Then d(x, y) = 0. Since d( f (x), f (y)) ≤ cd(x, y) we
deduce that d( f (x), f (y)) = 0. Thus f (x) �d f (y) and f ismonotone. Consider x ∈ X and
a sequence (xn)n∈N� which converges to x with respect to τ(d). Then ( f (xn))n∈N� converges
to f (x) with respect to τ(d), since d( f (x), f (xn)) ≤ cd(x, xn) for all n ∈ N. It follows that
f is continuous from (X , τ (d)) into itself.
2. Suppose that there exist v,w ∈ X with v �d f (v) and f (w) �d w. Then d(v, f (v)) =

d( f (w),w) = 0. Hence we have that

d(v,w) ≤ d(v, f (v)) + d( f (v), f (w)) + d( f (w),w) ≤ cd(v,w).

It follows that d(v,w) = 0 and, thus, that v �d w, because otherwise we deduce that 1 ≤ c
which is a contradiction.

By virtue of what is set out in the previous results, we are able to show that Theorems 3 and
4 comes from Theorem 6 as it was announced. Indeed, the sets Cb,c and Cc1...,ck were showed
to be closed subsets of C with respect to τ(dsC) in [13,14], respectively. So the quasi-metric
spaces (Cb,c, dC) and (Cc1...,ck , dC) are left Smyth complete and, hence, �dC -complete. By
Proposition 5 we have that the mappings ΦT , associated to (6) and to (8), are monotone and
continuous, since they are contractive, i.e., they satisfy that

dC(ΦT ( f ),ΦT (g)) ≤ 1

2
dC( f , g)

for all f , g ∈ Cb,c and

dC(ΦT ( f ),ΦT (g)) ≤
(
max
1≤i≤k

1

ai

) (
2k − 1

2k

)
dC( f , g)

for all f , g ∈ Cc1,...,ck .
Now, if there exists g ∈ Cb,c (g ∈ Cc1...,ck ) such that g �dC ΦT (g), then, by Proposition

4, ΦT (g) is orbitally �dC -continuous at g. Moreover, if there exists f ∈ Cb,c ( f ∈ Cc1...,ck )
such that ΦT ( f ) �dC f then Proposition 5 guarantees that g �dC f . Therefore Theorem 6
(or Corollary 12) provides that there exists f � ∈ Cb,c ( f � ∈ Cc1...,ck ) such that f � ∈ Ω(g) ∩
O( f ).

Nextwe show that Theorem5 can be derived formTheorem6 as promised. First, according
to [14], the quasi-metric space (Cc1,...,ck−1 , dC) is left Smyth complete and, hence, �dC -
complete. So, by Proposition 2, we have that the partially ordered set (X ,�d) is chain
complete.
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It is clear that the mappingΦT , given by (10), is monotone with respect to�dC . Moreover,
gh �dC ΦT (gh), where gh ∈ Cc1,...,ck with gh(n) = h(n) for all n ≥ k and gh(n) = cn for
all 1 ≤ n < k. In fact, note that gh �dC Φ( f ) for all f ∈ Cc1,...,ck−1 .

Furthermore, ΦT is orbitally �dC -continuous at gh . Indeed we have that the sequence
(Φm

T (gh))m∈N� is increasing in (Cc1,...,ck−1 ,�dC ) and (Cc1,...,ck ,�dC ) is chain complete and,
thus, that there exists f � ∈ Cc1,...,ck−1 such that f � is the supremum of (Φm

T (gh))m∈N� in
(Cc1,...,ck−1 ,�dC ). On the one hand, since ΦT is monotone we have that ΦT ( f �) is an upper
bound of the sequence (Φm+1

T (gh))m∈N� . On the other hand, fixed n ∈ N such that n > k we
have that, for every ε, there exists mε such that

f �(i) < ε + Φ
mε

T (gh)(i)

for all k ≤ i ≤ n − 1. Thus we obtain that

ΦT ( f �)(n) <

n−1∑
i=k

vi (n)ε + h(n) + Φ
mε

T (gh)(n)

= ε

k−1∑
i=1

vi (n) + Φ
mε+1
T (gh)(n) ≤ K ε + f �(n).

It follows that ΦT ( f �) �dC f � and so ΦT is orbitally �dC -continuous at gh .
Now, if there exists f ∈ Cc1,...,ck−1 such that ΦT ( f ) �dC f , then gh �dC ΦT ( f ) �dC f .

Whence we obtain, by Theorem 6 (or Corollary 12), that f � ∈ Ω(gh) ∩ O( f ).
It is worthy to observe that Proposition 3, the main result in which Theorem 5 is based

on, can be derived from Lemma 1 and Propositions 1 and 2.
We end the paper, noting that Theorem 6 (and Corollary 12) introduces a fixed

point technique for asymptotic complexity analysis of algorithms which does not assume
requirements over all elements in a subset R of C. It follows that we can reduce
the set of elements over which we need to check those conditions that allow discuss
the asymptotic complexity of an algorithm whose running time satisfies a recurrence
equation. Hence the new technique improves those given in [12–14]. Besides, the afore-
mentioned technique captures the essence of that given in Theorem 5 and, in addition,
it allows to state upper and lower asymptotic bounds for the running time computing
of algorithms. So, in this sense, it improves the technique introduced in Theorem 5.
Besides, the new fixed point method preserve the original Scott’s ideas providing a
common framework for Denotational Semantics and Asymptotic Complexity of algo-
rithms.

4 Future work

It must be stressed that in Scott’s approach the �-continuity of a mapping matches up with
the notion of continuity with respect to the so-called Scott topology (see, for instance, [2]).
Clearly in our new context the�-continuity has been replaced by the orbital�-continuity. So
it seems natural to wonder whether such a notion can be interpreted as a kind of continuity
with respect to any topology. Thus the authors propose as future work to analyze if that
topology exists and, if so, characterize it.
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20. Cobzaş, Ş.: Functional Analysis in Asymmetric Normed Spaces. Birkhäuser, Basel (2013)
21. Künzi, H.-P.A., Schellekens, M.P.: On the Yoneda completion of a quasi-metric space. Theor. Comput.

Sci. 278, 159–194 (2002)
22. Matthews, S.G.: Partial metric topology. Ann. N. Y. Acad. Sci. 728, 183–197 (1994)
23. Brassard, G., Bratley, P.: Algorithms: Theory and Practice. Prentice-Hall, Englewood Cliffs (1988)
24. Cull, P., Flahive, M., Robson, R.: Difference Equations: From Rabbits to Chaos. Springer, New York

(2005)
25. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3. Addison-Wesley, Red-

wood (1973)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123



3252 A. Estevan et al.

Affiliations

Asier Estevan1 · Juan-José Miñana2 ·Oscar Valero2

Asier Estevan
asier.mugertza@unavarra.es

Juan-José Miñana
jj.minana@uib.es

1 Departamento de Matemáticas, Universidad Pública de Navarra, Campus Arrosadia,
Iruña-Pamplona 31006, Spain

2 Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Ctra. de
Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain

123

http://orcid.org/0000-0002-8822-2438
http://orcid.org/0000-0001-9835-0700
http://orcid.org/0000-0003-4710-1338

	On fixed point theory in partially ordered sets and an application to asymptotic complexity of algorithms
	Abstract
	1 Introduction
	2 The fixed point theorems
	3 The application
	4 Future work
	References




